opencv/modules/photo/src/align.cpp
2013-09-06 17:30:43 +04:00

547 lines
16 KiB
C++

/*M///////////////////////////////////////////////////////////////////////////////////////
//
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
// By downloading, copying, installing or using the software you agree to this license.
// If you do not agree to this license, do not download, install,
// copy or use the software.
//
//
// License Agreement
// For Open Source Computer Vision Library
//
// Copyright (C) 2013, OpenCV Foundation, all rights reserved.
// Third party copyrights are property of their respective owners.
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
// * Redistribution's of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
//
// * Redistribution's in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other materials provided with the distribution.
//
// * The name of the copyright holders may not be used to endorse or promote products
// derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors "as is" and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/
#include "precomp.hpp"
#include "opencv2/photo.hpp"
#include "opencv2/imgproc.hpp"
#include "hdr_common.hpp"
namespace cv
{
class AlignMTBImpl : public AlignMTB
{
public:
AlignMTBImpl(int max_bits, int exclude_range, bool cut) :
max_bits(max_bits),
exclude_range(exclude_range),
cut(cut),
name("AlignMTB")
{
}
void process(InputArrayOfArrays src, std::vector<Mat>& dst,
const std::vector<float>& times, InputArray response)
{
process(src, dst);
}
void process(InputArrayOfArrays _src, std::vector<Mat>& dst)
{
std::vector<Mat> src;
_src.getMatVector(src);
checkImageDimensions(src);
dst.resize(src.size());
size_t pivot = src.size() / 2;
dst[pivot] = src[pivot];
Mat gray_base;
cvtColor(src[pivot], gray_base, COLOR_RGB2GRAY);
std::vector<Point> shifts;
for(size_t i = 0; i < src.size(); i++) {
if(i == pivot) {
shifts.push_back(Point(0, 0));
continue;
}
Mat gray;
cvtColor(src[i], gray, COLOR_RGB2GRAY);
Point shift;
calculateShift(gray_base, gray, shift);
shifts.push_back(shift);
shiftMat(src[i], dst[i], shift);
}
if(cut) {
Point max(0, 0), min(0, 0);
for(size_t i = 0; i < shifts.size(); i++) {
if(shifts[i].x > max.x) {
max.x = shifts[i].x;
}
if(shifts[i].y > max.y) {
max.y = shifts[i].y;
}
if(shifts[i].x < min.x) {
min.x = shifts[i].x;
}
if(shifts[i].y < min.y) {
min.y = shifts[i].y;
}
}
Point size = dst[0].size();
for(size_t i = 0; i < dst.size(); i++) {
dst[i] = dst[i](Rect(max, min + size));
}
}
}
void calculateShift(InputArray _img0, InputArray _img1, Point& shift)
{
Mat img0 = _img0.getMat();
Mat img1 = _img1.getMat();
CV_Assert(img0.channels() == 1 && img0.type() == img1.type());
CV_Assert(img0.size() == img0.size());
int maxlevel = static_cast<int>(log((double)max(img0.rows, img0.cols)) / log(2.0)) - 1;
maxlevel = min(maxlevel, max_bits - 1);
std::vector<Mat> pyr0;
std::vector<Mat> pyr1;
buildPyr(img0, pyr0, maxlevel);
buildPyr(img1, pyr1, maxlevel);
shift = Point(0, 0);
for(int level = maxlevel; level >= 0; level--) {
shift *= 2;
Mat tb1, tb2, eb1, eb2;
computeBitmaps(pyr0[level], tb1, eb1);
computeBitmaps(pyr1[level], tb2, eb2);
int min_err = pyr0[level].total();
Point new_shift(shift);
for(int i = -1; i <= 1; i++) {
for(int j = -1; j <= 1; j++) {
Point test_shift = shift + Point(i, j);
Mat shifted_tb2, shifted_eb2, diff;
shiftMat(tb2, shifted_tb2, test_shift);
shiftMat(eb2, shifted_eb2, test_shift);
bitwise_xor(tb1, shifted_tb2, diff);
bitwise_and(diff, eb1, diff);
bitwise_and(diff, shifted_eb2, diff);
int err = countNonZero(diff);
if(err < min_err) {
new_shift = test_shift;
min_err = err;
}
}
}
shift = new_shift;
}
}
void shiftMat(InputArray _src, OutputArray _dst, const Point shift)
{
Mat src = _src.getMat();
_dst.create(src.size(), src.type());
Mat dst = _dst.getMat();
Mat res = Mat::zeros(src.size(), src.type());
int width = src.cols - abs(shift.x);
int height = src.rows - abs(shift.y);
Rect dst_rect(max(shift.x, 0), max(shift.y, 0), width, height);
Rect src_rect(max(-shift.x, 0), max(-shift.y, 0), width, height);
