new feature_homography.py sample

This commit is contained in:
Alexander Mordvintsev 2012-07-06 15:42:42 +00:00
parent c6705fbe20
commit a2c3c1800a
2 changed files with 113 additions and 71 deletions

View File

@ -151,12 +151,9 @@ class RectSelector:
self.drag_start = (x, y) self.drag_start = (x, y)
if self.drag_start: if self.drag_start:
if flags & cv2.EVENT_FLAG_LBUTTON: if flags & cv2.EVENT_FLAG_LBUTTON:
#h, w = self.frame.shape[:2]
xo, yo = self.drag_start xo, yo = self.drag_start
x0, y0 = np.minimum([xo, yo], [x, y]) x0, y0 = np.minimum([xo, yo], [x, y])
x1, y1 = np.maximum([xo, yo], [x, y]) x1, y1 = np.maximum([xo, yo], [x, y])
#x0, y0 = np.maximum(0, np.minimum([xo, yo], [x, y]))
#x1, y1 = np.minimum([w, h], np.maximum([xo, yo], [x, y]))
self.drag_rect = None self.drag_rect = None
if x1-x0 > 0 and y1-y0 > 0: if x1-x0 > 0 and y1-y0 > 0:
self.drag_rect = (x0, y0, x1, y1) self.drag_rect = (x0, y0, x1, y1)
@ -168,9 +165,13 @@ class RectSelector:
self.callback(rect) self.callback(rect)
def draw(self, vis): def draw(self, vis):
if not self.drag_rect: if not self.drag_rect:
return return False
x0, y0, x1, y1 = self.drag_rect x0, y0, x1, y1 = self.drag_rect
cv2.rectangle(vis, (x0, y0), (x1, y1), (0, 255, 0), 2) cv2.rectangle(vis, (x0, y0), (x1, y1), (0, 255, 0), 2)
return True
@property
def dragging(self):
return self.drag_rect is not None
def grouper(n, iterable, fillvalue=None): def grouper(n, iterable, fillvalue=None):

