batch_norm layer ocl update

use a batch_norm ocl kernel to do the work

Signed-off-by: Li Peng <peng.li@intel.com>
This commit is contained in:
Li Peng 2018-01-12 21:30:19 +08:00
parent be1207e5e4
commit 4189214d04
2 changed files with 99 additions and 41 deletions

View File

@ -12,6 +12,7 @@ Implementation of Batch Normalization layer.
#include "../precomp.hpp"
#include "op_halide.hpp"
#include <opencv2/dnn/shape_utils.hpp>
#include "opencl_kernels_dnn.hpp"
namespace cv
{
@ -22,7 +23,7 @@ class BatchNormLayerImpl : public BatchNormLayer
{
public:
Mat weights_, bias_;
Mat weightMat, biasMat;
UMat umat_weight, umat_bias;
BatchNormLayerImpl(const LayerParams& params)
{
@ -80,6 +81,9 @@ public:
dstWeightsData[i] = w;
dstBiasData[i] = (hasBias ? biasData[i] : 0.0f) - w * meanData[i] * varMeanScale;
}
umat_weight = weights_.getUMat(ACCESS_READ);
umat_bias = bias_.getUMat(ACCESS_READ);
}
void getScaleShift(Mat& scale, Mat& shift) const
@ -97,25 +101,6 @@ public:
return true;
}
void finalize(const std::vector<Mat*> &inputs, std::vector<Mat> &outputs)
{
if (inputs[0]->dims == 4)
{
int groups = inputs[0]->size[0];
int channels = inputs[0]->size[1];
int rows = inputs[0]->size[2];
int cols = inputs[0]->size[3];
MatShape s = shape(groups * channels, rows * cols);
weightMat = Mat(s[0], s[1], CV_32FC1);
biasMat = Mat(s[0], s[1], CV_32FC1);
for (int n = 0; n < s[0]; n++)
{
weightMat.row(n).setTo(weights_.at<float>(n % channels));
biasMat.row(n).setTo(bias_.at<float>(n % channels));
}
}
}
virtual bool supportBackend(int backendId)
{
return backendId == DNN_BACKEND_DEFAULT ||
@ -155,8 +140,23 @@ public:
MatShape s = shape(groups * channels, rows * cols);
UMat src = inputs[ii].reshape(1, s.size(), &s[0]);
UMat dst = outputs[ii].reshape(1, s.size(), &s[0]);
multiply(src, weightMat, dst);
add(dst, biasMat, dst);
int number = (s[1] % 8 == 0) ? 8 : ((s[1] % 4 == 0) ? 4 : 1);
String buildopt = format("-DNUM=%d ", number);
String kname = format("batch_norm%d", number);
ocl::Kernel kernel(kname.c_str(), ocl::dnn::batchnorm_oclsrc, buildopt);
if (kernel.empty())
return false;
size_t global[] = { (size_t)s[0], (size_t)(s[1] / number) };
kernel.set(0, ocl::KernelArg::PtrReadOnly(src));
kernel.set(1, (int)s[0]);
kernel.set(2, (int)s[1]);
kernel.set(3, (int)channels);
kernel.set(4, ocl::KernelArg::PtrReadOnly(umat_weight));
kernel.set(5, ocl::KernelArg::PtrReadOnly(umat_bias));
kernel.set(6, ocl::KernelArg::PtrWriteOnly(dst));
bool ret = kernel.run(2, global, NULL, false);
if (!ret)
return false;
}
}
return true;

View File

@ -1,26 +1,84 @@
/*M///////////////////////////////////////////////////////////////////////////////////////
//
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
// By downloading, copying, installing or using the software you agree to this license.
// If you do not agree to this license, do not download, install,
// copy or use the software.
//
//
// License Agreement
// For Open Source Computer Vision Library
//
// Copyright (C) 2017, Intel Corporation, all rights reserved.
// Copyright (c) 2016-2017 Fabian David Tschopp, all rights reserved.
// Third party copyrights are property of their respective owners.
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
// * Redistribution's of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
//
// * Redistribution's in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other materials provided with the distribution.
//
// * The name of the copyright holders may not be used to endorse or promote products
// derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors "as is" and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/
__kernel void batchnorm(__global const T *src, int src_offset,
__global const float *meanMat,
float varMeanScale,
__global const float *invStdMat,
__global const float *weight,
__global const float *bias,
int hasWeight, int hasBias,
int width, int height, int channel,
__global T *dst, int dst_offset)
#define Dtype float
#define Dtype4 float4
#define Dtype8 float8
#if NUM == 8
#define load(src, index) vload8(0, src + index)
#define store(vec, dst, index) vstore8(vec, 0, dst + index)
#define vec_type Dtype8
#define BATCH_NORM batch_norm8
#elif NUM == 4
#define load(src, index) vload4(0, src + index)
#define store(vec, dst, index) vstore4(vec, 0, dst + index)
#define vec_type Dtype4
#define BATCH_NORM batch_norm4
#elif NUM == 1
#define load(src, index) src[index]
#define store(vec, dst, index) dst[index] = vec
#define vec_type Dtype
#define BATCH_NORM batch_norm1
#endif
__kernel void BATCH_NORM(__global const Dtype* src,
const int rows,
const int cols,
const int channels,
__global const Dtype* weight,
__global const Dtype* bias,
__global Dtype* dst)
{
int x = get_global_id(0);
int y = get_global_id(1);
int c = get_global_id(2);
int y = get_global_id(1) * NUM;
int index = x * cols + y;
if (x >= width || y >= height || c >= channel)
if (x >= rows || y >= cols)
return;
float mean = meanMat[c] * varMeanScale;
float invstd = invStdMat[c];
float w = hasWeight ? weight[c] : 1;
float b = hasBias ? bias[c] : 0;
int index = y * width + x + c * width * height;
T val = (src[index + src_offset] - mean) * w * invstd + b;
dst[index + dst_offset] = val;
Dtype w = weight[x % channels];
Dtype b = bias[x % channels];
vec_type src_vec = load(src, index);
vec_type dst_vec = src_vec * w + (vec_type)b;
store(dst_vec, dst, index);
}