mirror of
https://github.com/opencv/opencv.git
synced 2025-06-07 17:44:04 +08:00
Merge pull request #9862 from sovrasov:dnn_nms
This commit is contained in:
commit
bc93775385
@ -734,6 +734,21 @@ CV__DNN_EXPERIMENTAL_NS_BEGIN
|
|||||||
*/
|
*/
|
||||||
CV_EXPORTS_W void shrinkCaffeModel(const String& src, const String& dst);
|
CV_EXPORTS_W void shrinkCaffeModel(const String& src, const String& dst);
|
||||||
|
|
||||||
|
/** @brief Performs non maximum suppression given boxes and corresponding scores.
|
||||||
|
|
||||||
|
* @param bboxes a set of bounding boxes to apply NMS.
|
||||||
|
* @param scores a set of corresponding confidences.
|
||||||
|
* @param score_threshold a threshold used to filter boxes by score.
|
||||||
|
* @param nms_threshold a threshold used in non maximum suppression.
|
||||||
|
* @param indices the kept indices of bboxes after NMS.
|
||||||
|
* @param eta a coefficient in adaptive threshold formula: \f$nms\_threshold_{i+1}=eta\cdot nms\_threshold_i\f$.
|
||||||
|
* @param top_k if `>0`, keep at most @p top_k picked indices.
|
||||||
|
*/
|
||||||
|
CV_EXPORTS_W void NMSBoxes(const std::vector<Rect>& bboxes, const std::vector<float>& scores,
|
||||||
|
const float score_threshold, const float nms_threshold,
|
||||||
|
CV_OUT std::vector<int>& indices,
|
||||||
|
const float eta = 1.f, const int top_k = 0);
|
||||||
|
|
||||||
|
|
||||||
//! @}
|
//! @}
|
||||||
CV__DNN_EXPERIMENTAL_NS_END
|
CV__DNN_EXPERIMENTAL_NS_END
|
||||||
|
@ -45,6 +45,7 @@
|
|||||||
#include <float.h>
|
#include <float.h>
|
||||||
#include <string>
|
#include <string>
|
||||||
#include <caffe.pb.h>
|
#include <caffe.pb.h>
|
||||||
|
#include "../nms.inl.hpp"
|
||||||
|
|
||||||
namespace cv
|
namespace cv
|
||||||
{
|
{
|
||||||
@ -61,6 +62,8 @@ static inline bool SortScorePairDescend(const std::pair<float, T>& pair1,
|
|||||||
return pair1.first > pair2.first;
|
return pair1.first > pair2.first;
|
||||||
}
|
}
|
||||||
|
|
||||||
|
static inline float caffe_box_overlap(const caffe::NormalizedBBox& a, const caffe::NormalizedBBox& b);
|
||||||
|
|
||||||
} // namespace
|
} // namespace
|
||||||
|
|
||||||
class DetectionOutputLayerImpl : public DetectionOutputLayer
|
class DetectionOutputLayerImpl : public DetectionOutputLayer
|
||||||
@ -308,7 +311,8 @@ public:
|
|||||||
LabelBBox::const_iterator label_bboxes = decodeBBoxes.find(label);
|
LabelBBox::const_iterator label_bboxes = decodeBBoxes.find(label);
|
||||||
if (label_bboxes == decodeBBoxes.end())
|
if (label_bboxes == decodeBBoxes.end())
|
||||||
CV_ErrorNoReturn_(cv::Error::StsError, ("Could not find location predictions for label %d", label));
|
CV_ErrorNoReturn_(cv::Error::StsError, ("Could not find location predictions for label %d", label));
|
||||||
ApplyNMSFast(label_bboxes->second, scores, _confidenceThreshold, _nmsThreshold, 1.0, _topK, indices[c]);
|
NMSFast_(label_bboxes->second, scores, _confidenceThreshold, _nmsThreshold, 1.0, _topK,
|
||||||
|
indices[c], util::caffe_box_overlap);
|
||||||
numDetections += indices[c].size();
|
numDetections += indices[c].size();
|
||||||
}
|
}
|
||||||
if (_keepTopK > -1 && numDetections > (size_t)_keepTopK)
|
if (_keepTopK > -1 && numDetections > (size_t)_keepTopK)
|
||||||
@ -619,75 +623,6 @@ public:
|
|||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
// Do non maximum suppression given bboxes and scores.
|
|
||||||
// Inspired by Piotr Dollar's NMS implementation in EdgeBox.
|
|
||||||
// https://goo.gl/jV3JYS
|
|
||||||
// bboxes: a set of bounding boxes.
|
|
||||||
// scores: a set of corresponding confidences.
|
|
||||||
// score_threshold: a threshold used to filter detection results.
