mirror of
https://github.com/opencv/opencv.git
synced 2025-06-07 17:44:04 +08:00
dnn: SSD performance test
This commit is contained in:
parent
a3ec2ac3c5
commit
d8a737b4b0
@ -32,7 +32,7 @@ public:
|
|||||||
dnn::Net net;
|
dnn::Net net;
|
||||||
|
|
||||||
void processNet(std::string weights, std::string proto, std::string halide_scheduler,
|
void processNet(std::string weights, std::string proto, std::string halide_scheduler,
|
||||||
int inWidth, int inHeight, const std::string& outputLayer,
|
const Mat& input, const std::string& outputLayer,
|
||||||
const std::string& framework)
|
const std::string& framework)
|
||||||
{
|
{
|
||||||
backend = (dnn::Backend)(int)get<0>(GetParam());
|
backend = (dnn::Backend)(int)get<0>(GetParam());
|
||||||
@ -48,15 +48,18 @@ public:
|
|||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
Mat input(inHeight, inWidth, CV_32FC3);
|
|
||||||
randu(input, 0.0f, 1.0f);
|
randu(input, 0.0f, 1.0f);
|
||||||
|
|
||||||
|
|
||||||
weights = findDataFile(weights, false);
|
weights = findDataFile(weights, false);
|
||||||
if (!proto.empty())
|
if (!proto.empty())
|
||||||
proto = findDataFile(proto, false);
|
proto = findDataFile(proto, false);
|
||||||
if (!halide_scheduler.empty() && backend == DNN_BACKEND_HALIDE)
|
if (backend == DNN_BACKEND_HALIDE)
|
||||||
halide_scheduler = findDataFile(std::string("dnn/halide_scheduler_") + (target == DNN_TARGET_OPENCL ? "opencl_" : "") + halide_scheduler, true);
|
{
|
||||||
|
if (halide_scheduler == "disabled")
|
||||||
|
throw ::SkipTestException("Halide test is disabled");
|
||||||
|
if (!halide_scheduler.empty())
|
||||||
|
halide_scheduler = findDataFile(std::string("dnn/halide_scheduler_") + (target == DNN_TARGET_OPENCL ? "opencl_" : "") + halide_scheduler, true);
|
||||||
|
}
|
||||||
if (framework == "caffe")
|
if (framework == "caffe")
|
||||||
{
|
{
|
||||||
net = cv::dnn::readNetFromCaffe(proto, weights);
|
net = cv::dnn::readNetFromCaffe(proto, weights);
|
||||||
@ -80,7 +83,7 @@ public:
|
|||||||
net.setHalideScheduler(halide_scheduler);
|
net.setHalideScheduler(halide_scheduler);
|
||||||
}
|
}
|
||||||
|
|
||||||
MatShape netInputShape = shape(1, 3, inHeight, inWidth);
|
MatShape netInputShape = shape(1, 3, input.rows, input.cols);
|
||||||
size_t weightsMemory = 0, blobsMemory = 0;
|
size_t weightsMemory = 0, blobsMemory = 0;
|
||||||
net.getMemoryConsumption(netInputShape, weightsMemory, blobsMemory);
|
net.getMemoryConsumption(netInputShape, weightsMemory, blobsMemory);
|
||||||
int64 flops = net.getFLOPS(netInputShape);
|
int64 flops = net.getFLOPS(netInputShape);
|
||||||
@ -104,40 +107,45 @@ public:
|
|||||||
PERF_TEST_P_(DNNTestNetwork, AlexNet)
|
PERF_TEST_P_(DNNTestNetwork, AlexNet)
|
||||||
{
|
{
|
||||||
