mirror of
https://github.com/opencv/opencv.git
synced 2024-11-25 19:50:38 +08:00
ported cv::goodFeaturesToTrack to T-API
This commit is contained in:
parent
6b8bee6e0b
commit
52ed6d0d27
@ -38,18 +38,179 @@
|
||||
// the use of this software, even if advised of the possibility of such damage.
|
||||
//
|
||||
//M*/
|
||||
|
||||
#include "precomp.hpp"
|
||||
#include "opencl_kernels.hpp"
|
||||
|
||||
#include <cstdio>
|
||||
#include <vector>
|
||||
#include <iostream>
|
||||
|
||||
namespace cv
|
||||
{
|
||||
|
||||
template<typename T> struct greaterThanPtr
|
||||
struct greaterThanPtr :
|
||||
public std::binary_function<const float *, const float *, bool>
|
||||
{
|
||||
bool operator()(const T* a, const T* b) const { return *a > *b; }
|
||||
bool operator () (const float * a, const float * b) const
|
||||
{ return *a > *b; }
|
||||
};
|
||||
|
||||
struct Corner
|
||||
{
|
||||
float val;
|
||||
short y;
|
||||
short x;
|
||||
|
||||
bool operator < (const Corner & c) const
|
||||
{ return val > c.val; }
|
||||
};
|
||||
|
||||
static bool ocl_goodFeaturesToTrack( InputArray _image, OutputArray _corners,
|
||||
int maxCorners, double qualityLevel, double minDistance,
|
||||
InputArray _mask, int blockSize,
|
||||
bool useHarrisDetector, double harrisK )
|
||||
{
|
||||
UMat eig, tmp;
|
||||
if( useHarrisDetector )
|
||||
cornerHarris( _image, eig, blockSize, 3, harrisK );
|
||||
else
|
||||
cornerMinEigenVal( _image, eig, blockSize, 3 );
|
||||
|
||||
double maxVal = 0;
|
||||
minMaxLoc( eig, NULL, &maxVal, NULL, NULL, _mask );
|
||||
threshold( eig, eig, maxVal*qualityLevel, 0, THRESH_TOZERO );
|
||||
dilate( eig, tmp, Mat());
|
||||
|
||||
Size imgsize = _image.size();
|
||||
std::vector<Corner> tmpCorners;
|
||||
size_t total, i, j, ncorners = 0, possibleCornersCount =
|
||||
std::max(1024, static_cast<int>(imgsize.area() * 0.1));
|
||||
bool haveMask = !_mask.empty();
|
||||
|
||||
// collect list of pointers to features - put them into temporary image
|
||||
{
|
||||
ocl::Kernel k("findCorners", ocl::imgproc::gftt_oclsrc,
|
||||
format(haveMask ? "-D HAVE_MASK" : ""));
|
||||
if (k.empty())
|
||||
return false;
|
||||
|
||||
UMat counter(1, 1, CV_32SC1, Scalar::all(0)),
|
||||
corners(1, possibleCornersCount * sizeof(Corner), CV_8UC1);
|
||||
ocl::KernelArg eigarg = ocl::KernelArg::ReadOnlyNoSize(eig),
|
||||
tmparg = ocl::KernelArg::ReadOnlyNoSize(tmp),
|
||||
cornersarg = ocl::KernelArg::PtrWriteOnly(corners),
|
||||
counterarg = ocl::KernelArg::PtrReadWrite(counter);
|
||||
|
||||
if (!haveMask)
|
||||
k.args(eigarg, tmparg, cornersarg, counterarg,
|
||||
imgsize.height - 2, imgsize.width - 2);
|
||||
else
|
||||
{
|
||||
UMat mask = _mask.getUMat();
|
||||
k.args(eigarg, ocl::KernelArg::ReadOnlyNoSize(mask), tmparg,
|
||||
cornersarg, counterarg, imgsize.height - 2, imgsize.width - 2);
|
||||
}
|
||||
|
||||
size_t globalsize[2] = { imgsize.width - 2, imgsize.height - 2 };
|
||||
if (!k.run(2, globalsize, NULL, false))
|
||||
return false;
|
||||
|
||||
total = counter.getMat(ACCESS_READ).at<int>(0, 0);
|
||||
size_t totalb = sizeof(Corner) * total;
|
||||
|
||||
tmpCorners.resize(total);
|
||||
Mat mcorners(1, totalb, CV_8UC1, &tmpCorners[0]);
|
||||
corners.colRange(0, totalb).copyTo(mcorners);
|
||||
}
|
||||
|
||||
std::sort( tmpCorners.begin(), tmpCorners.end() );
|
||||
std::vector<Point2f> corners;
|
||||
corners.reserve(total);
|
||||
|
||||
if (minDistance >= 1)
|
||||
{
|
||||
// Partition the image into larger grids
|
||||
int w = imgsize.width, h = imgsize.height;
|
||||
|
||||
const int cell_size = cvRound(minDistance);
|
||||
const int grid_width = (w + cell_size - 1) / cell_size;
|
||||
const int grid_height = (h + cell_size - 1) / cell_size;
|
||||
|
||||