|
|
||||||
// nms_threshold: a threshold used in non maximum suppression.
|
|
||||||
// top_k: if not -1, keep at most top_k picked indices.
|
|
||||||
// indices: the kept indices of bboxes after nms.
|
|
||||||
static void ApplyNMSFast(const std::vector<caffe::NormalizedBBox>& bboxes,
|
|
||||||
const std::vector<float>& scores, const float score_threshold,
|
|
||||||
const float nms_threshold, const float eta, const int top_k,
|
|
||||||
std::vector<int>& indices)
|
|
||||||
{
|
|
||||||
CV_Assert(bboxes.size() == scores.size());
|
|
||||||
|
|
||||||
// Get top_k scores (with corresponding indices).
|
|
||||||
std::vector<std::pair<float, int> > score_index_vec;
|
|
||||||
GetMaxScoreIndex(scores, score_threshold, top_k, score_index_vec);
|
|
||||||
|
|
||||||
// Do nms.
|
|
||||||
float adaptive_threshold = nms_threshold;
|
|
||||||
indices.clear();
|
|
||||||
while (score_index_vec.size() != 0) {
|
|
||||||
const int idx = score_index_vec.front().second;
|
|
||||||
bool keep = true;
|
|
||||||
for (int k = 0; k < (int)indices.size() && keep; ++k) {
|
|
||||||
const int kept_idx = indices[k];
|
|
||||||
float overlap = JaccardOverlap<true>(bboxes[idx], bboxes[kept_idx]);
|
|
||||||
keep = overlap <= adaptive_threshold;
|
|
||||||
}
|
|
||||||
if (keep)
|
|
||||||
indices.push_back(idx);
|
|
||||||
score_index_vec.erase(score_index_vec.begin());
|
|
||||||
if (keep && eta < 1 && adaptive_threshold > 0.5) {
|
|
||||||
adaptive_threshold *= eta;
|
|
||||||
}
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
// Get max scores with corresponding indices.
|
|
||||||
// scores: a set of scores.
|
|
||||||
// threshold: only consider scores higher than the threshold.
|
|
||||||
// top_k: if -1, keep all; otherwise, keep at most top_k.
|
|
||||||
// score_index_vec: store the sorted (score, index) pair.
|
|
||||||
static void GetMaxScoreIndex(const std::vector<float>& scores, const float threshold, const int top_k,
|
|
||||||
std::vector<std::pair<float, int> >& score_index_vec)
|
|
||||||
{
|
|
||||||
CV_DbgAssert(score_index_vec.empty());
|
|
||||||
// Generate index score pairs.
|
|
||||||
for (size_t i = 0; i < scores.size(); ++i)
|
|
||||||
{
|
|
||||||
if (scores[i] > threshold)
|
|
||||||
{
|
|
||||||
score_index_vec.push_back(std::make_pair(scores[i], i));
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
// Sort the score pair according to the scores in descending order
|
|
||||||
std::stable_sort(score_index_vec.begin(), score_index_vec.end(),
|
|
||||||
util::SortScorePairDescend<int>);
|
|
||||||
|
|
||||||
// Keep top_k scores if needed.
|
|
||||||
if (top_k > -1 && top_k < (int)score_index_vec.size())
|
|
||||||
{
|
|
||||||
score_index_vec.resize(top_k);
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
// Compute the jaccard (intersection over union IoU) overlap between two bboxes.
|
// Compute the jaccard (intersection over union IoU) overlap between two bboxes.
|
||||||
template<bool normalized>
|
template<bool normalized>
|
||||||
static float JaccardOverlap(const caffe::NormalizedBBox& bbox1,
|
static float JaccardOverlap(const caffe::NormalizedBBox& bbox1,
|
||||||
@ -733,6 +668,11 @@ public:
|
|||||||
}
|
}
|
||||||
};
|
};
|
||||||
|
|
||||||
|
float util::caffe_box_overlap(const caffe::NormalizedBBox& a, const caffe::NormalizedBBox& b)
|
||||||
|
{
|
||||||
|
return DetectionOutputLayerImpl::JaccardOverlap<true>(a, b);
|
||||||
|
}
|
||||||
|
|
||||||
const std::string DetectionOutputLayerImpl::_layerName = std::string("DetectionOutput");
|
const std::string DetectionOutputLayerImpl::_layerName = std::string("DetectionOutput");
|
||||||
|
|
||||||
Ptr<DetectionOutputLayer> DetectionOutputLayer::create(const LayerParams ¶ms)
|
Ptr<DetectionOutputLayer> DetectionOutputLayer::create(const LayerParams ¶ms)
|
||||||
|
33
modules/dnn/src/nms.cpp
Normal file
33
modules/dnn/src/nms.cpp
Normal file
@ -0,0 +1,33 @@
|
|||||||
|
// This file is part of OpenCV project.
