mirror of
https://github.com/opencv/opencv.git
synced 2024-11-24 11:10:21 +08:00
Moved PlanarObjectDetector to the objdetect module
This commit is contained in:
parent
8f0d36b8b6
commit
dc9e5eda19
@ -1,2 +1,2 @@
|
|||||||
define_opencv_module(features2d opencv_core opencv_imgproc opencv_calib3d opencv_highgui opencv_flann)
|
define_opencv_module(features2d opencv_core opencv_imgproc opencv_highgui opencv_flann)
|
||||||
|
|
||||||
|
@ -577,54 +577,6 @@ protected:
|
|||||||
};
|
};
|
||||||
|
|
||||||
|
|
||||||
class CV_EXPORTS PlanarObjectDetector
|
|
||||||
{
|
|
||||||
public:
|
|
||||||
PlanarObjectDetector();
|
|
||||||
PlanarObjectDetector(const FileNode& node);
|
|
||||||
PlanarObjectDetector(const vector<Mat>& pyr, int _npoints=300,
|
|
||||||
int _patchSize=FernClassifier::PATCH_SIZE,
|
|
||||||
int _nstructs=FernClassifier::DEFAULT_STRUCTS,
|
|
||||||
int _structSize=FernClassifier::DEFAULT_STRUCT_SIZE,
|
|
||||||
int _nviews=FernClassifier::DEFAULT_VIEWS,
|
|
||||||
const LDetector& detector=LDetector(),
|
|
||||||
const PatchGenerator& patchGenerator=PatchGenerator());
|
|
||||||
virtual ~PlanarObjectDetector();
|
|
||||||
virtual void train(const vector<Mat>& pyr, int _npoints=300,
|
|
||||||
int _patchSize=FernClassifier::PATCH_SIZE,
|
|
||||||
int _nstructs=FernClassifier::DEFAULT_STRUCTS,
|
|
||||||
int _structSize=FernClassifier::DEFAULT_STRUCT_SIZE,
|
|
||||||
int _nviews=FernClassifier::DEFAULT_VIEWS,
|
|
||||||
const LDetector& detector=LDetector(),
|
|
||||||
const PatchGenerator& patchGenerator=PatchGenerator());
|
|
||||||
virtual void train(const vector<Mat>& pyr, const vector<KeyPoint>& keypoints,
|
|
||||||
int _patchSize=FernClassifier::PATCH_SIZE,
|
|
||||||
int _nstructs=FernClassifier::DEFAULT_STRUCTS,
|
|
||||||
int _structSize=FernClassifier::DEFAULT_STRUCT_SIZE,
|
|
||||||
int _nviews=FernClassifier::DEFAULT_VIEWS,
|
|
||||||
const LDetector& detector=LDetector(),
|
|
||||||
const PatchGenerator& patchGenerator=PatchGenerator());
|
|
||||||
Rect getModelROI() const;
|
|
||||||
vector<KeyPoint> getModelPoints() const;
|
|
||||||
const LDetector& getDetector() const;
|
|
||||||
const FernClassifier& getClassifier() const;
|
|
||||||
void setVerbose(bool verbose);
|
|
||||||
|
|
||||||
void read(const FileNode& node);
|
|
||||||
void write(FileStorage& fs, const String& name=String()) const;
|
|
||||||
bool operator()(const Mat& image, CV_OUT Mat& H, CV_OUT vector<Point2f>& corners) const;
|
|
||||||
bool operator()(const vector<Mat>& pyr, const vector<KeyPoint>& keypoints,
|
|
||||||
CV_OUT Mat& H, CV_OUT vector<Point2f>& corners,
|
|
||||||
CV_OUT vector<int>* pairs=0) const;
|
|
||||||
|
|
||||||
protected:
|
|
||||||
bool verbose;
|
|
||||||
Rect modelROI;
|
|
||||||
vector<KeyPoint> modelPoints;
|
|
||||||
LDetector ldetector;
|
|
||||||
FernClassifier fernClassifier;
|
|
||||||
};
|
|
||||||
|
|
||||||
/****************************************************************************************\
|
/****************************************************************************************\
|
||||||
* Calonder Classifier *
|
* Calonder Classifier *
|
||||||
\****************************************************************************************/
|
\****************************************************************************************/