std::vector<std::vector<Point2f> > grid(grid_width*grid_height);
|
||||
minDistance *= minDistance;
|
||||
|
||||
for( i = 0; i < total; i++ )
|
||||
{
|
||||
const Corner & c = tmpCorners[i];
|
||||
bool good = true;
|
||||
|
||||
int x_cell = c.x / cell_size;
|
||||
int y_cell = c.y / cell_size;
|
||||
|
||||
int x1 = x_cell - 1;
|
||||
int y1 = y_cell - 1;
|
||||
int x2 = x_cell + 1;
|
||||
int y2 = y_cell + 1;
|
||||
|
||||
// boundary check
|
||||
x1 = std::max(0, x1);
|
||||
y1 = std::max(0, y1);
|
||||
x2 = std::min(grid_width-1, x2);
|
||||
y2 = std::min(grid_height-1, y2);
|
||||
|
||||
for( int yy = y1; yy <= y2; yy++ )
|
||||
for( int xx = x1; xx <= x2; xx++ )
|
||||
{
|
||||
std::vector<Point2f> &m = grid[yy*grid_width + xx];
|
||||
|
||||
if( m.size() )
|
||||
{
|
||||
for(j = 0; j < m.size(); j++)
|
||||
{
|
||||
float dx = c.x - m[j].x;
|
||||
float dy = c.y - m[j].y;
|
||||
|
||||
if( dx*dx + dy*dy < minDistance )
|
||||
{
|
||||
good = false;
|
||||
goto break_out;
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
break_out:
|
||||
|
||||
if (good)
|
||||
{
|
||||
grid[y_cell*grid_width + x_cell].push_back(Point2f((float)c.x, (float)c.y));
|
||||
|
||||
corners.push_back(Point2f((float)c.x, (float)c.y));
|
||||
++ncorners;
|
||||
|
||||
if( maxCorners > 0 && (int)ncorners == maxCorners )
|
||||
break;
|
||||
}
|
||||
}
|
||||
}
|
||||
else
|
||||
{
|
||||
for( i = 0; i < total; i++ )
|
||||
{
|
||||
const Corner & c = tmpCorners[i];
|
||||
|
||||
corners.push_back(Point2f((float)c.x, (float)c.y));
|
||||
++ncorners;
|
||||
if( maxCorners > 0 && (int)ncorners == maxCorners )
|
||||
break;
|
||||
}
|
||||
}
|
||||
|
||||
Mat(corners).convertTo(_corners, _corners.fixedType() ? _corners.type() : CV_32F);
|
||||
return true;
|
||||
}
|
||||
|
||||
}
|
||||
|
||||
void cv::goodFeaturesToTrack( InputArray _image, OutputArray _corners,
|
||||
@ -57,27 +218,32 @@ void cv::goodFeaturesToTrack( InputArray _image, OutputArray _corners,
|
||||
InputArray _mask, int blockSize,
|
||||
bool useHarrisDetector, double harrisK )
|
||||
{
|
||||
Mat image = _image.getMat(), mask = _mask.getMat();
|
||||
|
||||
CV_Assert( qualityLevel > 0 && minDistance >= 0 && maxCorners >= 0 );
|
||||
CV_Assert( mask.empty() || (mask.type() == CV_8UC1 && mask.size() == image.size()) );
|
||||
CV_Assert( _mask.empty() || (_mask.type() == CV_8UC1 && _mask.sameSize(_image)) );
|
||||
|
||||
Mat eig, tmp;
|
||||
if (ocl::useOpenCL() && _image.dims() <= 2 && _image.isUMat())
|
||||
{
|
||||
CV_Assert(ocl_goodFeaturesToTrack(_image, _corners, maxCorners, qualityLevel, minDistance,
|
||||
_mask, blockSize, useHarrisDetector, harrisK));
|
||||
return;
|
||||
}
|
||||
|
||||
Mat image = _image.getMat(), eig, tmp;
|
||||
if( useHarrisDetector )
|
||||
cornerHarris( image, eig, blockSize, 3, harrisK );
|
||||
else
|
||||
cornerMinEigenVal( image, eig, blockSize, 3 );
|
||||
|
||||
double maxVal = 0;
|
||||
minMaxLoc( eig, 0, &maxVal, 0, 0, mask );
|
||||
minMaxLoc( eig, 0, &maxVal, 0, 0, _mask );
|
||||
threshold( eig, eig, maxVal*qualityLevel, 0, THRESH_TOZERO );
|
||||
dilate( eig, tmp, Mat());
|
||||
|
||||
Size imgsize = image.size();
|
||||
|
||||
std::vector<const float*> tmpCorners;
|
||||
|
||||
// collect list of pointers to features - put them into temporary image
|
||||
Mat mask = _mask.getMat();
|
||||
for( int y = 1; y < imgsize.height - 1; y++ )
|
||||
{
|
||||
const float* eig_data = (const float*)eig.ptr(y);
|
||||
@ -92,11 +258,11 @@ void cv::goodFeaturesToTrack( InputArray _image, OutputArray _corners,
|
||||
}
|
||||
}
|
||||
|
||||
std::sort( tmpCorners.begin(), tmpCorners.end(), greaterThanPtr<float>() );
|
||||
std::sort( tmpCorners.begin(), tmpCorners.end(), greaterThanPtr() );
|
||||
std::vector<Point2f> corners;