src(src_rect).copyTo(res(dst_rect));
res.copyTo(dst);
}
int getMaxBits() const { return max_bits; }
void setMaxBits(int val) { max_bits = val; }
int getExcludeRange() const { return exclude_range; }
void setExcludeRange(int val) { exclude_range = val; }
bool getCut() const { return cut; }
void setCut(bool val) { cut = val; }
void write(FileStorage& fs) const
{
fs << "name" << name
<< "max_bits" << max_bits
<< "exclude_range" << exclude_range
<< "cut" << static_cast<int>(cut);
}
void read(const FileNode& fn)
{
FileNode n = fn["name"];
CV_Assert(n.isString() && String(n) == name);
max_bits = fn["max_bits"];
exclude_range = fn["exclude_range"];
int cut_val = fn["cut"];
cut = static_cast<bool>(cut_val);
}
void computeBitmaps(Mat& img, Mat& tb, Mat& eb)
{
int median = getMedian(img);
compare(img, median, tb, CMP_GT);
compare(abs(img - median), exclude_range, eb, CMP_GT);
}
protected:
String name;
int max_bits, exclude_range;
bool cut;
void downsample(Mat& src, Mat& dst)
{
dst = Mat(src.rows / 2, src.cols / 2, CV_8UC1);
int offset = src.cols * 2;
uchar *src_ptr = src.ptr();
uchar *dst_ptr = dst.ptr();
for(int y = 0; y < dst.rows; y ++) {
uchar *ptr = src_ptr;
for(int x = 0; x < dst.cols; x++) {
dst_ptr[0] = ptr[0];
dst_ptr++;
ptr += 2;
}
src_ptr += offset;
}
}
void buildPyr(Mat& img, std::vector<Mat>& pyr, int maxlevel)
{
pyr.resize(maxlevel + 1);
pyr[0] = img.clone();
for(int level = 0; level < maxlevel; level++) {
downsample(pyr[level], pyr[level + 1]);
}
}
int getMedian(Mat& img)
{
int channels = 0;
Mat hist;
int hist_size = LDR_SIZE;
float range[] = {0, LDR_SIZE} ;
const float* ranges[] = {range};
calcHist(&img, 1, &channels, Mat(), hist, 1, &hist_size, ranges);
float *ptr = hist.ptr<float>();
int median = 0, sum = 0;
int thresh = img.total() / 2;
while(sum < thresh && median < LDR_SIZE) {
sum += static_cast<int>(ptr[median]);
median++;
}
return median;
}
};
Ptr<AlignMTB> createAlignMTB(int max_bits, int exclude_range, bool cut)
{
return new AlignMTBImpl(max_bits, exclude_range, cut);
}
class floatIndexCmp {
public:
floatIndexCmp(std::vector<float> data) :
data(data)
{
}
bool operator() (int i,int j)
{
return data[i] < data[j];
}
protected:
std::vector<float> data;
};
class GhostbusterOrderImpl : public GhostbusterOrder
{
public:
GhostbusterOrderImpl(int underexp, int overexp) :
underexp(underexp),
overexp(overexp),
name("GhostbusterOrder")
{
}
void process(InputArrayOfArrays src, OutputArray dst, std::vector<float>& times, Mat response)
{
process(src, dst);
}
void process(InputArrayOfArrays src, OutputArray dst)
{
std::vector<Mat> unsorted_images;
src.getMatVector(unsorted_images);
checkImageDimensions(unsorted_images);
std::vector<Mat> images;
sortImages(unsorted_images, images);
int channels = images[0].channels();
dst.create(images[0].size(), CV_8U);
Mat res = Mat::zeros(images[0].size(), CV_8U);
std::vector<Mat> splitted(channels);
split(images[0], splitted);
for(size_t i = 0; i < images.size() - 1; i++) {
std::vector<Mat> next_splitted(channels);
split(images[i + 1], next_splitted);
for(int c = 0; c < channels; c++) {
Mat exposed = (splitted[c] >= underexp) & (splitted[c] <= overexp);
exposed &= (next_splitted[c] >= underexp) & (next_splitted[c] <= overexp);
Mat ghost = (splitted[c] > next_splitted[c]) & exposed;
res |= ghost;
}
splitted = next_splitted;
}
res.copyTo(dst.getMat());
}
int getUnderexp() {return underexp;}
void setUnderexp(int value) {underexp = value;}
int getOverexp() {return overexp;}
void setOverexp(int value) {overexp = value;}
void write(FileStorage& fs) const
{
fs << "name" << name
<< "overexp" << overexp
<< "underexp" << underexp;
}
void read(const FileNode& fn)
{
FileNode n = fn["name"];
CV_Assert(n.isString() && String(n) == name);
overexp = fn["overexp"];
underexp = fn["underexp"];
}
protected:
int overexp, underexp;
String name;
void sortImages(std::vector<Mat>& images, std::vector<Mat>& sorted)
{
std::vector<int>indices(images.size());
std::vector<float>means(images.size());
for(size_t i = 0; i < images.size(); i++) {
indices[i] = i;
means[i] = mean(mean(images[i]))[0];
}