|
||||||
|
@ -41,7 +41,6 @@
|
|||||||
//M*/
|
//M*/
|
||||||
|
|
||||||
#include "precomp.hpp"
|
#include "precomp.hpp"
|
||||||
#include "opencv2/calib3d/calib3d.hpp"
|
|
||||||
#include <stdio.h>
|
#include <stdio.h>
|
||||||
|
|
||||||
namespace cv
|
namespace cv
|
||||||
@ -1213,176 +1212,4 @@ void FernClassifier::setVerbose(bool _verbose)
|
|||||||
verbose = _verbose;
|
verbose = _verbose;
|
||||||
}
|
}
|
||||||
|
|
||||||
////////////////////////////////////// Planar Object Detector ////////////////////////////////////
|
|
||||||
|
|
||||||
PlanarObjectDetector::PlanarObjectDetector()
|
|
||||||
{
|
|
||||||
}
|
|
||||||
|
|
||||||
PlanarObjectDetector::PlanarObjectDetector(const FileNode& node)
|
|
||||||
{
|
|
||||||
read(node);
|
|
||||||
}
|
|
||||||
|
|
||||||
PlanarObjectDetector::PlanarObjectDetector(const vector<Mat>& pyr, int npoints,
|
|
||||||
int patchSize, int nstructs, int structSize,
|
|
||||||
int nviews, const LDetector& detector,
|
|
||||||
const PatchGenerator& patchGenerator)
|
|
||||||
{
|
|
||||||
train(pyr, npoints, patchSize, nstructs,
|
|
||||||
structSize, nviews, detector, patchGenerator);
|
|
||||||
}
|
|
||||||
|
|
||||||
PlanarObjectDetector::~PlanarObjectDetector()
|
|
||||||
{
|
|
||||||
}
|
|
||||||
|
|
||||||
vector<KeyPoint> PlanarObjectDetector::getModelPoints() const
|
|
||||||
{
|
|
||||||
return modelPoints;
|
|
||||||
}
|
|
||||||
|
|
||||||
void PlanarObjectDetector::train(const vector<Mat>& pyr, int npoints,
|
|
||||||
int patchSize, int nstructs, int structSize,
|
|
||||||
int nviews, const LDetector& detector,
|
|
||||||
const PatchGenerator& patchGenerator)
|
|
||||||
{
|
|
||||||
modelROI = Rect(0, 0, pyr[0].cols, pyr[0].rows);
|
|
||||||
ldetector = detector;
|
|
||||||
ldetector.setVerbose(verbose);
|
|
||||||
ldetector.getMostStable2D(pyr[0], modelPoints, npoints, patchGenerator);
|
|
||||||
|
|
||||||
npoints = (int)modelPoints.size();
|
|
||||||
fernClassifier.setVerbose(verbose);
|
|
||||||
fernClassifier.trainFromSingleView(pyr[0], modelPoints,
|
|
||||||
patchSize, (int)modelPoints.size(), nstructs, structSize, nviews,
|
|
||||||
FernClassifier::COMPRESSION_NONE, patchGenerator);
|
|
||||||
}
|
|
||||||
|
|
||||||
void PlanarObjectDetector::train(const vector<Mat>& pyr, const vector<KeyPoint>& keypoints,
|
|
||||||
int patchSize, int nstructs, int structSize,
|
|
||||||
int nviews, const LDetector& detector,
|
|
||||||
const PatchGenerator& patchGenerator)
|
|
||||||
{
|
|
||||||
modelROI = Rect(0, 0, pyr[0].cols, pyr[0].rows);
|
|
||||||
ldetector = detector;
|
|
||||||
ldetector.setVerbose(verbose);
|
|
||||||
modelPoints.resize(keypoints.size());
|
|
||||||
std::copy(keypoints.begin(), keypoints.end(), modelPoints.begin());
|
|
||||||
|
|
||||||
fernClassifier.setVerbose(verbose);
|
|
||||||
fernClassifier.trainFromSingleView(pyr[0], modelPoints,
|
|
||||||
patchSize, (int)modelPoints.size(), nstructs, structSize, nviews,
|
|
||||||
FernClassifier::COMPRESSION_NONE, patchGenerator);
|
|
||||||
}
|
|
||||||
|
|
||||||
void PlanarObjectDetector::read(const FileNode& node)
|
|
||||||
{
|
|
||||||
FileNodeIterator it = node["model-roi"].begin(), it_end;
|
|
||||||
it >> modelROI.x >> modelROI.y >> modelROI.width >> modelROI.height;
|
|
||||||
ldetector.read(node["detector"]);
|
|
||||||