|
||||
size_t i, j, total = tmpCorners.size(), ncorners = 0;
|
||||
|
||||
if(minDistance >= 1)
|
||||
if (minDistance >= 1)
|
||||
{
|
||||
// Partition the image into larger grids
|
||||
int w = image.cols;
|
||||
@ -133,7 +299,6 @@ void cv::goodFeaturesToTrack( InputArray _image, OutputArray _corners,
|
||||
y2 = std::min(grid_height-1, y2);
|
||||
|
||||
for( int yy = y1; yy <= y2; yy++ )
|
||||
{
|
||||
for( int xx = x1; xx <= x2; xx++ )
|
||||
{
|
||||
std::vector <Point2f> &m = grid[yy*grid_width + xx];
|
||||
@ -153,14 +318,11 @@ void cv::goodFeaturesToTrack( InputArray _image, OutputArray _corners,
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
break_out:
|
||||
|
||||
if(good)
|
||||
if (good)
|
||||
{
|
||||
// printf("%d: %d %d -> %d %d, %d, %d -- %d %d %d %d, %d %d, c=%d\n",
|
||||
// i,x, y, x_cell, y_cell, (int)minDistance, cell_size,x1,y1,x2,y2, grid_width,grid_height,c);
|
||||
grid[y_cell*grid_width + x_cell].push_back(Point2f((float)x, (float)y));
|
||||
|
||||
corners.push_back(Point2f((float)x, (float)y));
|
||||
@ -187,33 +349,6 @@ void cv::goodFeaturesToTrack( InputArray _image, OutputArray _corners,
|
||||
}
|
||||
|
||||
Mat(corners).convertTo(_corners, _corners.fixedType() ? _corners.type() : CV_32F);
|
||||
|
||||
/*
|
||||
for( i = 0; i < total; i++ )
|
||||
{
|
||||
int ofs = (int)((const uchar*)tmpCorners[i] - eig.data);
|
||||
int y = (int)(ofs / eig.step);
|
||||
int x = (int)((ofs - y*eig.step)/sizeof(float));
|
||||
|
||||
if( minDistance > 0 )
|
||||
{
|
||||
for( j = 0; j < ncorners; j++ )
|
||||
{
|
||||
float dx = x - corners[j].x;
|
||||
float dy = y - corners[j].y;
|
||||
if( dx*dx + dy*dy < minDistance )
|
||||
break;
|
||||
}
|
||||
if( j < ncorners )
|
||||
continue;
|
||||
}
|
||||
|
||||
corners.push_back(Point2f((float)x, (float)y));
|
||||
++ncorners;
|
||||
if( maxCorners > 0 && (int)ncorners == maxCorners )
|
||||
break;
|
||||
}
|
||||
*/
|
||||
}
|
||||
|
||||
CV_IMPL void
|
||||
|
@ -1404,10 +1404,10 @@ static void morphOp( int op, InputArray _src, OutputArray _dst,
|
||||
int src_type = _src.type(), dst_type = _dst.type(),
|
||||
src_cn = CV_MAT_CN(src_type), src_depth = CV_MAT_DEPTH(src_type);
|
||||
|
||||
bool useOpenCL = cv::ocl::useOpenCL() && _src.isUMat() && _src.size() == _dst.size() && src_type == dst_type &&
|
||||
_src.dims()<=2 && (src_cn == 1 || src_cn == 4) && (anchor.x == -1) && (anchor.y == -1) &&
|
||||
bool useOpenCL = cv::ocl::useOpenCL() && _dst.isUMat() && _src.size() == _dst.size() && src_type == dst_type &&
|
||||
_src.dims() <= 2 && (src_cn == 1 || src_cn == 4) && anchor.x == -1 && anchor.y == -1 &&
|
||||
(src_depth == CV_8U || src_depth == CV_32F || src_depth == CV_64F ) &&
|
||||
(borderType == cv::BORDER_CONSTANT) && (borderValue == morphologyDefaultBorderValue()) &&
|
||||
borderType == cv::BORDER_CONSTANT && borderValue == morphologyDefaultBorderValue() &&
|
||||
(op == MORPH_ERODE || op == MORPH_DILATE);
|
||||
|
||||
Mat kernel = _kernel.getMat();
|
||||
@ -1423,10 +1423,7 @@ static void morphOp( int op, InputArray _src, OutputArray _dst,
|
||||
|
||||
if( iterations == 0 || kernel.rows*kernel.cols == 1 )
|
||||
{
|
||||
Mat src = _src.getMat();
|
||||
_dst.create( src.size(), src.type() );
|
||||
Mat dst = _dst.getMat();
|
||||
src.copyTo(dst);
|
||||
_src.copyTo(_dst);
|
||||
return;
|
||||
}
|
||||
|
||||
|
81
modules/imgproc/src/opencl/gftt.cl
Normal file
81
modules/imgproc/src/opencl/gftt.cl
Normal file
@ -0,0 +1,81 @@
|
||||
/*M///////////////////////////////////////////////////////////////////////////////////////
|
||||
//
|
||||
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
|
||||
//
|
||||
// By downloading, copying, installing or using the software you agree to this license.
