mirror of
https://github.com/opencv/opencv.git
synced 2025-06-07 17:44:04 +08:00
Robertson update
This commit is contained in:
parent
deeaddb0a9
commit
c118f3c529
@ -80,6 +80,8 @@ CV_EXPORTS_W void fastNlMeansDenoisingColoredMulti( InputArrayOfArrays srcImgs,
|
|||||||
float h = 3, float hColor = 3,
|
float h = 3, float hColor = 3,
|
||||||
int templateWindowSize = 7, int searchWindowSize = 21);
|
int templateWindowSize = 7, int searchWindowSize = 21);
|
||||||
|
|
||||||
|
enum { LDR_SIZE = 256 };
|
||||||
|
|
||||||
class CV_EXPORTS_W Tonemap : public Algorithm
|
class CV_EXPORTS_W Tonemap : public Algorithm
|
||||||
{
|
{
|
||||||
public:
|
public:
|
||||||
@ -227,9 +229,11 @@ public:
|
|||||||
|
|
||||||
CV_WRAP virtual float getThreshold() const = 0;
|
CV_WRAP virtual float getThreshold() const = 0;
|
||||||
CV_WRAP virtual void setThreshold(float threshold) = 0;
|
CV_WRAP virtual void setThreshold(float threshold) = 0;
|
||||||
|
|
||||||
|
CV_WRAP virtual Mat getRadiance() const = 0;
|
||||||
};
|
};
|
||||||
|
|
||||||
CV_EXPORTS_W Ptr<CalibrateRobertson> createCalibrateRobertson(int samples = 50, float lambda = 10.0f);
|
CV_EXPORTS_W Ptr<CalibrateRobertson> createCalibrateRobertson(int max_iter = 30, float threshold = 0.01f);
|
||||||
|
|
||||||
class CV_EXPORTS_W ExposureMerge : public Algorithm
|
class CV_EXPORTS_W ExposureMerge : public Algorithm
|
||||||
{
|
{
|
||||||
|
@ -243,14 +243,14 @@ protected:
|
|||||||
{
|
{
|
||||||
int channels = 0;
|
int channels = 0;
|
||||||
Mat hist;
|
Mat hist;
|
||||||
int hist_size = 256;
|
int hist_size = LDR_SIZE;
|
||||||
float range[] = {0, 256} ;
|
float range[] = {0, LDR_SIZE} ;
|
||||||
const float* ranges[] = {range};
|
const float* ranges[] = {range};
|
||||||
calcHist(&img, 1, &channels, Mat(), hist, 1, &hist_size, ranges);
|
calcHist(&img, 1, &channels, Mat(), hist, 1, &hist_size, ranges);
|
||||||
float *ptr = hist.ptr<float>();
|
float *ptr = hist.ptr<float>();
|
||||||
int median = 0, sum = 0;
|
int median = 0, sum = 0;
|
||||||
int thresh = img.total() / 2;
|
int thresh = img.total() / 2;
|
||||||
while(sum < thresh && median < 256) {
|
while(sum < thresh && median < LDR_SIZE) {
|
||||||
sum += static_cast<int>(ptr[median]);
|
sum += static_cast<int>(ptr[median]);
|
||||||
median++;
|
median++;
|
||||||
}
|
}
|
||||||
@ -309,7 +309,7 @@ public:
|
|||||||
|
|
||||||
std::vector<Mat> splitted(channels);
|
std::vector<Mat> splitted(channels);
|
||||||
split(images[0], splitted);
|
split(images[0], splitted);
|
||||||
for(int i = 0; i < images.size() - 1; i++) {
|
for(size_t i = 0; i < images.size() - 1; i++) {
|
||||||
|
|
||||||
std::vector<Mat> next_splitted(channels);
|
std::vector<Mat> next_splitted(channels);
|
||||||
split(images[i + 1], next_splitted);
|
split(images[i + 1], next_splitted);
|
||||||
