mirror of
https://github.com/opencv/opencv.git
synced 2024-11-24 03:00:14 +08:00
Merge pull request #2016 from pemmanuelviel:kmeansppSquareDist
This commit is contained in:
commit
6a5a0fe803
@ -812,6 +812,66 @@ struct ZeroIterator
|
||||
|
||||
};
|
||||
|
||||
|
||||
/*
|
||||
* Depending on processed distances, some of them are already squared (e.g. L2)
|
||||
* and some are not (e.g.Hamming). In KMeans++ for instance we want to be sure
|
||||
* we are working on ^2 distances, thus following templates to ensure that.
|
||||
*/
|
||||
template <typename Distance, typename ElementType>
|
||||
struct squareDistance
|
||||
{
|
||||
typedef typename Distance::ResultType ResultType;
|
||||
ResultType operator()( ResultType dist ) { return dist*dist; }
|
||||
};
|
||||
|
||||
|
||||
template <typename ElementType>
|
||||
struct squareDistance<L2_Simple<ElementType>, ElementType>
|
||||
{
|
||||
typedef typename L2_Simple<ElementType>::ResultType ResultType;
|
||||
ResultType operator()( ResultType dist ) { return dist; }
|
||||
};
|
||||
|
||||
template <typename ElementType>
|
||||
struct squareDistance<L2<ElementType>, ElementType>
|
||||
{
|
||||
typedef typename L2<ElementType>::ResultType ResultType;
|
||||
ResultType operator()( ResultType dist ) { return dist; }
|
||||
};
|
||||
|
||||
|
||||
template <typename ElementType>
|
||||
struct squareDistance<MinkowskiDistance<ElementType>, ElementType>
|
||||
{
|
||||
typedef typename MinkowskiDistance<ElementType>::ResultType ResultType;
|
||||
ResultType operator()( ResultType dist ) { return dist; }
|
||||
};
|
||||
|
||||
template <typename ElementType>
|
||||
struct squareDistance<HellingerDistance<ElementType>, ElementType>
|
||||
{
|
||||
typedef typename HellingerDistance<ElementType>::ResultType ResultType;
|
||||
ResultType operator()( ResultType dist ) { return dist; }
|
||||
};
|
||||
|
||||
template <typename ElementType>
|
||||
struct squareDistance<ChiSquareDistance<ElementType>, ElementType>
|
||||
{
|
||||
typedef typename ChiSquareDistance<ElementType>::ResultType ResultType;
|
||||
ResultType operator()( ResultType dist ) { return dist; }
|
||||
};
|
||||
|
||||
|
||||
template <typename Distance>
|
||||
typename Distance::ResultType ensureSquareDistance( typename Distance::ResultType dist )
|
||||
{
|
||||
typedef typename Distance::ElementType ElementType;
|
||||
|
||||
squareDistance<Distance, ElementType> dummy;
|
||||
return dummy( dist );
|
||||
}
|
||||
|
||||
}
|
||||
|
||||
#endif //OPENCV_FLANN_DIST_H_
|
||||
|
@ -210,8 +210,11 @@ private:
|
||||
assert(index >=0 && index < n);
|
||||
centers[0] = dsindices[index];
|
||||
|
||||
// Computing distance^2 will have the advantage of even higher probability further to pick new centers
|
||||
// far from previous centers (and this complies to "k-means++: the advantages of careful seeding" article)
|
||||
for (int i = 0; i < n; i++) {
|
||||
closestDistSq[i] = distance(dataset[dsindices[i]], dataset[dsindices[index]], dataset.cols);
|
||||
closestDistSq[i] = ensureSquareDistance<Distance>( closestDistSq[i] );
|
||||
currentPot += closestDistSq[i];
|
||||
}
|
||||
|
||||
@ -237,7 +240,10 @@ private:
|
||||
|
||||
// Compute the new potential
|
||||
double newPot = 0;
|
||||
for (int i = 0; i < n; i++) newPot += std::min( distance(dataset[dsindices[i]], dataset[dsindices[index]], dataset.cols), closestDistSq[i] );
|
||||
for (int i = 0; i < n; i++) {
|
||||
DistanceType dist = distance(dataset[dsindices[i]], dataset[dsindices[index]], dataset.cols);
|
||||
newPot += std::min( ensureSquareDistance<Distance>(dist), closestDistSq[i] );
|
||||
}
|
||||
|
||||
// Store the best result
|
||||
if ((bestNewPot < 0)||(newPot < bestNewPot)) {
|
||||
@ -249,7 +255,10 @@ private:
|
||||
// Add the appropriate center
|
||||
centers[centerCount] = dsindices[bestNewIndex];
|
||||
currentPot = bestNewPot;
|
||||
for (int i = 0; i < n; i++) closestDistSq[i] = std::min( distance(dataset[dsindices[i]], dataset[dsindices[bestNewIndex]], dataset.cols), closestDistSq[i] );
|
||||
for (int i = 0; i < n; i++) {
|
||||
DistanceType dist = distance(dataset[dsindices[i]], dataset[dsindices[bestNewIndex]], dataset.cols);
|
||||
closestDistSq[i] = std::min( ensureSquareDistance<Distance>(dist), closestDistSq[i] );
|
||||
}
|
||||
}
|
||||
|
||||
centers_length = centerCount;
|
||||
|
@ -211,6 +211,7 @@ public:
|
||||
|
||||
for (int i = 0; i < n; i++) {
|
||||
closestDistSq[i] = distance_(dataset_[indices[i]], dataset_[indices[index]], dataset_.cols);
|
||||
closestDistSq[i] = ensureSquareDistance<Distance>( closestDistSq[i] );
|
||||
currentPot += closestDistSq[i];
|
||||
}
|
||||
|
||||
@ -236,7 +237,10 @@ public:
|
||||
|
||||
// Compute the new potential
|
||||
double newPot = 0;
|
||||
for (int i = 0; i < n; i++) newPot += std::min( distance_(dataset_[indices[i]], dataset_[indices[index]], dataset_.cols), closestDistSq[i] );
|
||||
for (int i = 0; i < n; i++) {
|
||||
DistanceType dist = distance_(dataset_[indices[i]], dataset_[indices[index]], dataset_.cols);
|
||||
newPot += std::min( ensureSquareDistance<Distance>(dist), closestDistSq[i] );
|
||||
}
|
||||
|
||||
// Store the best result
|
||||
if ((bestNewPot < 0)||(newPot < bestNewPot)) {
|
||||
@ -248,7 +252,10 @@ public:
|
||||
// Add the appropriate center
|
||||
centers[centerCount] = indices[bestNewIndex];
|
||||
currentPot = bestNewPot;
|
||||
for (int i = 0; i < n; i++) closestDistSq[i] = std::min( distance_(dataset_[indices[i]], dataset_[indices[bestNewIndex]], dataset_.cols), closestDistSq[i] );
|
||||
for (int i = 0; i < n; i++) {
|
||||
DistanceType dist = distance_(dataset_[indices[i]], dataset_[indices[bestNewIndex]], dataset_.cols);
|
||||
closestDistSq[i] = std::min( ensureSquareDistance<Distance>(dist), closestDistSq[i] );
|
||||
}
|
||||
}
|
||||
|
||||
centers_length = centerCount;
|
||||
|
Loading…
Reference in New Issue
Block a user