|
||||
// If you do not agree to this license, do not download, install,
|
||||
// copy or use the software.
|
||||
//
|
||||
//
|
||||
// License Agreement
|
||||
// For Open Source Computer Vision Library
|
||||
//
|
||||
// Copyright (C) 2010-2012, Institute Of Software Chinese Academy Of Science, all rights reserved.
|
||||
// Copyright (C) 2010-2012, Advanced Micro Devices, Inc., all rights reserved.
|
||||
// Third party copyrights are property of their respective owners.
|
||||
//
|
||||
// @Authors
|
||||
// Zhang Ying, zhangying913@gmail.com
|
||||
//
|
||||
// Redistribution and use in source and binary forms, with or without modification,
|
||||
// are permitted provided that the following conditions are met:
|
||||
//
|
||||
// * Redistribution's of source code must retain the above copyright notice,
|
||||
// this list of conditions and the following disclaimer.
|
||||
//
|
||||
// * Redistribution's in binary form must reproduce the above copyright notice,
|
||||
// this list of conditions and the following disclaimer in the documentation
|
||||
// and/or other materials provided with the distribution.
|
||||
//
|
||||
// * The name of the copyright holders may not be used to endorse or promote products
|
||||
// derived from this software without specific prior written permission.
|
||||
//
|
||||
// This software is provided by the copyright holders and contributors as is and
|
||||
// any express or implied warranties, including, but not limited to, the implied
|
||||
// warranties of merchantability and fitness for a particular purpose are disclaimed.
|
||||
// In no event shall the Intel Corporation or contributors be liable for any direct,
|
||||
// indirect, incidental, special, exemplary, or consequential damages
|
||||
// (including, but not limited to, procurement of substitute goods or services;
|
||||
// loss of use, data, or profits; or business interruption) however caused
|
||||
// and on any theory of liability, whether in contract, strict liability,
|
||||
// or tort (including negligence or otherwise) arising in any way out of
|
||||
// the use of this software, even if advised of the possibility of such damage.
|
||||
//
|
||||
//M*/
|
||||
|
||||
__kernel void findCorners(__global const uchar * eigptr, int eig_step, int eig_offset,
|
||||
#ifdef HAVE_MASK
|
||||
__global const uchar * mask, int mask_step, int mask_offset,
|
||||
#endif
|
||||
__global const uchar * tmpptr, int tmp_step, int tmp_offset,
|
||||
__global uchar * cornersptr, __global int * counter,
|
||||
int rows, int cols)
|
||||
{
|
||||
int x = get_global_id(0);
|
||||
int y = get_global_id(1);
|
||||
|
||||
if (x < cols && y < rows)
|
||||
{
|
||||
++x, ++y;
|
||||
|
||||
int eig_index = mad24(y, eig_step, eig_offset + x * (int)sizeof(float));
|
||||
int tmp_index = mad24(y, tmp_step, tmp_offset + x * (int)sizeof(float));
|
||||
#ifdef HAVE_MASK
|
||||
int mask_index = mad24(y, mask_step, mask_offset + x);
|
||||
mask += mask_index;
|
||||
#endif
|
||||
|
||||
float val = *(__global const float *)(eigptr + eig_index);
|
||||
float tmp = *(__global const float *)(tmpptr + tmp_index);
|
||||
|
||||
if (val != 0 && val == tmp
|
||||
#ifdef HAVE_MASK
|
||||
&& mask[0] != 0
|
||||
#endif
|
||||
)
|
||||
{
|
||||
__global float2 * corners = (cornersptr + (int)sizeof(float2) * atomic_inc(counter));
|
||||
corners[0] = (float2)(val, as_float( (x<<16) | y ));
|
||||
}
|
||||
}
|
||||
}
|
139
modules/imgproc/test/ocl/test_gftt.cpp
Normal file
139
modules/imgproc/test/ocl/test_gftt.cpp
Normal file
@ -0,0 +1,139 @@
|
||||
///////////////////////////////////////////////////////////////////////////////////////
|
||||
//
|
||||
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
|
||||
//
|
||||
// By downloading, copying, installing or using the software you agree to this license.
|
||||
// If you do not agree to this license, do not download, install,
|
||||
// copy or use the software.
|
||||
//
|
||||
//
|
||||
// License Agreement
|
||||
// For Open Source Computer Vision Library
|
||||
// Copyright (C) 2010-2012, Multicoreware, Inc., all rights reserved.
|
||||
// Copyright (C) 2010-2012, Institute Of Software Chinese Academy Of Science, all rights reserved.
|
||||
// Copyright (C) 2010-2012, Advanced Micro Devices, Inc., all rights reserved.
|
||||
// Third party copyrights are property of their respective owners.