View File

@ -3,94 +3,135 @@ Feature homography
================== ==================
Example of using features2d framework for interactive video homography matching. Example of using features2d framework for interactive video homography matching.
ORB features and FLANN matcher are used.
Inspired by http://www.youtube.com/watch?v=-ZNYoL8rzPY
Usage Usage
----- -----
feature_homography.py [<video source>] feature_homography.py [<video source>]
Keys Select a textured planar object to track by drawing a box with a mouse.
----
SPACE - set reference frame
ESC - exit
'''
'''
import numpy as np import numpy as np
import cv2 import cv2
import video import video
from common import draw_str, clock import common
import sys from operator import attrgetter
def get_size(a):
h, w = a.shape[:2]
return w, h
detector = cv2.FastFeatureDetector(16, True)
detector = cv2.GridAdaptedFeatureDetector(detector)
extractor = cv2.DescriptorExtractor_create('ORB')
FLANN_INDEX_KDTREE = 1 FLANN_INDEX_KDTREE = 1
FLANN_INDEX_LSH = 6 FLANN_INDEX_LSH = 6
flann_params= dict(algorithm = FLANN_INDEX_LSH, flann_params= dict(algorithm = FLANN_INDEX_LSH,
table_number = 6, # 12 table_number = 6, # 12
key_size = 12, # 20 key_size = 12, # 20
multi_probe_level = 1) #2 multi_probe_level = 1) #2
matcher = cv2.FlannBasedMatcher(flann_params, {}) # bug : need to pass empty dict (#1329)
green, red = (0, 255, 0), (0, 0, 255)
MIN_MATCH_COUNT = 10
class App:
def __init__(self, src):
self.cap = video.create_capture(src)
self.ref_frame = None
self.detector = cv2.ORB( nfeatures = 1000 )
self.matcher = cv2.FlannBasedMatcher(flann_params, {}) # bug : need to pass empty dict (#1329)
cv2.namedWindow('plane')
self.rect_sel = common.RectSelector('plane', self.on_rect)
self.frame = None
def match_frames(self):
if len(self.frame_desc) < MIN_MATCH_COUNT or len(self.frame_desc) < MIN_MATCH_COUNT:
return
raw_matches = self.matcher.knnMatch(self.ref_descs, trainDescriptors = self.frame_desc, k = 2)
p0, p1 = [], []
for m in raw_matches:
if len(m) == 2 and m[0].distance < m[1].distance * 0.75:
m = m[0]
p0.append( self.ref_points[m.queryIdx].pt )
p1.append( self.frame_points[m.trainIdx].pt )
p0, p1 = np.float32((p0, p1))
if len(p0) < MIN_MATCH_COUNT:
return
H, status = cv2.findHomography(p0, p1, cv2.RANSAC, 4.0)
status = status.ravel() != 0
if status.sum() < MIN_MATCH_COUNT:
return
p0, p1 = p0[status], p1[status]
return p0, p1, H
def on_frame(self, frame):
if self.frame is None or not self.rect_sel.dragging:
self.frame = frame = np.fliplr(frame).copy()
self.frame_points, self.frame_desc = self.detector.detectAndCompute(self.frame, None)
if self.frame_desc is None: # detectAndCompute returns descs=None if not keypoints found
self.frame_desc = []
else:
self.ref_frame = None
w, h = get_size(self.frame)
vis = np.zeros((h, w*2, 3), np.uint8)
vis[:h,:w] = self.frame
self.rect_sel.draw(vis)
if self.ref_frame is not None:
vis[:h,w:] = self.ref_frame
x0, y0, x1, y1 = self.ref_rect
cv2.rectangle(vis, (x0+w, y0), (x1+w, y1), (0, 255, 0), 2)
for kp in self.ref_points:
x, y = kp.pt
cv2.circle(vis, (int(x+w), int(y)), 2, (0, 255, 255))
match = self.match_frames()
if match is not None:
p0, p1, H = match
for (x0, y0), (x1, y1) in zip(np.int32(p0), np.int32(p1)):
cv2.line(vis, (x0+w, y0), (x1, y1), (0, 255, 0))
x0, y0, x1, y1 = self.ref_rect
corners = np.float32([[x0, y0], [x1, y0], [x1, y1], [x0, y1]])
corners = np.int32( cv2.perspectiveTransform(corners.reshape(1, -1, 2), H) )
cv2.polylines(vis, [corners], True, (255, 255, 255), 2)
cv2.imshow('plane', vis)
def on_rect(self, rect):
x0, y0, x1, y1 = rect
self.ref_frame = self.frame.copy()
self.ref_rect = rect
points, descs = [], []
for kp, desc in zip(self.frame_points, self.frame_desc):
x, y = kp.pt
if x0 <= x <= x1 and y0 <= y <= y1:
points.append(kp)
descs.append(desc)
self.ref_points, self.ref_descs = points, np.uint8(descs)
def run(self):
while True:
ret, frame = self.cap.read()
self.on_frame(frame)
ch = cv2.waitKey(1)
if ch == 27:
break
if __name__ == '__main__': if __name__ == '__main__':
print __doc__ print __doc__
try: src = sys.argv[1] import sys
except: src = 0 try: video_src = sys.argv[1]
cap = video.create_capture(src) except: video_src = '0'
App(video_src).run()
ref_kp = None
while True:
ret, img = cap.read()
vis = img.copy()
kp = detector.detect(img)
kp, desc = extractor.compute(img, kp)
for p in kp:
x, y = np.int32(p.pt)
r = int(0.5*p.size)
cv2.circle(vis, (x, y), r, (0, 255, 0))
draw_str(vis, (20, 20), 'feature_n: %d' % len(kp))
if ref_kp is not None:
raw_matches = matcher.knnMatch(desc, 2)
matches = []
for m in raw_matches:
if len(m) == 2:
m1, m2 = m
if m1.distance < m2.distance * 0.7:
matches.append((m1.trainIdx, m1.queryIdx))
match_n = len(matches)
inlier_n = 0
if match_n > 10:
p0 = np.float32( [ref_kp[i].pt for i, j in matches] )
p1 = np.float32( [kp[j].pt for i, j in matches] )
H, status = cv2.findHomography(p0, p1, cv2.RANSAC, 10.0)
inlier_n = sum(status)
if inlier_n > 10:
for (x1, y1), (x2, y2), inlier in zip(np.int32(p0), np.int32(p1), status):
cv2.line(vis, (x1, y1), (x2, y2), (red, green)[inlier])
h, w = img.shape[:2]
overlay = cv2.warpPerspective(ref_img, H, (w, h))
vis = cv2.addWeighted(vis, 0.5, overlay, 0.5, 0.0)
draw_str(vis, (20, 40), 'matched: %d ( %d outliers )' % (match_n, match_n-inlier_n))
cv2.imshow('img', vis)
ch = 0xFF & cv2.waitKey(1)
if ch == ord(' '):
matcher.clear()
matcher.add([desc])
ref_kp = kp
ref_img = img.copy()
if ch == 27:
break
cv2.destroyAllWindows()