|
||||||
|
// It is subject to the license terms in the LICENSE file found in the top-level directory
|
||||||
|
// of this distribution and at http://opencv.org/license.html.
|
||||||
|
//
|
||||||
|
// Copyright (C) 2017, Intel Corporation, all rights reserved.
|
||||||
|
// Third party copyrights are property of their respective owners.
|
||||||
|
|
||||||
|
#include "precomp.hpp"
|
||||||
|
#include <nms.inl.hpp>
|
||||||
|
|
||||||
|
namespace cv
|
||||||
|
{
|
||||||
|
namespace dnn
|
||||||
|
{
|
||||||
|
CV__DNN_EXPERIMENTAL_NS_BEGIN
|
||||||
|
|
||||||
|
static inline float rectOverlap(const Rect& a, const Rect& b)
|
||||||
|
{
|
||||||
|
return 1.f - static_cast<float>(jaccardDistance(a, b));
|
||||||
|
}
|
||||||
|
|
||||||
|
void NMSBoxes(const std::vector<Rect>& bboxes, const std::vector<float>& scores,
|
||||||
|
const float score_threshold, const float nms_threshold,
|
||||||
|
std::vector<int>& indices, const float eta, const int top_k)
|
||||||
|
{
|
||||||
|
CV_Assert(bboxes.size() == scores.size(), score_threshold >= 0,
|
||||||
|
nms_threshold >= 0, eta > 0);
|
||||||
|
NMSFast_(bboxes, scores, score_threshold, nms_threshold, eta, top_k, indices, rectOverlap);
|
||||||
|
}
|
||||||
|
|
||||||
|
CV__DNN_EXPERIMENTAL_NS_END
|
||||||
|
}// dnn
|
||||||
|
}// cv
|
100
modules/dnn/src/nms.inl.hpp
Normal file
100
modules/dnn/src/nms.inl.hpp
Normal file
@ -0,0 +1,100 @@
|
|||||||
|
// This file is part of OpenCV project.
|
||||||
|
// It is subject to the license terms in the LICENSE file found in the top-level directory
|
||||||
|
// of this distribution and at http://opencv.org/license.html.
|
||||||
|
//
|
||||||
|
// Copyright (C) 2017, Intel Corporation, all rights reserved.
|
||||||
|
// Third party copyrights are property of their respective owners.
|
||||||
|
|
||||||
|
#ifndef OPENCV_DNN_NMS_INL_HPP
|
||||||
|
#define OPENCV_DNN_NMS_INL_HPP
|
||||||
|
|
||||||
|
#include <opencv2/dnn.hpp>
|
||||||
|
|
||||||
|
namespace cv {
|
||||||
|
namespace dnn {
|
||||||
|
|
||||||
|
namespace
|
||||||
|
{
|
||||||
|
|
||||||
|
template <typename T>
|
||||||
|
static inline bool SortScorePairDescend(const std::pair<float, T>& pair1,
|
||||||
|
const std::pair<float, T>& pair2)
|
||||||
|
{
|
||||||
|
return pair1.first > pair2.first;
|
||||||
|
}
|
||||||
|
|
||||||
|
} // namespace
|
||||||
|
|
||||||
|
// Get max scores with corresponding indices.
|
||||||
|
// scores: a set of scores.
|
||||||
|
// threshold: only consider scores higher than the threshold.
|
||||||
|
// top_k: if -1, keep all; otherwise, keep at most top_k.
|
||||||
|
// score_index_vec: store the sorted (score, index) pair.
|
||||||
|
inline void GetMaxScoreIndex(const std::vector<float>& scores, const float threshold, const int top_k,
|
||||||
|
std::vector<std::pair<float, int> >& score_index_vec)
|
||||||
|
{
|
||||||
|
CV_DbgAssert(score_index_vec.empty());
|
||||||
|
// Generate index score pairs.
|
||||||
|
for (size_t i = 0; i < scores.size(); ++i)
|
||||||
|
{
|
||||||
|
if (scores[i] > threshold)
|
||||||
|
{
|
||||||
|
score_index_vec.push_back(std::make_pair(scores[i], i));
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
// Sort the score pair according to the scores in descending order
|
||||||
|
std::stable_sort(score_index_vec.begin(), score_index_vec.end(),
|
||||||
|
SortScorePairDescend<int>);
|
||||||
|
|
||||||
|
// Keep top_k scores if needed.
|
||||||
|
if (top_k > 0 && top_k < (int)score_index_vec.size())
|
||||||
|
{
|
||||||
|
score_index_vec.resize(top_k);
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
// Do non maximum suppression given bboxes and scores.