|
||||
//
|
||||
//
|
||||
// Redistribution and use in source and binary forms, with or without modification,
|
||||
// are permitted provided that the following conditions are met:
|
||||
//
|
||||
// * Redistribution's of source code must retain the above copyright notice,
|
||||
// this list of conditions and the following disclaimer.
|
||||
//
|
||||
// * Redistribution's in binary form must reproduce the above copyright notice,
|
||||
// this list of conditions and the following disclaimer in the documentation
|
||||
// and/or other materials provided with the distribution.
|
||||
//
|
||||
// * The name of the copyright holders may not be used to endorse or promote products
|
||||
// derived from this software without specific prior written permission.
|
||||
//
|
||||
// This software is provided by the copyright holders and contributors "as is" and
|
||||
// any express or implied warranties, including, but not limited to, the implied
|
||||
// warranties of merchantability and fitness for a particular purpose are disclaimed.
|
||||
// In no event shall the Intel Corporation or contributors be liable for any direct,
|
||||
// indirect, incidental, special, exemplary, or consequential damages
|
||||
// (including, but not limited to, procurement of substitute goods or services;
|
||||
// loss of use, data, or profits; or business interruption) however caused
|
||||
// and on any theory of liability, whether in contract, strict liability,
|
||||
// or tort (including negligence or otherwise) arising in any way out of
|
||||
// the use of this software, even if advised of the possibility of such damage.
|
||||
//
|
||||
//M*/
|
||||
|
||||
#include "test_precomp.hpp"
|
||||
#include "opencv2/ts/ocl_test.hpp"
|
||||
|
||||
#ifdef HAVE_OPENCL
|
||||
|
||||
namespace cvtest {
|
||||
namespace ocl {
|
||||
|
||||
//////////////////////////// GoodFeaturesToTrack //////////////////////////
|
||||
|
||||
|
||||
PARAM_TEST_CASE(GoodFeaturesToTrack, double, bool)
|
||||
{
|
||||
double minDistance;
|
||||
bool useRoi;
|
||||
|
||||
static const int maxCorners;
|
||||
static const double qualityLevel;
|
||||
|
||||
TEST_DECLARE_INPUT_PARAMETER(src)
|
||||
UMat points, upoints;
|
||||
|
||||
virtual void SetUp()
|
||||
{
|
||||
minDistance = GET_PARAM(0);
|
||||
useRoi = GET_PARAM(1);
|
||||
}
|
||||
|
||||
void generateTestData()
|
||||
{
|
||||
Mat frame = readImage("../gpu/opticalflow/rubberwhale1.png", IMREAD_GRAYSCALE);
|
||||
ASSERT_FALSE(frame.empty()) << "could not load gpu/opticalflow/rubberwhale1.png";
|
||||
|
||||
Size roiSize = frame.size();
|
||||
Border srcBorder = randomBorder(0, useRoi ? 2 : 0);
|
||||
randomSubMat(src, src_roi, roiSize, srcBorder, frame.type(), 5, 256);
|
||||
src_roi.copyTo(frame);
|
||||
|
||||
UMAT_UPLOAD_INPUT_PARAMETER(src)
|
||||
}
|
||||
};
|
||||
|
||||
const int GoodFeaturesToTrack::maxCorners = 1000;
|
||||
const double GoodFeaturesToTrack::qualityLevel = 0.01;
|
||||
|
||||
OCL_TEST_P(GoodFeaturesToTrack, Accuracy)
|
||||
{
|
||||
for (int j = 0; j < test_loop_times; ++j)
|
||||
{
|
||||
generateTestData();
|
||||
|
||||
std::vector<Point2f> upts, pts;
|
||||
|
||||
OCL_OFF(cv::goodFeaturesToTrack(src_roi, points, maxCorners, qualityLevel, minDistance, noArray()));
|
||||
ASSERT_FALSE(points.empty());
|
||||
pts.resize(points.cols);
|
||||
points.copyTo(pts);
|
||||
|
||||
OCL_ON(cv::goodFeaturesToTrack(usrc_roi, upoints, maxCorners, qualityLevel, minDistance));
|
||||
ASSERT_FALSE(upoints.empty());
|
||||
upts.resize(upoints.cols);
|
||||
upoints.copyTo(upts);
|
||||
|
||||
ASSERT_EQ(upts.size(), pts.size());
|
||||
|
||||
int mistmatch = 0;
|
||||
for (size_t i = 0; i < pts.size(); ++i)
|
||||
{
|
||||
Point2i a = upts[i], b = pts[i];
|
||||
bool eq = std::abs(a.x - b.x) < 1 && std::abs(a.y - b.y) < 1;
|
||||
|
||||
if (!eq)
|
||||
++mistmatch;
|
||||
}
|
||||
|
||||
double bad_ratio = static_cast<double>(mistmatch) / pts.size();
|
||||
ASSERT_GE(1e-3, bad_ratio);
|
||||
}
|
||||
}
|
||||
|
||||
OCL_TEST_P(GoodFeaturesToTrack, EmptyCorners)
|
||||
{
|
||||
generateTestData();
|
||||
usrc_roi.setTo(Scalar::all(0));
|
||||
|
||||
OCL_ON(cv::goodFeaturesToTrack(usrc_roi, upoints, maxCorners, qualityLevel, minDistance));
|
||||
|
||||
