mirror of
https://github.com/opencv/opencv.git
synced 2024-11-28 05:06:29 +08:00
328 lines
12 KiB
C++
328 lines
12 KiB
C++
/*M///////////////////////////////////////////////////////////////////////////////////////
|
|
//
|
|
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
|
|
//
|
|
// By downloading, copying, installing or using the software you agree to this license.
|
|
// If you do not agree to this license, do not download, install,
|
|
// copy or use the software.
|
|
//
|
|
//
|
|
// Intel License Agreement
|
|
// For Open Source Computer Vision Library
|
|
//
|
|
// Copyright (C) 2000, Intel Corporation, all rights reserved.
|
|
// Third party copyrights are property of their respective owners.
|
|
//
|
|
// Redistribution and use in source and binary forms, with or without modification,
|
|
// are permitted provided that the following conditions are met:
|
|
//
|
|
// * Redistribution's of source code must retain the above copyright notice,
|
|
// this list of conditions and the following disclaimer.
|
|
//
|
|
// * Redistribution's in binary form must reproduce the above copyright notice,
|
|
// this list of conditions and the following disclaimer in the documentation
|
|
// and/or other materials provided with the distribution.
|
|
//
|
|
// * The name of Intel Corporation may not be used to endorse or promote products
|
|
// derived from this software without specific prior written permission.
|
|
//
|
|
// This software is provided by the copyright holders and contributors "as is" and
|
|
// any express or implied warranties, including, but not limited to, the implied
|
|
// warranties of merchantability and fitness for a particular purpose are disclaimed.
|
|
// In no event shall the Intel Corporation or contributors be liable for any direct,
|
|
// indirect, incidental, special, exemplary, or consequential damages
|
|
// (including, but not limited to, procurement of substitute goods or services;
|
|
// loss of use, data, or profits; or business interruption) however caused
|
|
// and on any theory of liability, whether in contract, strict liability,
|
|
// or tort (including negligence or otherwise) arising in any way out of
|
|
// the use of this software, even if advised of the possibility of such damage.
|
|
//
|
|
//M*/
|
|
|
|
#include "test_precomp.hpp"
|
|
|
|
using namespace std;
|
|
using namespace cv;
|
|
|
|
void defaultDistribs( vector<Mat>& means, vector<Mat>& covs )
|
|
{
|
|
float mp0[] = {0.0f, 0.0f}, cp0[] = {0.67f, 0.0f, 0.0f, 0.67f};
|
|
float mp1[] = {5.0f, 0.0f}, cp1[] = {1.0f, 0.0f, 0.0f, 1.0f};
|
|
float mp2[] = {1.0f, 5.0f}, cp2[] = {1.0f, 0.0f, 0.0f, 1.0f};
|
|
Mat m0( 1, 2, CV_32FC1, mp0 ), c0( 2, 2, CV_32FC1, cp0 );
|
|
Mat m1( 1, 2, CV_32FC1, mp1 ), c1( 2, 2, CV_32FC1, cp1 );
|
|
Mat m2( 1, 2, CV_32FC1, mp2 ), c2( 2, 2, CV_32FC1, cp2 );
|
|
means.resize(3), covs.resize(3);
|
|
m0.copyTo(means[0]), c0.copyTo(covs[0]);
|
|
m1.copyTo(means[1]), c1.copyTo(covs[1]);
|
|
m2.copyTo(means[2]), c2.copyTo(covs[2]);