fernClassifier.read(node["fern-classifier"]);
|
|
||||||
cv::read(node["model-points"], modelPoints);
|
|
||||||
CV_Assert(modelPoints.size() == (size_t)fernClassifier.getClassCount());
|
|
||||||
}
|
|
||||||
|
|
||||||
|
|
||||||
void PlanarObjectDetector::write(FileStorage& fs, const String& objname) const
|
|
||||||
{
|
|
||||||
WriteStructContext ws(fs, objname, CV_NODE_MAP);
|
|
||||||
|
|
||||||
{
|
|
||||||
WriteStructContext wsroi(fs, "model-roi", CV_NODE_SEQ + CV_NODE_FLOW);
|
|
||||||
cv::write(fs, modelROI.x);
|
|
||||||
cv::write(fs, modelROI.y);
|
|
||||||
cv::write(fs, modelROI.width);
|
|
||||||
cv::write(fs, modelROI.height);
|
|
||||||
}
|
|
||||||
ldetector.write(fs, "detector");
|
|
||||||
cv::write(fs, "model-points", modelPoints);
|
|
||||||
fernClassifier.write(fs, "fern-classifier");
|
|
||||||
}
|
|
||||||
|
|
||||||
|
|
||||||
bool PlanarObjectDetector::operator()(const Mat& image, Mat& H, vector<Point2f>& corners) const
|
|
||||||
{
|
|
||||||
vector<Mat> pyr;
|
|
||||||
buildPyramid(image, pyr, ldetector.nOctaves - 1);
|
|
||||||
vector<KeyPoint> keypoints;
|
|
||||||
ldetector(pyr, keypoints);
|
|
||||||
|
|
||||||
return (*this)(pyr, keypoints, H, corners);
|
|
||||||
}
|
|
||||||
|
|
||||||
bool PlanarObjectDetector::operator()(const vector<Mat>& pyr, const vector<KeyPoint>& keypoints,
|
|
||||||
Mat& matH, vector<Point2f>& corners, vector<int>* pairs) const
|
|
||||||
{
|
|
||||||
int i, j, m = (int)modelPoints.size(), n = (int)keypoints.size();
|
|
||||||
vector<int> bestMatches(m, -1);
|
|
||||||
vector<float> maxLogProb(m, -FLT_MAX);
|
|
||||||
vector<float> signature;
|
|
||||||
vector<Point2f> fromPt, toPt;
|
|
||||||
|
|
||||||
for( i = 0; i < n; i++ )
|
|
||||||
{
|
|
||||||
KeyPoint kpt = keypoints[i];
|
|
||||||
CV_Assert(0 <= kpt.octave && kpt.octave < (int)pyr.size());
|
|
||||||
kpt.pt.x /= (float)(1 << kpt.octave);
|
|
||||||
kpt.pt.y /= (float)(1 << kpt.octave);
|
|
||||||
int k = fernClassifier(pyr[kpt.octave], kpt.pt, signature);
|
|
||||||
if( k >= 0 && (bestMatches[k] < 0 || signature[k] > maxLogProb[k]) )
|
|
||||||
{
|
|
||||||
maxLogProb[k] = signature[k];
|
|
||||||
bestMatches[k] = i;
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
if(pairs)
|
|
||||||
pairs->resize(0);
|
|
||||||
|
|
||||||
for( i = 0; i < m; i++ )
|
|
||||||
if( bestMatches[i] >= 0 )
|
|
||||||
{
|
|
||||||
fromPt.push_back(modelPoints[i].pt);
|
|
||||||
toPt.push_back(keypoints[bestMatches[i]].pt);
|
|
||||||
}
|
|
||||||
|
|
||||||
if( fromPt.size() < 4 )
|
|
||||||
return false;
|
|
||||||
|
|
||||||
vector<uchar> mask;
|
|
||||||
matH = findHomography(Mat(fromPt), Mat(toPt), mask, RANSAC, 10);
|
|
||||||
if( matH.data )
|
|
||||||
{
|
|
||||||
const Mat_<double>& H = matH;
|
|
||||||
corners.resize(4);
|
|
||||||
for( i = 0; i < 4; i++ )
|
|
||||||
{
|
|
||||||
Point2f pt((float)(modelROI.x + (i == 0 || i == 3 ? 0 : modelROI.width)),
|
|
||||||
(float)(modelROI.y + (i <= 1 ? 0 : modelROI.height)));
|
|
||||||
double w = 1./(H(2,0)*pt.x + H(2,1)*pt.y + H(2,2));
|
|
||||||
corners[i] = Point2f((float)((H(0,0)*pt.x + H(0,1)*pt.y + H(0,2))*w),
|
|
||||||
(float)((H(1,0)*pt.x + H(1,1)*pt.y + H(1,2))*w));
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
if( pairs )
|
|
||||||
{
|
|
||||||
for( i = j = 0; i < m; i++ )
|
|
||||||