@ -399,7 +399,7 @@ public:
|
|||||||
split(radiance, splitted);
|
split(radiance, splitted);
|
||||||
std::vector<Mat> resp_split(channels);
|
std::vector<Mat> resp_split(channels);
|
||||||
split(response, resp_split);
|
split(response, resp_split);
|
||||||
for(int i = 0; i < images.size() - 1; i++) {
|
for(size_t i = 0; i < images.size() - 1; i++) {
|
||||||
|
|
||||||
std::vector<Mat> next_splitted(channels);
|
std::vector<Mat> next_splitted(channels);
|
||||||
LUT(images[i + 1], response, radiance);
|
LUT(images[i + 1], response, radiance);
|
||||||
@ -430,7 +430,9 @@ public:
|
|||||||
|
|
||||||
virtual void process(InputArrayOfArrays src, OutputArray dst, std::vector<float>& times)
|
virtual void process(InputArrayOfArrays src, OutputArray dst, std::vector<float>& times)
|
||||||
{
|
{
|
||||||
process(src, dst, times, linearResponse(3));
|
Mat response = linearResponse(3);
|
||||||
|
response.at<Vec3f>(0) = response.at<Vec3f>(1);
|
||||||
|
process(src, dst, times, response);
|
||||||
}
|
}
|
||||||
|
|
||||||
CV_WRAP virtual int getThreshold() {return thresh;}
|
CV_WRAP virtual int getThreshold() {return thresh;}
|
||||||
|
@ -45,7 +45,6 @@
|
|||||||
#include "opencv2/imgproc.hpp"
|
#include "opencv2/imgproc.hpp"
|
||||||
//#include "opencv2/highgui.hpp"
|
//#include "opencv2/highgui.hpp"
|
||||||
#include "hdr_common.hpp"
|
#include "hdr_common.hpp"
|
||||||
#include <iostream>
|
|
||||||
|
|
||||||
namespace cv
|
namespace cv
|
||||||
{
|
{
|
||||||
@ -74,7 +73,7 @@ public:
|
|||||||
int channels = images[0].channels();
|
int channels = images[0].channels();
|
||||||
int CV_32FCC = CV_MAKETYPE(CV_32F, channels);
|
int CV_32FCC = CV_MAKETYPE(CV_32F, channels);
|
||||||
|
|
||||||
dst.create(256, 1, CV_32FCC);
|
dst.create(LDR_SIZE, 1, CV_32FCC);
|
||||||
Mat result = dst.getMat();
|
Mat result = dst.getMat();
|
||||||
|
|
||||||
std::vector<Point> sample_points;
|
std::vector<Point> sample_points;
|
||||||
@ -97,7 +96,7 @@ public:
|
|||||||
|
|
||||||
std::vector<Mat> result_split(channels);
|
std::vector<Mat> result_split(channels);
|
||||||
for(int channel = 0; channel < channels; channel++) {
|
for(int channel = 0; channel < channels; channel++) {
|
||||||
Mat A = Mat::zeros(sample_points.size() * images.size() + 257, 256 + sample_points.size(), CV_32F);
|
Mat A = Mat::zeros(sample_points.size() * images.size() + LDR_SIZE + 1, LDR_SIZE + sample_points.size(), CV_32F);
|
||||||
Mat B = Mat::zeros(A.rows, 1, CV_32F);
|
Mat B = Mat::zeros(A.rows, 1, CV_32F);
|
||||||
|
|
||||||
int eq = 0;
|
int eq = 0;
|
||||||
@ -107,12 +106,12 @@ public:
|
|||||||
|
|
||||||
int val = images[j].ptr()[3*(sample_points[i].y * images[j].cols + sample_points[j].x) + channel];
|
int val = images[j].ptr()[3*(sample_points[i].y * images[j].cols + sample_points[j].x) + channel];
|
||||||