|
|
}
|
|
|
|
// generate points sets by normal distributions
|
|
void generateData( Mat& data, Mat& labels, const vector<int>& sizes, const vector<Mat>& means, const vector<Mat>& covs, int labelType )
|
|
{
|
|
vector<int>::const_iterator sit = sizes.begin();
|
|
int total = 0;
|
|
for( ; sit != sizes.end(); ++sit )
|
|
total += *sit;
|
|
assert( means.size() == sizes.size() && covs.size() == sizes.size() );
|
|
assert( !data.empty() && data.rows == total );
|
|
assert( data.type() == CV_32FC1 );
|
|
|
|
labels.create( data.rows, 1, labelType );
|
|
|
|
randn( data, Scalar::all(0.0), Scalar::all(1.0) );
|
|
vector<Mat>::const_iterator mit = means.begin(), cit = covs.begin();
|
|
int bi, ei = 0;
|
|
sit = sizes.begin();
|
|
for( int p = 0, l = 0; sit != sizes.end(); ++sit, ++mit, ++cit, l++ )
|
|
{
|
|
bi = ei;
|
|
ei = bi + *sit;
|
|
assert( mit->rows == 1 && mit->cols == data.cols );
|
|
assert( cit->rows == data.cols && cit->cols == data.cols );
|
|
for( int i = bi; i < ei; i++, p++ )
|
|
{
|
|
Mat r(1, data.cols, CV_32FC1, data.ptr<float>(i));
|
|
r = r * (*cit) + *mit;
|
|
if( labelType == CV_32FC1 )
|
|
labels.at<float>(p, 0) = (float)l;
|
|
else
|
|
labels.at<int>(p, 0) = l;
|
|
}
|
|
}
|
|
}
|
|
|
|
int maxIdx( const vector<int>& count )
|
|
{
|
|
int idx = -1;
|
|
int maxVal = -1;
|
|
vector<int>::const_iterator it = count.begin();
|
|
for( int i = 0; it != count.end(); ++it, i++ )
|
|
{
|
|
if( *it > maxVal)
|
|
{
|
|
maxVal = *it;
|
|
idx = i;
|
|
}
|
|
}
|
|
assert( idx >= 0);
|
|
return idx;
|
|
}
|
|
|
|
bool getLabelsMap( const Mat& labels, const vector<int>& sizes, vector<int>& labelsMap )
|
|
{
|
|
int total = 0, setCount = (int)sizes.size();
|
|
vector<int>::const_iterator sit = sizes.begin();
|
|
for( ; sit != sizes.end(); ++sit )
|
|
total += *sit;
|
|
assert( !labels.empty() );
|
|
assert( labels.rows == total && labels.cols == 1 );
|
|
assert( labels.type() == CV_32SC1 || labels.type() == CV_32FC1 );
|
|
|
|
bool isFlt = labels.type() == CV_32FC1;
|
|
labelsMap.resize(setCount);
|
|
vector<int>::iterator lmit = labelsMap.begin();
|
|
vector<bool> buzy(setCount, false);
|
|
int bi, ei = 0;
|
|
for( sit = sizes.begin(); sit != sizes.end(); ++sit, ++lmit )
|
|
{
|
|
vector<int> count( setCount, 0 );
|
|
bi = ei;
|
|
ei = bi + *sit;
|
|
if( isFlt )
|
|
{
|
|
for( int i = bi; i < ei; i++ )
|
|
count[(int)labels.at<float>(i, 0)]++;
|
|
}
|
|
else
|
|
{
|
|
for( int i = bi; i < ei; i++ )
|
|
count[labels.at<int>(i, 0)]++;
|
|
}
|
|
|
|
*lmit = maxIdx( count );
|
|
if( buzy[*lmit] )
|
|
return false;
|
|
buzy[*lmit] = true;
|
|
}
|
|
return true;
|
|
}
|
|
|
|
float calcErr( const Mat& labels, const Mat& origLabels, const vector<int>& sizes, bool labelsEquivalent = true )
|
|
{
|
|
int err = 0;
|
|
assert( !labels.empty() && !origLabels.empty() );
|
|
assert( labels.cols == 1 && origLabels.cols == 1 );
|
|
assert( labels.rows == origLabels.rows );
|
|
assert( labels.type() == origLabels.type() );
|
|