ASSERT_TRUE(upoints.empty());
|
||||
}
|
||||
|
||||
OCL_INSTANTIATE_TEST_CASE_P(Imgproc, GoodFeaturesToTrack,
|
||||
::testing::Combine(testing::Values(0.0, 3.0), Bool()));
|
||||
|
||||
} } // namespace cvtest::ocl
|
||||
|
||||
#endif
|
@ -48,20 +48,18 @@
|
||||
using namespace cv;
|
||||
using namespace cv::ocl;
|
||||
|
||||
// currently sort procedure on the host is more efficient
|
||||
static bool use_cpu_sorter = true;
|
||||
|
||||
// compact structure for corners
|
||||
struct DefCorner
|
||||
{
|
||||
float eig; //eigenvalue of corner
|
||||
short x; //x coordinate of corner point
|
||||
short y; //y coordinate of corner point
|
||||
} ;
|
||||
};
|
||||
|
||||
// compare procedure for corner
|
||||
//it is used for sort on the host side
|
||||
struct DefCornerCompare
|
||||
struct DefCornerCompare :
|
||||
public std::binary_function<DefCorner, DefCorner, bool>
|
||||
{
|
||||
bool operator()(const DefCorner a, const DefCorner b) const
|
||||
{
|
||||
@ -69,37 +67,6 @@ struct DefCornerCompare
|
||||
}
|
||||
};
|
||||
|
||||
// sort corner point using opencl bitonicosrt implementation
|
||||
static void sortCorners_caller(oclMat& corners, const int count)
|
||||
{
|
||||
Context * cxt = Context::getContext();
|
||||
int GS = count/2;
|
||||
int LS = min(255,GS);
|
||||
size_t globalThreads[3] = {GS, 1, 1};
|
||||
size_t localThreads[3] = {LS, 1, 1};
|
||||
|
||||
// 2^numStages should be equal to count or the output is invalid
|
||||
int numStages = 0;
|
||||
for(int i = count; i > 1; i >>= 1)
|
||||
{
|
||||
++numStages;
|
||||
}
|
||||
const int argc = 4;
|
||||
std::vector< std::pair<size_t, const void *> > args(argc);
|
||||
std::string kernelname = "sortCorners_bitonicSort";
|
||||
args[0] = std::make_pair(sizeof(cl_mem), (void *)&corners.data);
|
||||
args[1] = std::make_pair(sizeof(cl_int), (void *)&count);
|
||||
for(int stage = 0; stage < numStages; ++stage)
|
||||
{
|
||||
args[2] = std::make_pair(sizeof(cl_int), (void *)&stage);
|
||||
for(int passOfStage = 0; passOfStage < stage + 1; ++passOfStage)
|
||||
{
|
||||
args[3] = std::make_pair(sizeof(cl_int), (void *)&passOfStage);
|
||||
openCLExecuteKernel(cxt, &imgproc_gftt, kernelname, globalThreads, localThreads, args, -1, -1);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// find corners on matrix and put it into array
|
||||
static void findCorners_caller(
|
||||
const oclMat& eig_mat, //input matrix worth eigenvalues
|
||||
@ -158,7 +125,8 @@ static void minMaxEig_caller(const oclMat &src, oclMat &dst, oclMat & tozero)
|
||||
int cols = all_cols - invalid_cols , elemnum = cols * src.rows;
|
||||
int offset = src.offset / src.elemSize();
|
||||
|
||||
{// first parallel pass
|
||||
{
|
||||
// first parallel pass
|
||||
std::vector<std::pair<size_t , const void *> > args;
|
||||
args.push_back( std::make_pair( sizeof(cl_mem) , (void *)&src.data));
|
||||
args.push_back( std::make_pair( sizeof(cl_mem) , (void *)&dst_data ));
|
||||
@ -173,7 +141,8 @@ static void minMaxEig_caller(const oclMat &src, oclMat &dst, oclMat & tozero)
|
||||
args, -1, -1, "-D T=float -D DEPTH_5");
|
||||
}
|
||||
|
||||
{// run final "serial" kernel to find accumulate results from threads and reset corner counter
|
||||
{
|
||||
// run final "serial" kernel to find accumulate results from threads and reset corner counter
|
||||
std::vector<std::pair<size_t , const void *> > args;
|
||||
args.push_back( std::make_pair( sizeof(cl_mem) , (void *)&dst_data ));
|
||||
args.push_back( std::make_pair( sizeof(cl_int) , (void *)&groupnum ));
|
||||
@ -200,80 +169,54 @@ void cv::ocl::GoodFeaturesToTrackDetector_OCL::operator ()(const oclMat& image,
|
||||
ensureSizeIsEnough(1,1, CV_32SC1, counter_);
|
||||
|
||||
// find max eigenvalue and reset detected counters
|
||||
minMaxEig_caller(eig_,eig_minmax_,counter_);
|
||||
minMaxEig_caller(eig_, eig_minmax_, counter_);
|
||||
|
||||
// allocate buffer for kernels
|
||||
int corner_array_size = std::max(1024, static_cast<int>(image.size().area() * 0.05));
|
||||
|
||||
if(!use_cpu_sorter)
|
||||
{ // round to 2^n
|
||||
unsigned int n=1;
|
||||
for(n=1;n<(unsigned int)corner_array_size;n<<=1) ;
|
||||
corner_array_size = (int)n;
|
||||
|
||||
ensureSizeIsEnough(1, corner_array_size , CV_32FC2, tmpCorners_);