sort(indices.begin(), indices.end(), floatIndexCmp(means));
sorted.resize(images.size());
for(size_t i = 0; i < images.size(); i++) {
sorted[i] = images[indices[i]];
}
}
};
Ptr<GhostbusterOrder> createGhostbusterOrder(int underexp, int overexp)
{
return new GhostbusterOrderImpl(underexp, overexp);
}
class GhostbusterPredictImpl : public GhostbusterPredict
{
public:
GhostbusterPredictImpl(int thresh, int underexp, int overexp) :
thresh(thresh),
underexp(underexp),
overexp(overexp),
name("GhostbusterPredict")
{
}
void process(InputArrayOfArrays src, OutputArray dst, std::vector<float>& times, Mat response)
{
std::vector<Mat> images;
src.getMatVector(images);
checkImageDimensions(images);
int channels = images[0].channels();
dst.create(images[0].size(), CV_8U);
Mat res = Mat::zeros(images[0].size(), CV_8U);
Mat radiance;
LUT(images[0], response, radiance);
std::vector<Mat> splitted(channels);
split(radiance, splitted);
std::vector<Mat> resp_split(channels);
split(response, resp_split);
for(size_t i = 0; i < images.size() - 1; i++) {
std::vector<Mat> next_splitted(channels);
LUT(images[i + 1], response, radiance);
split(radiance, next_splitted);
for(int c = 0; c < channels; c++) {
Mat predicted = splitted[c] / times[i] * times[i + 1];
Mat low = max(thresh, next_splitted[c]) - thresh;
Mat high = min(255 - thresh, next_splitted[c]) + thresh;
low.convertTo(low, CV_8U);
high.convertTo(high, CV_8U);
LUT(low, resp_split[c], low);
LUT(high, resp_split[c], high);
Mat exposed = (splitted[c] >= underexp) & (splitted[c] <= overexp);
exposed &= (next_splitted[c] >= underexp) & (next_splitted[c] <= overexp);
Mat ghost = (low < predicted) & (predicted < high);
ghost &= exposed;
res |= ghost;
}
splitted = next_splitted;
}
res.copyTo(dst.getMat());
}
virtual void process(InputArrayOfArrays src, OutputArray dst, std::vector<float>& times)
{
Mat response = linearResponse(3);
response.at<Vec3f>(0) = response.at<Vec3f>(1);
process(src, dst, times, response);
}
CV_WRAP virtual int getThreshold() {return thresh;}
CV_WRAP virtual void setThreshold(int value) {thresh = value;}
int getUnderexp() {return underexp;}
void setUnderexp(int value) {underexp = value;}
int getOverexp() {return overexp;}
void setOverexp(int value) {overexp = value;}
void write(FileStorage& fs) const
{
fs << "name" << name
<< "overexp" << overexp
<< "underexp" << underexp
<< "thresh" << thresh;
}
void read(const FileNode& fn)
{
FileNode n = fn["name"];
CV_Assert(n.isString() && String(n) == name);
overexp = fn["overexp"];
underexp = fn["underexp"];
thresh = fn["thresh"];
}
protected:
int thresh, underexp, overexp;
String name;
};
Ptr<GhostbusterPredict> createGhostbusterPredict(int thresh, int underexp, int overexp)
{
return new GhostbusterPredictImpl(thresh, underexp, overexp);
}
class GhostbusterBitmapImpl : public GhostbusterBitmap
{
public:
GhostbusterBitmapImpl(int exclude) :
exclude(exclude),
name("GhostbusterBitmap")
{
}
void process(InputArrayOfArrays src, OutputArray dst, std::vector<float>& times, Mat response)
{
process(src, dst);
}
void process(InputArrayOfArrays src, OutputArray dst)
{
std::vector<Mat> images;
src.getMatVector(images);
checkImageDimensions(images);
int channels = images[0].channels();
dst.create(images[0].size(), CV_8U);
Mat res = Mat::zeros(images[0].size(), CV_8U);
Ptr<AlignMTB> MTB = createAlignMTB();
MTB->setExcludeRange(exclude);
for(size_t i = 0; i < images.size(); i++) {
Mat gray;
if(channels == 1) {
gray = images[i];
} else {
cvtColor(images[i], gray, COLOR_RGB2GRAY);
}
Mat tb, eb;
MTB->computeBitmaps(gray, tb, eb);
tb &= eb & 1;
res += tb;
}
res = (res > 0) & (res < images.size());
res.copyTo(dst.getMat());
}
int getExclude() {return exclude;}
void setExclude(int value) {exclude = value;}
void write(FileStorage& fs) const
{
fs << "name" << name
<< "exclude" << exclude;
}
void read(const FileNode& fn)
{
FileNode n = fn["name"];
CV_Assert(n.isString() && String(n) == name);
exclude = fn["exclude"];
}
protected:
int exclude;
String name;
};
Ptr<GhostbusterBitmap> createGhostbusterBitmap(int exclude)
{
return new GhostbusterBitmapImpl(exclude);
}
}