mirror of
https://github.com/opencv/opencv.git
synced 2024-11-23 18:50:21 +08:00
Merge pull request #21805 from rogday:pretty_fix
Mat pretty printer: fix submatrix indexation * fix submatrix indexation * fix channels
This commit is contained in:
parent
5cc154147f
commit
438fe3f9db
@ -122,28 +122,38 @@ class Mat:
|
||||
(dtype, ctype) = flags.dtype()
|
||||
elsize = np.dtype(dtype).itemsize
|
||||
|
||||
ptr = m['data']
|
||||
dataptr = int(ptr)
|
||||
length = (int(m['dataend']) - dataptr) // elsize
|
||||
start = (int(m['datastart']) - dataptr) // elsize
|
||||
shape = size.to_numpy()
|
||||
steps = np.asarray([int(m['step']['p'][i]) for i in range(len(shape))], dtype=np.int64)
|
||||
|
||||
if length == 0:
|
||||
ptr = m['data']
|
||||
# either we are default-constructed or sizes are zero
|
||||
if int(ptr) == 0 or np.prod(shape * steps) == 0:
|
||||
self.mat = np.array([])
|
||||
self.view = self.mat
|
||||
return
|
||||
|
||||
# we don't want to show excess brackets
|
||||
if flags.channels() != 1:
|
||||
shape = np.append(shape, flags.channels())
|
||||
steps = np.append(steps, elsize)
|
||||
|
||||
# get the length of contiguous array from data to the last element of the matrix
|
||||
length = 1 + np.sum((shape - 1) * steps) // elsize
|
||||
|
||||
if dtype != np.float16:
|
||||
# read all elements into self.mat
|
||||
ctype = gdb.lookup_type(ctype)
|
||||
ptr = ptr.cast(ctype.array(length - 1).pointer()).dereference()
|
||||
self.mat = np.array([ptr[i] for i in range(length)], dtype=dtype)
|
||||
else:
|
||||
# read as uint16_t and then reinterpret the bytes as float16
|
||||
u16 = gdb.lookup_type('uint16_t')
|
||||
ptr = ptr.cast(u16.array(length - 1).pointer()).dereference()
|
||||
self.mat = np.array([ptr[i] for i in range(length)], dtype=np.uint16)
|
||||
self.mat = self.mat.view(np.float16)
|
||||
|
||||
steps = np.asarray([int(m['step']['p'][i]) for i in range(size.dims())], dtype=np.int64)
|
||||
self.view = np.lib.stride_tricks.as_strided(self.mat[start:], shape=size.to_numpy(), strides=steps)
|
||||
# numpy will do the heavy lifting of strided access
|
||||
self.view = np.lib.stride_tricks.as_strided(self.mat, shape=shape, strides=steps)
|
||||
|
||||
def __iter__(self):
|
||||
return iter({'data': stri(self.view)}.items())
|
||||
|
Loading…
Reference in New Issue
Block a user