assert( labels.type() == CV_32SC1 || labels.type() == CV_32FC1 );
|
|
|
|
vector<int> labelsMap;
|
|
bool isFlt = labels.type() == CV_32FC1;
|
|
if( !labelsEquivalent )
|
|
{
|
|
getLabelsMap( labels, sizes, labelsMap );
|
|
for( int i = 0; i < labels.rows; i++ )
|
|
if( isFlt )
|
|
err += labels.at<float>(i, 0) != labelsMap[(int)origLabels.at<float>(i, 0)];
|
|
else
|
|
err += labels.at<int>(i, 0) != labelsMap[origLabels.at<int>(i, 0)];
|
|
}
|
|
else
|
|
{
|
|
for( int i = 0; i < labels.rows; i++ )
|
|
if( isFlt )
|
|
err += labels.at<float>(i, 0) != origLabels.at<float>(i, 0);
|
|
else
|
|
err += labels.at<int>(i, 0) != origLabels.at<int>(i, 0);
|
|
}
|
|
return (float)err / (float)labels.rows;
|
|
}
|
|
|
|
//--------------------------------------------------------------------------------------------
|
|
class CV_KMeansTest : public cvtest::BaseTest {
|
|
public:
|
|
CV_KMeansTest() {}
|
|
protected:
|
|
virtual void run( int start_from );
|
|
};
|
|
|
|
void CV_KMeansTest::run( int /*start_from*/ )
|
|
{
|
|
const int iters = 100;
|
|
int sizesArr[] = { 5000, 7000, 8000 };
|
|
int pointsCount = sizesArr[0]+ sizesArr[1] + sizesArr[2];
|
|
|
|
Mat data( pointsCount, 2, CV_32FC1 ), labels;
|
|
vector<int> sizes( sizesArr, sizesArr + sizeof(sizesArr) / sizeof(sizesArr[0]) );
|
|
vector<Mat> means, covs;
|
|
defaultDistribs( means, covs );
|
|
generateData( data, labels, sizes, means, covs, CV_32SC1 );
|
|
|
|
int code = cvtest::TS::OK;
|
|
Mat bestLabels;
|
|
// 1. flag==KMEANS_PP_CENTERS
|
|
kmeans( data, 3, bestLabels, TermCriteria( TermCriteria::COUNT, iters, 0.0), 0, KMEANS_PP_CENTERS, noArray() );
|
|
if( calcErr( bestLabels, labels, sizes, false ) > 0.01f )
|
|
{
|
|
ts->printf( cvtest::TS::LOG, "bad accuracy if flag==KMEANS_PP_CENTERS" );
|
|
code = cvtest::TS::FAIL_BAD_ACCURACY;
|
|
}
|
|
|
|
// 2. flag==KMEANS_RANDOM_CENTERS
|
|
kmeans( data, 3, bestLabels, TermCriteria( TermCriteria::COUNT, iters, 0.0), 0, KMEANS_RANDOM_CENTERS, noArray() );
|
|
if( calcErr( bestLabels, labels, sizes, false ) > 0.01f )
|
|
{
|
|
ts->printf( cvtest::TS::LOG, "bad accuracy if flag==KMEANS_PP_CENTERS" );
|
|
code = cvtest::TS::FAIL_BAD_ACCURACY;
|
|
}
|
|
|
|
// 3. flag==KMEANS_USE_INITIAL_LABELS
|
|
labels.copyTo( bestLabels );
|
|
RNG rng;
|
|
for( int i = 0; i < 0.5f * pointsCount; i++ )
|
|
bestLabels.at<int>( rng.next() % pointsCount, 0 ) = rng.next() % 3;
|
|
kmeans( data, 3, bestLabels, TermCriteria( TermCriteria::COUNT, iters, 0.0), 0, KMEANS_USE_INITIAL_LABELS, noArray() );
|
|
if( calcErr( bestLabels, labels, sizes, false ) > 0.01f )
|
|
{
|
|
ts->printf( cvtest::TS::LOG, "bad accuracy if flag==KMEANS_PP_CENTERS" );
|
|
code = cvtest::TS::FAIL_BAD_ACCURACY;
|
|
}
|
|
|
|
ts->set_failed_test_info( code );
|
|
}
|
|
|
|
//--------------------------------------------------------------------------------------------
|
|
class CV_KNearestTest : public cvtest::BaseTest {
|
|
public:
|
|
CV_KNearestTest() {}
|
|
protected:
|
|
virtual void run( int start_from );
|
|
};