A.at<float>(eq, val) = w.at<float>(val);
|
A.at<float>(eq, val) = w.at<float>(val);
|
||||||
A.at<float>(eq, 256 + i) = -w.at<float>(val);
|
A.at<float>(eq, LDR_SIZE + i) = -w.at<float>(val);
|
||||||
B.at<float>(eq, 0) = w.at<float>(val) * log(times[j]);
|
B.at<float>(eq, 0) = w.at<float>(val) * log(times[j]);
|
||||||
eq++;
|
eq++;
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
A.at<float>(eq, 128) = 1;
|
A.at<float>(eq, LDR_SIZE / 2) = 1;
|
||||||
eq++;
|
eq++;
|
||||||
|
|
||||||
for(int i = 0; i < 254; i++) {
|
for(int i = 0; i < 254; i++) {
|
||||||
@ -123,7 +122,7 @@ public:
|
|||||||
}
|
}
|
||||||
Mat solution;
|
Mat solution;
|
||||||
solve(A, B, solution, DECOMP_SVD);
|
solve(A, B, solution, DECOMP_SVD);
|
||||||
solution.rowRange(0, 256).copyTo(result_split[channel]);
|
solution.rowRange(0, LDR_SIZE).copyTo(result_split[channel]);
|
||||||
}
|
}
|
||||||
merge(result_split, result);
|
merge(result_split, result);
|
||||||
exp(result, result);
|
exp(result, result);
|
||||||
@ -192,20 +191,14 @@ public:
|
|||||||
int channels = images[0].channels();
|
int channels = images[0].channels();
|
||||||
int CV_32FCC = CV_MAKETYPE(CV_32F, channels);
|
int CV_32FCC = CV_MAKETYPE(CV_32F, channels);
|
||||||
|
|
||||||
dst.create(256, 1, CV_32FCC);
|
dst.create(LDR_SIZE, 1, CV_32FCC);
|
||||||
Mat response = dst.getMat();
|
Mat response = dst.getMat();
|
||||||
|
response = linearResponse(3) / (LDR_SIZE / 2.0f);
|
||||||
response = Mat::zeros(256, 1, CV_32FCC);
|
|
||||||
for(int i = 0; i < 256; i++) {
|
|
||||||
for(int c = 0; c < channels; c++) {
|
|
||||||
response.at<Vec3f>(i)[c] = i / 128.0;
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
Mat card = Mat::zeros(256, 1, CV_32FCC);
|
Mat card = Mat::zeros(LDR_SIZE, 1, CV_32FCC);
|
||||||
for(int i = 0; i < images.size(); i++) {
|
for(size_t i = 0; i < images.size(); i++) {
|
||||||
uchar *ptr = images[i].ptr();
|
uchar *ptr = images[i].ptr();
|
||||||
for(int pos = 0; pos < images[i].total(); pos++) {
|
for(size_t pos = 0; pos < images[i].total(); pos++) {
|
||||||
for(int c = 0; c < channels; c++, ptr++) {
|
for(int c = 0; c < channels; c++, ptr++) {
|
||||||
card.at<Vec3f>(*ptr)[c] += 1;
|
card.at<Vec3f>(*ptr)[c] += 1;
|
||||||
}
|
}
|
||||||
@ -213,43 +206,34 @@ public:
|
|||||||
}
|
}
|
||||||
card = 1.0 / card;
|
card = 1.0 / card;
|
||||||
|
|
||||||
|
Ptr<MergeRobertson> merge = createMergeRobertson();
|
||||||
for(int iter = 0; iter < max_iter; iter++) {
|
for(int iter = 0; iter < max_iter; iter++) {
|
||||||
|
|
||||||
Scalar channel_err(0, 0, 0);
|
radiance = Mat::zeros(images[0].size(), CV_32FCC);
|
||||||
Mat radiance = Mat::zeros(images[0].size(), CV_32FCC);
|
merge->process(images, radiance, times, response);
|
||||||
Mat wsum = Mat::zeros(images[0].size(), CV_32FCC);
|
|
||||||
for(int i = 0; i < images.size(); i++) {