|
||||
|
||||
// set to 0 to be able use bitonic sort on whole 2^n array
|
||||
tmpCorners_.setTo(0);
|
||||
}
|
||||
else
|
||||
{
|
||||
ensureSizeIsEnough(1, corner_array_size , CV_32FC2, tmpCorners_);
|
||||
}
|
||||
ensureSizeIsEnough(1, corner_array_size , CV_32FC2, tmpCorners_);
|
||||
|
||||
int total = tmpCorners_.cols; // by default the number of corner is full array
|
||||
std::vector<DefCorner> tmp(tmpCorners_.cols); // input buffer with corner for HOST part of algorithm
|
||||
std::vector<DefCorner> tmp(tmpCorners_.cols); // input buffer with corner for HOST part of algorithm
|
||||
|
||||
//find points with high eigenvalue and put it into the output array
|
||||
findCorners_caller(
|
||||
eig_,
|
||||
eig_minmax_,
|
||||
static_cast<float>(qualityLevel),
|
||||
mask,
|
||||
tmpCorners_,
|
||||
counter_);
|
||||
// find points with high eigenvalue and put it into the output array
|
||||
findCorners_caller(eig_, eig_minmax_, static_cast<float>(qualityLevel), mask, tmpCorners_, counter_);
|
||||
|
||||
if(!use_cpu_sorter)
|
||||
{// sort detected corners on deivce side
|
||||
sortCorners_caller(tmpCorners_, corner_array_size);
|
||||
}
|
||||
else
|
||||
{// send non-blocking request to read real non-zero number of corners to sort it on the HOST side
|
||||
openCLVerifyCall(clEnqueueReadBuffer(getClCommandQueue(counter_.clCxt), (cl_mem)counter_.data, CL_FALSE, 0,sizeof(int), &total, 0, NULL, NULL));
|
||||
}
|
||||
|
||||
//blocking read whole corners array (sorted or not sorted)
|
||||
openCLReadBuffer(tmpCorners_.clCxt,(cl_mem)tmpCorners_.data,&tmp[0],tmpCorners_.cols*sizeof(DefCorner));
|
||||
// send non-blocking request to read real non-zero number of corners to sort it on the HOST side
|
||||
openCLVerifyCall(clEnqueueReadBuffer(getClCommandQueue(counter_.clCxt), (cl_mem)counter_.data, CL_FALSE, 0, sizeof(int), &total, 0, NULL, NULL));
|
||||
|
||||
if (total == 0)
|
||||
{// check for trivial case
|
||||
{
|
||||
// check for trivial case
|
||||
corners.release();
|
||||
return;
|
||||
}
|
||||
|
||||
if(use_cpu_sorter)
|
||||
{// sort detected corners on cpu side.
|
||||
tmp.resize(total);
|
||||
std::sort(tmp.begin(), tmp.end(), DefCornerCompare());
|
||||
}
|
||||
// blocking read whole corners array (sorted or not sorted)
|
||||
openCLReadBuffer(tmpCorners_.clCxt, (cl_mem)tmpCorners_.data, &tmp[0], tmpCorners_.cols * sizeof(DefCorner));
|
||||
|
||||
//estimate maximal size of final output array
|
||||
// sort detected corners on cpu side.
|
||||
tmp.resize(total);
|
||||
printf("total: %d\n", total);
|
||||
std::sort(tmp.begin(), tmp.end(), DefCornerCompare());
|
||||
|
||||
// estimate maximal size of final output array
|
||||
int total_max = maxCorners > 0 ? std::min(maxCorners, total) : total;
|
||||
int D2 = (int)ceil(minDistance * minDistance);
|
||||
|
||||
// allocate output buffer
|
||||
std::vector<Point2f> tmp2;
|
||||
tmp2.reserve(total_max);
|
||||
|
||||
|
||||
if (minDistance < 1)
|
||||
{// we have not distance restriction. then just copy with conversion maximal allowed points into output array
|
||||
for(int i=0;i<total_max && tmp[i].eig>0.0f;++i)
|
||||
{
|
||||
tmp2.push_back(Point2f(tmp[i].x,tmp[i].y));
|
||||
}
|
||||
{
|
||||
// we have not distance restriction. then just copy with conversion maximal allowed points into output array
|
||||
for (int i = 0; i < total_max; ++i)
|
||||
tmp2.push_back(Point2f(tmp[i].x, tmp[i].y));
|
||||
}
|
||||
else
|
||||
{// we have distance restriction. then start coping to output array from the first element and check distance for each next one
|
||||
{
|
||||
// we have distance restriction. then start coping to output array from the first element and check distance for each next one
|
||||
const int cell_size = cvRound(minDistance);
|
||||
const int grid_width = (image.cols + cell_size - 1) / cell_size;
|
||||
const int grid_height = (image.rows + cell_size - 1) / cell_size;
|
||||
@ -283,10 +226,6 @@ void cv::ocl::GoodFeaturesToTrackDetector_OCL::operator ()(const oclMat& image,
|
||||
for (int i = 0; i < total ; ++i)
|
||||
{
|
||||
DefCorner p = tmp[i];
|
||||
|
||||
if(p.eig<=0.0f)
|
||||
break; // condition to stop that is needed for GPU bitonic sort usage.