|
||||||
|
// Inspired by Piotr Dollar's NMS implementation in EdgeBox.
|
||||||
|
// https://goo.gl/jV3JYS
|
||||||
|
// bboxes: a set of bounding boxes.
|
||||||
|
// scores: a set of corresponding confidences.
|
||||||
|
// score_threshold: a threshold used to filter detection results.
|
||||||
|
// nms_threshold: a threshold used in non maximum suppression.
|
||||||
|
// top_k: if not > 0, keep at most top_k picked indices.
|
||||||
|
// indices: the kept indices of bboxes after nms.
|
||||||
|
template <typename BoxType>
|
||||||
|
inline void NMSFast_(const std::vector<BoxType>& bboxes,
|
||||||
|
const std::vector<float>& scores, const float score_threshold,
|
||||||
|
const float nms_threshold, const float eta, const int top_k,
|
||||||
|
std::vector<int>& indices, float (*computeOverlap)(const BoxType&, const BoxType&))
|
||||||
|
{
|
||||||
|
CV_Assert(bboxes.size() == scores.size());
|
||||||
|
|
||||||
|
// Get top_k scores (with corresponding indices).
|
||||||
|
std::vector<std::pair<float, int> > score_index_vec;
|
||||||
|
GetMaxScoreIndex(scores, score_threshold, top_k, score_index_vec);
|
||||||
|
|
||||||
|
// Do nms.
|
||||||
|
float adaptive_threshold = nms_threshold;
|
||||||
|
indices.clear();
|
||||||
|
for (size_t i = 0; i < score_index_vec.size(); ++i) {
|
||||||
|
const int idx = score_index_vec[i].second;
|
||||||
|
bool keep = true;
|
||||||
|
for (int k = 0; k < (int)indices.size() && keep; ++k) {
|
||||||
|
const int kept_idx = indices[k];
|
||||||
|
float overlap = computeOverlap(bboxes[idx], bboxes[kept_idx]);
|
||||||
|
keep = overlap <= adaptive_threshold;
|
||||||
|
}
|
||||||
|
if (keep)
|
||||||
|
indices.push_back(idx);
|
||||||
|
if (keep && eta < 1 && adaptive_threshold > 0.5) {
|
||||||
|
adaptive_threshold *= eta;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
}// dnn
|
||||||
|
}// cv
|
||||||
|
|
||||||
|
#endif
|
41
modules/dnn/test/test_nms.cpp
Normal file
41
modules/dnn/test/test_nms.cpp
Normal file
@ -0,0 +1,41 @@
|
|||||||
|
// This file is part of OpenCV project.
|
||||||
|
// It is subject to the license terms in the LICENSE file found in the top-level directory
|
||||||
|
// of this distribution and at http://opencv.org/license.html.
|
||||||
|
//
|
||||||
|
// Copyright (C) 2017, Intel Corporation, all rights reserved.
|
||||||
|
// Third party copyrights are property of their respective owners.
|
||||||
|
|
||||||
|
#include "test_precomp.hpp"
|
||||||
|
|
||||||
|
namespace cvtest
|
||||||
|
{
|
||||||
|
|
||||||
|
TEST(NMS, Accuracy)
|
||||||
|
{
|
||||||
|
//reference results obtained using tf.image.non_max_suppression with iou_threshold=0.5
|
||||||
|
std::string dataPath = findDataFile("dnn/nms_reference.yml");
|
||||||
|
FileStorage fs(dataPath, FileStorage::READ);
|
||||||
|
|
||||||
|
std::vector<Rect> bboxes;
|
||||||
|
std::vector<float> scores;
|
||||||
|
std::vector<int> ref_indices;
|
||||||
|
|
||||||
|
fs["boxes"] >> bboxes;
|
||||||
|
fs["probs"] >> scores;
|
||||||
|
fs["output"] >> ref_indices;
|
||||||
|
|
||||||
|
const float nms_thresh = .5f;
|
||||||
|
const float score_thresh = .01f;
|
||||||
|
std::vector<int> indices;
|
||||||
|
cv::dnn::NMSBoxes(bboxes, scores, score_thresh, nms_thresh, indices);
|
||||||
|
|
||||||
|
ASSERT_EQ(ref_indices.size(), indices.size());
|
||||||
|
|
||||||
|
std::sort(indices.begin(), indices.end());
|
||||||
|
std::sort(ref_indices.begin(), ref_indices.end());
|
||||||
|
|
||||||
|
for(size_t i = 0; i < indices.size(); i++)
|
||||||
|
ASSERT_EQ(indices[i], ref_indices[i]);
|
||||||
|
}
|
||||||
|
|
||||||
|
}//cvtest
|
Loading…
Reference in New Issue
Block a user