|
|
||||||
Mat im, w;
|
|
||||||
LUT(images[i], weight, w);
|
|
||||||
LUT(images[i], response, im);
|
|
||||||
|
|
||||||
Mat err_mat;
|
Mat new_response = Mat::zeros(LDR_SIZE, 1, CV_32FC3);
|
||||||
pow(im - times[i] * radiance, 2.0f, err_mat);
|
for(size_t i = 0; i < images.size(); i++) {
|
||||||
err_mat = w.mul(err_mat);
|
|
||||||
channel_err += sum(err_mat);
|
|
||||||
|
|
||||||
radiance += times[i] * w.mul(im);
|
|
||||||
wsum += pow(times[i], 2) * w;
|
|
||||||
}
|
|
||||||
float err = (channel_err[0] + channel_err[1] + channel_err[2]) / (channels * radiance.total());
|
|
||||||
radiance = radiance.mul(1 / wsum);
|
|
||||||
|
|
||||||
float* rad_ptr = radiance.ptr<float>();
|
|
||||||
response = Mat::zeros(256, 1, CV_32FC3);
|
|
||||||
for(int i = 0; i < images.size(); i++) {
|
|
||||||
uchar *ptr = images[i].ptr();
|
uchar *ptr = images[i].ptr();
|
||||||
for(int pos = 0; pos < images[i].total(); pos++) {
|
float* rad_ptr = radiance.ptr<float>();
|
||||||
|
for(size_t pos = 0; pos < images[i].total(); pos++) {
|
||||||
for(int c = 0; c < channels; c++, ptr++, rad_ptr++) {
|
for(int c = 0; c < channels; c++, ptr++, rad_ptr++) {
|
||||||
response.at<Vec3f>(*ptr)[c] += times[i] * *rad_ptr;
|
new_response.at<Vec3f>(*ptr)[c] += times[i] * *rad_ptr;
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
response = response.mul(card);
|
new_response = new_response.mul(card);
|
||||||
for(int c = 0; c < 3; c++) {
|
for(int c = 0; c < 3; c++) {
|
||||||
for(int i = 0; i < 256; i++) {
|
float middle = new_response.at<Vec3f>(LDR_SIZE / 2)[c];
|
||||||
response.at<Vec3f>(i)[c] /= response.at<Vec3f>(128)[c];
|
for(int i = 0; i < LDR_SIZE; i++) {
|
||||||
|
new_response.at<Vec3f>(i)[c] /= middle;
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
float diff = sum(sum(abs(new_response - response)))[0] / channels;
|
||||||
|
new_response.copyTo(response);
|
||||||
|
if(diff < threshold) {
|
||||||
|
break;
|
||||||
|
}
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
@ -259,6 +243,8 @@ public:
|
|||||||
float getThreshold() const { return threshold; }
|
float getThreshold() const { return threshold; }
|
||||||
void setThreshold(float val) { threshold = val; }
|
void setThreshold(float val) { threshold = val; }
|
||||||
|
|
||||||
|
Mat getRadiance() const { return radiance; }
|
||||||
|
|
||||||
void write(FileStorage& fs) const
|
void write(FileStorage& fs) const
|
||||||
{
|
{
|
||||||
fs << "name" << name
|
fs << "name" << name
|
||||||
@ -278,7 +264,7 @@ protected:
|
|||||||
String name;
|
String name;
|
||||||
int max_iter;
|
int max_iter;
|
||||||
float threshold;
|
float threshold;
|
||||||
Mat weight;
|
Mat weight, radiance;
|
||||||
};
|
};
|
||||||
|
|
||||||
Ptr<CalibrateRobertson> createCalibrateRobertson(int max_iter, float threshold)
|