|
|
|
|
void CV_KNearestTest::run( int /*start_from*/ )
|
|
{
|
|
int sizesArr[] = { 500, 700, 800 };
|
|
int pointsCount = sizesArr[0]+ sizesArr[1] + sizesArr[2];
|
|
|
|
// train data
|
|
Mat trainData( pointsCount, 2, CV_32FC1 ), trainLabels;
|
|
vector<int> sizes( sizesArr, sizesArr + sizeof(sizesArr) / sizeof(sizesArr[0]) );
|
|
vector<Mat> means, covs;
|
|
defaultDistribs( means, covs );
|
|
generateData( trainData, trainLabels, sizes, means, covs, CV_32FC1 );
|
|
|
|
// test data
|
|
Mat testData( pointsCount, 2, CV_32FC1 ), testLabels, bestLabels;
|
|
generateData( testData, testLabels, sizes, means, covs, CV_32FC1 );
|
|
|
|
int code = cvtest::TS::OK;
|
|
KNearest knearest;
|
|
knearest.train( trainData, trainLabels );
|
|
knearest.find_nearest( testData, 4, &bestLabels );
|
|
if( calcErr( bestLabels, testLabels, sizes, true ) > 0.01f )
|
|
{
|
|
ts->printf( cvtest::TS::LOG, "bad accuracy on test data" );
|
|
code = cvtest::TS::FAIL_BAD_ACCURACY;
|
|
}
|
|
ts->set_failed_test_info( code );
|
|
}
|
|
|
|
//--------------------------------------------------------------------------------------------
|
|
class CV_EMTest : public cvtest::BaseTest {
|
|
public:
|
|
CV_EMTest() {}
|
|
protected:
|
|
virtual void run( int start_from );
|
|
};
|
|
|
|
void CV_EMTest::run( int /*start_from*/ )
|
|
{
|
|
int sizesArr[] = { 5000, 7000, 8000 };
|
|
int pointsCount = sizesArr[0]+ sizesArr[1] + sizesArr[2];
|
|
|
|
// train data
|
|
Mat trainData( pointsCount, 2, CV_32FC1 ), trainLabels;
|
|
vector<int> sizes( sizesArr, sizesArr + sizeof(sizesArr) / sizeof(sizesArr[0]) );
|
|
vector<Mat> means, covs;
|
|
defaultDistribs( means, covs );
|
|
generateData( trainData, trainLabels, sizes, means, covs, CV_32SC1 );
|
|
|
|
// test data
|
|
Mat testData( pointsCount, 2, CV_32FC1 ), testLabels, bestLabels;
|
|
generateData( testData, testLabels, sizes, means, covs, CV_32SC1 );
|
|
|
|
int code = cvtest::TS::OK;
|
|
ExpectationMaximization em;
|
|
CvEMParams params;
|
|
params.nclusters = 3;
|
|
em.train( trainData, Mat(), params, &bestLabels );
|
|
|
|
// check train error
|
|
if( calcErr( bestLabels, trainLabels, sizes, true ) > 0.002f )
|
|
{
|
|
ts->printf( cvtest::TS::LOG, "bad accuracy on train data" );
|
|
code = cvtest::TS::FAIL_BAD_ACCURACY;
|
|
}
|
|
|
|
// check test error
|
|
bestLabels.create( testData.rows, 1, CV_32SC1 );
|
|
for( int i = 0; i < testData.rows; i++ )
|
|
{
|
|
Mat sample( 1, testData.cols, CV_32FC1, testData.ptr<float>(i));
|
|
bestLabels.at<int>(i,0) = (int)em.predict( sample, 0 );
|
|
}
|
|
if( calcErr( bestLabels, testLabels, sizes, true ) > 0.005f )
|
|
{
|
|
ts->printf( cvtest::TS::LOG, "bad accuracy on test data" );
|
|
code = cvtest::TS::FAIL_BAD_ACCURACY;
|
|
}
|
|
|
|
ts->set_failed_test_info( code );
|
|
}
|
|
|
|
TEST(ML_KMeans, accuracy) { CV_KMeansTest test; test.safe_run(); }
|
|
TEST(ML_KNearest, accuracy) { CV_KNearestTest test; test.safe_run(); }
|
|
TEST(ML_EMTest, accuracy) { CV_EMTest test; test.safe_run(); }
|