processNet("dnn/bvlc_alexnet.caffemodel", "dnn/bvlc_alexnet.prototxt",
|
processNet("dnn/bvlc_alexnet.caffemodel", "dnn/bvlc_alexnet.prototxt",
|
||||||
"alexnet.yml", 227, 227, "prob", "caffe");
|
"alexnet.yml", Mat(cv::Size(227, 227), CV_32FC3), "prob", "caffe");
|
||||||
}
|
}
|
||||||
|
|
||||||
PERF_TEST_P_(DNNTestNetwork, GoogLeNet)
|
PERF_TEST_P_(DNNTestNetwork, GoogLeNet)
|
||||||
{
|
{
|
||||||
processNet("dnn/bvlc_googlenet.caffemodel", "dnn/bvlc_googlenet.prototxt",
|
processNet("dnn/bvlc_googlenet.caffemodel", "dnn/bvlc_googlenet.prototxt",
|
||||||
"", 224, 224, "prob", "caffe");
|
"", Mat(cv::Size(224, 224), CV_32FC3), "prob", "caffe");
|
||||||
}
|
}
|
||||||
|
|
||||||
PERF_TEST_P_(DNNTestNetwork, ResNet50)
|
PERF_TEST_P_(DNNTestNetwork, ResNet50)
|
||||||
{
|
{
|
||||||
processNet("dnn/ResNet-50-model.caffemodel", "dnn/ResNet-50-deploy.prototxt",
|
processNet("dnn/ResNet-50-model.caffemodel", "dnn/ResNet-50-deploy.prototxt",
|
||||||
"resnet_50.yml", 224, 224, "prob", "caffe");
|
"resnet_50.yml", Mat(cv::Size(224, 224), CV_32FC3), "prob", "caffe");
|
||||||
}
|
}
|
||||||
|
|
||||||
PERF_TEST_P_(DNNTestNetwork, SqueezeNet_v1_1)
|
PERF_TEST_P_(DNNTestNetwork, SqueezeNet_v1_1)
|
||||||
{
|
{
|
||||||
processNet("dnn/squeezenet_v1.1.caffemodel", "dnn/squeezenet_v1.1.prototxt",
|
processNet("dnn/squeezenet_v1.1.caffemodel", "dnn/squeezenet_v1.1.prototxt",
|
||||||
"squeezenet_v1_1.yml", 227, 227, "prob", "caffe");
|
"squeezenet_v1_1.yml", Mat(cv::Size(227, 227), CV_32FC3), "prob", "caffe");
|
||||||
}
|
}
|
||||||
|
|
||||||
PERF_TEST_P_(DNNTestNetwork, Inception_5h)
|
PERF_TEST_P_(DNNTestNetwork, Inception_5h)
|
||||||
{
|
{
|
||||||
processNet("dnn/tensorflow_inception_graph.pb", "",
|
processNet("dnn/tensorflow_inception_graph.pb", "",
|
||||||
"inception_5h.yml",
|
"inception_5h.yml",
|
||||||
224, 224, "softmax2", "tensorflow");
|
Mat(cv::Size(224, 224), CV_32FC3), "softmax2", "tensorflow");
|
||||||
}
|
}
|
||||||
|
|
||||||
PERF_TEST_P_(DNNTestNetwork, ENet)
|
PERF_TEST_P_(DNNTestNetwork, ENet)
|
||||||
{
|
{
|
||||||
processNet("dnn/Enet-model-best.net", "", "enet.yml",
|
processNet("dnn/Enet-model-best.net", "", "enet.yml",
|
||||||
512, 256, "l367_Deconvolution", "torch");
|
Mat(cv::Size(512, 256), CV_32FC3), "l367_Deconvolution", "torch");
|
||||||
}
|
}
|
||||||
|
|
||||||
|
PERF_TEST_P_(DNNTestNetwork, SSD)
|
||||||
|
{
|
||||||
|
processNet("dnn/VGG_ILSVRC2016_SSD_300x300_iter_440000.caffemodel", "dnn/ssd_vgg16.prototxt", "disabled",
|
||||||
|
Mat(cv::Size(300, 300), CV_32FC3), "detection_out", "caffe");
|
||||||
|
}
|
||||||
|
|
||||||
INSTANTIATE_TEST_CASE_P(/*nothing*/, DNNTestNetwork,
|
INSTANTIATE_TEST_CASE_P(/*nothing*/, DNNTestNetwork,
|
||||||
testing::Combine(
|
testing::Combine(
|
||||||
|
Loading…
Reference in New Issue
Block a user