Ptr<CalibrateRobertson> createCalibrateRobertson(int max_iter, float threshold)
|
||||||
|
@ -61,21 +61,22 @@ void checkImageDimensions(const std::vector<Mat>& images)
|
|||||||
|
|
||||||
Mat tringleWeights()
|
Mat tringleWeights()
|
||||||
{
|
{
|
||||||
Mat w(256, 1, CV_32F);
|
Mat w(LDR_SIZE, 1, CV_32F);
|
||||||
for(int i = 0; i < 256; i++) {
|
int half = LDR_SIZE / 2;
|
||||||
w.at<float>(i) = i < 128 ? i + 1.0f : 256.0f - i;
|
for(int i = 0; i < LDR_SIZE; i++) {
|
||||||
|
w.at<float>(i) = i < half ? i + 1.0f : LDR_SIZE - i;
|
||||||
}
|
}
|
||||||
return w;
|
return w;
|
||||||
}
|
}
|
||||||
|
|
||||||
Mat RobertsonWeights()
|
Mat RobertsonWeights()
|
||||||
{
|
{
|
||||||
Mat weight(256, 1, CV_32FC3);
|
Mat weight(LDR_SIZE, 1, CV_32FC3);
|
||||||
for(int i = 0; i < 256; i++) {
|
float q = (LDR_SIZE - 1) / 4.0f;
|
||||||
float value = exp(-4.0f * pow(i - 127.5f, 2.0f) / pow(127.5f, 2.0f));
|
for(int i = 0; i < LDR_SIZE; i++) {
|
||||||
for(int c = 0; c < 3; c++) {
|
float value = i / q - 2.0f;
|
||||||
weight.at<Vec3f>(i)[c] = value;
|
value = exp(-value * value);
|
||||||
}
|
weight.at<Vec3f>(i) = Vec3f::all(value);
|
||||||
}
|
}
|
||||||
return weight;
|
return weight;
|
||||||
}
|
}
|
||||||
@ -94,19 +95,11 @@ void mapLuminance(Mat src, Mat dst, Mat lum, Mat new_lum, float saturation)
|
|||||||
|
|
||||||
Mat linearResponse(int channels)
|
Mat linearResponse(int channels)
|
||||||
{
|
{
|
||||||
Mat single_response = Mat(256, 1, CV_32F);
|
Mat response = Mat(LDR_SIZE, 1, CV_MAKETYPE(CV_32F, channels));
|
||||||
for(int i = 1; i < 256; i++) {
|
for(int i = 0; i < LDR_SIZE; i++) {
|
||||||
single_response.at<float>(i) = static_cast<float>(i);
|
response.at<Vec3f>(i) = Vec3f::all(i);
|
||||||
}
|
}
|
||||||
single_response.at<float>(0) = static_cast<float>(1);
|
return response;
|
||||||
|
|
||||||
std::vector<Mat> splitted(channels);
|
|
||||||
for(int c = 0; c < channels; c++) {
|
|
||||||
splitted[c] = single_response;
|
|
||||||
}
|
|
||||||
Mat result;
|
|
||||||
merge(splitted, result);
|
|
||||||
return result;
|
|
||||||
}
|
}
|
||||||
|
|
||||||
};
|
};
|
||||||
|
@ -43,7 +43,6 @@
|
|||||||
#include "opencv2/photo.hpp"
|
#include "opencv2/photo.hpp"
|
||||||
#include "opencv2/imgproc.hpp"
|
#include "opencv2/imgproc.hpp"
|
||||||
#include "hdr_common.hpp"
|
#include "hdr_common.hpp"
|
||||||
#include <iostream>
|
|
||||||
|
|
||||||
namespace cv
|
namespace cv
|
||||||
{
|
{
|
||||||
@ -77,9 +76,10 @@ public:
|
|||||||
|
|
||||||
if(response.empty()) {
|
if(response.empty()) {
|
||||||
response = linearResponse(channels);
|
response = linearResponse(channels);
|
||||||
|
response.at<Vec3f>(0) = response.at<Vec3f>(1);
|
||||||
}
|
}
|
||||||
log(response, response);
|
log(response, response);
|
||||||
CV_Assert(response.rows == 256 && response.cols == 1 &&
|