|
||||
|
||||
bool good = true;
|
||||
|
||||
int x_cell = static_cast<int>(p.x / cell_size);
|
||||
@ -328,9 +267,8 @@ void cv::ocl::GoodFeaturesToTrackDetector_OCL::operator ()(const oclMat& image,
|
||||
|
||||
if(good)
|
||||
{
|
||||
grid[y_cell * grid_width + x_cell].push_back(Point2i(p.x,p.y));
|
||||
|
||||
tmp2.push_back(Point2f(p.x,p.y));
|
||||
grid[y_cell * grid_width + x_cell].push_back(Point2i(p.x, p.y));
|
||||
tmp2.push_back(Point2f(p.x, p.y));
|
||||
|
||||
if (maxCorners > 0 && tmp2.size() == static_cast<size_t>(maxCorners))
|
||||
break;
|
||||
@ -338,12 +276,14 @@ void cv::ocl::GoodFeaturesToTrackDetector_OCL::operator ()(const oclMat& image,
|
||||
}
|
||||
|
||||
}
|
||||
|
||||
int final_size = static_cast<int>(tmp2.size());
|
||||
if(final_size>0)
|
||||
if (final_size > 0)
|
||||
corners.upload(Mat(1, final_size, CV_32FC2, &tmp2[0]));
|
||||
else
|
||||
corners.release();
|
||||
}
|
||||
|
||||
void cv::ocl::GoodFeaturesToTrackDetector_OCL::downloadPoints(const oclMat &points, std::vector<Point2f> &points_v)
|
||||
{
|
||||
CV_DbgAssert(points.type() == CV_32FC2);
|
||||
|
@ -46,6 +46,7 @@
|
||||
#ifndef WITH_MASK
|
||||
#define WITH_MASK 0
|
||||
#endif
|
||||
|
||||
//macro to read eigenvalue matrix
|
||||
#define GET_SRC_32F(_x, _y) ((__global const float*)(eig + (_y)*eig_pitch))[_x]
|
||||
|
||||
@ -107,47 +108,6 @@ __kernel
|
||||
#undef GET_SRC_32F
|
||||
|
||||
|
||||
//bitonic sort
|
||||
__kernel
|
||||
void sortCorners_bitonicSort
|
||||
(
|
||||
__global float2 * corners,
|
||||
const int count,
|
||||
const int stage,
|
||||
const int passOfStage
|
||||
)
|
||||
{
|
||||
const int threadId = get_global_id(0);
|
||||
if(threadId >= count / 2)
|
||||
{
|
||||
return;
|
||||
}
|
||||
|
||||
const int sortOrder = (((threadId/(1 << stage)) % 2)) == 1 ? 1 : 0; // 0 is descent
|
||||
|
||||
const int pairDistance = 1 << (stage - passOfStage);
|
||||
const int blockWidth = 2 * pairDistance;
|
||||
|
||||
const int leftId = min( (threadId % pairDistance)
|
||||
+ (threadId / pairDistance) * blockWidth, count );
|
||||
|
||||
const int rightId = min( leftId + pairDistance, count );
|
||||
|
||||
const float2 leftPt = corners[leftId];
|
||||
const float2 rightPt = corners[rightId];
|
||||
|
||||
const float leftVal = leftPt.x;
|
||||
const float rightVal = rightPt.x;
|
||||
|
||||
const bool compareResult = leftVal > rightVal;
|
||||
|
||||
float2 greater = compareResult ? leftPt:rightPt;
|
||||
float2 lesser = compareResult ? rightPt:leftPt;
|
||||
|
||||
corners[leftId] = sortOrder ? lesser : greater;
|
||||
corners[rightId] = sortOrder ? greater : lesser;
|
||||
}
|
||||
|
||||
// this is simple short serial kernel that makes some short reduction and initialization work
|
||||
// it makes HOST like work to avoid additional sync with HOST to do this short work
|
||||
// data - input/output float2.
|
||||
@ -166,4 +126,4 @@ __kernel void arithm_op_minMax_final(__global float * data, int groupnum,__globa
|
||||
}
|
||||
data[0] = minVal;
|
||||
data[1] = maxVal;
|
||||
}
|
||||
}
|
||||
|
Loading…
Reference in New Issue
Block a user