CV_Assert(response.rows == LDR_SIZE && response.cols == 1 &&
|
||||||
response.channels() == channels);
|
response.channels() == channels);
|
||||||
|
|
||||||
Mat exp_values(times);
|
Mat exp_values(times);
|
||||||
@ -312,9 +312,9 @@ public:
|
|||||||
|
|
||||||
Mat response = input_response.getMat();
|
Mat response = input_response.getMat();
|
||||||
if(response.empty()) {
|
if(response.empty()) {
|
||||||
response = linearResponse(channels) / 128.0f;
|
response = linearResponse(channels) / (LDR_SIZE / 2.0f);
|
||||||
}
|
}
|
||||||
CV_Assert(response.rows == 256 && response.cols == 1 &&
|
CV_Assert(response.rows == LDR_SIZE && response.cols == 1 &&
|
||||||
response.channels() == channels);
|
response.channels() == channels);
|
||||||
|
|
||||||
result = Mat::zeros(images[0].size(), CV_32FCC);
|
result = Mat::zeros(images[0].size(), CV_32FCC);
|
||||||
|
@ -187,7 +187,22 @@ TEST(Photo_MergeDebevec, regression)
|
|||||||
Mat result, expected;
|
Mat result, expected;
|
||||||
loadImage(test_path + "merge/debevec.exr", expected);
|
loadImage(test_path + "merge/debevec.exr", expected);
|
||||||
merge->process(images, result, times, response);
|
merge->process(images, result, times, response);
|
||||||
imwrite("test.exr", result);
|
checkEqual(expected, result, 1e-2f);
|
||||||
|
}
|
||||||
|
|
||||||
|
TEST(Photo_MergeRobertson, regression)
|
||||||
|
{
|
||||||
|
string test_path = string(cvtest::TS::ptr()->get_data_path()) + "hdr/";
|
||||||
|
|
||||||
|
vector<Mat> images;
|
||||||
|
vector<float> times;
|
||||||
|
loadExposureSeq(test_path + "exposures/", images, times);
|
||||||
|
|
||||||
|
Ptr<MergeRobertson> merge = createMergeRobertson();
|
||||||
|
|
||||||
|
Mat result, expected;
|
||||||
|
loadImage(test_path + "merge/robertson.exr", expected);
|
||||||
|
merge->process(images, result, times);
|
||||||
checkEqual(expected, result, 1e-2f);
|
checkEqual(expected, result, 1e-2f);
|
||||||
}
|
}
|
||||||
|
|
||||||
@ -208,3 +223,18 @@ TEST(Photo_CalibrateDebevec, regression)
|
|||||||
minMaxLoc(diff, NULL, &max);
|
minMaxLoc(diff, NULL, &max);
|
||||||
ASSERT_FALSE(max > 0.1);
|
ASSERT_FALSE(max > 0.1);
|
||||||
}
|
}
|
||||||
|
|
||||||
|
TEST(Photo_CalibrateRobertson, regression)
|
||||||
|
{
|
||||||
|
string test_path = string(cvtest::TS::ptr()->get_data_path()) + "hdr/";
|
||||||
|
|
||||||
|
vector<Mat> images;
|
||||||
|
vector<float> times;
|
||||||
|
Mat response, expected;
|
||||||
|
loadExposureSeq(test_path + "exposures/", images, times);
|
||||||
|
loadResponseCSV(test_path + "calibrate/robertson.csv", expected);
|
||||||
|
|
||||||
|
Ptr<CalibrateRobertson> calibrate = createCalibrateRobertson();
|
||||||
|
calibrate->process(images, response, times);
|
||||||
|
checkEqual(expected, response, 1e-3f);
|
||||||
|
}
|
Loading…
Reference in New Issue
Block a user