if( bestMatches[i] >= 0 && mask[j++] )
|
|
||||||
{
|
|
||||||
pairs->push_back(i);
|
|
||||||
pairs->push_back(bestMatches[i]);
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
return matH.data != 0;
|
|
||||||
}
|
|
||||||
|
|
||||||
|
|
||||||
void PlanarObjectDetector::setVerbose(bool _verbose)
|
|
||||||
{
|
|
||||||
verbose = _verbose;
|
|
||||||
}
|
|
||||||
|
|
||||||
}
|
}
|
||||||
|
@ -1 +1 @@
|
|||||||
define_opencv_module(objdetect opencv_core opencv_imgproc opencv_highgui)
|
define_opencv_module(objdetect opencv_core opencv_imgproc opencv_highgui opencv_features2d opencv_calib3d)
|
||||||
|
@ -44,6 +44,7 @@
|
|||||||
#define __OPENCV_OBJDETECT_HPP__
|
#define __OPENCV_OBJDETECT_HPP__
|
||||||
|
|
||||||
#include "opencv2/core/core.hpp"
|
#include "opencv2/core/core.hpp"
|
||||||
|
#include "opencv2/features2d/features2d.hpp"
|
||||||
|
|
||||||
#ifdef __cplusplus
|
#ifdef __cplusplus
|
||||||
extern "C" {
|
extern "C" {
|
||||||
@ -467,7 +468,58 @@ public:
|
|||||||
CV_PROP int nlevels;
|
CV_PROP int nlevels;
|
||||||
};
|
};
|
||||||
|
|
||||||
|
/****************************************************************************************\
|
||||||
|
* Planar Object Detection *
|
||||||
|
\****************************************************************************************/
|
||||||
|
|
||||||
|
class CV_EXPORTS PlanarObjectDetector
|
||||||
|
{
|
||||||
|
public:
|
||||||
|
PlanarObjectDetector();
|
||||||
|
PlanarObjectDetector(const FileNode& node);
|
||||||
|
PlanarObjectDetector(const vector<Mat>& pyr, int _npoints=300,
|
||||||
|
int _patchSize=FernClassifier::PATCH_SIZE,
|
||||||
|
int _nstructs=FernClassifier::DEFAULT_STRUCTS,
|
||||||
|
int _structSize=FernClassifier::DEFAULT_STRUCT_SIZE,
|
||||||
|
int _nviews=FernClassifier::DEFAULT_VIEWS,
|
||||||
|
const LDetector& detector=LDetector(),
|
||||||
|
const PatchGenerator& patchGenerator=PatchGenerator());
|
||||||
|
virtual ~PlanarObjectDetector();
|
||||||
|
virtual void train(const vector<Mat>& pyr, int _npoints=300,
|
||||||
|
int _patchSize=FernClassifier::PATCH_SIZE,
|
||||||
|
int _nstructs=FernClassifier::DEFAULT_STRUCTS,
|
||||||
|
int _structSize=FernClassifier::DEFAULT_STRUCT_SIZE,
|
||||||
|
int _nviews=FernClassifier::DEFAULT_VIEWS,
|
||||||
|
const LDetector& detector=LDetector(),
|
||||||
|
const PatchGenerator& patchGenerator=PatchGenerator());
|
||||||
|
virtual void train(const vector<Mat>& pyr, const vector<KeyPoint>& keypoints,
|
||||||
|
int _patchSize=FernClassifier::PATCH_SIZE,
|
||||||
|
int _nstructs=FernClassifier::DEFAULT_STRUCTS,
|
||||||
|
int _structSize=FernClassifier::DEFAULT_STRUCT_SIZE,
|
||||||
|
int _nviews=FernClassifier::DEFAULT_VIEWS,
|
||||||
|
const LDetector& detector=LDetector(),
|
||||||
|
const PatchGenerator& patchGenerator=PatchGenerator());
|
||||||
|
Rect getModelROI() const;
|
||||||
|
vector<KeyPoint> getModelPoints() const;
|
||||||
|
const LDetector& getDetector() const;
|
||||||
|
const FernClassifier& getClassifier() const;
|
||||||
|
void setVerbose(bool verbose);
|
||||||
|
|
||||||
|
void read(const FileNode& node);
|
||||||
|
void write(FileStorage& fs, const String& name=String()) const;
|
||||||
|
bool operator()(const Mat& image, CV_OUT Mat& H, CV_OUT vector<Point2f>& corners) const;
|
||||||
|
bool operator()(const vector<Mat>& pyr, const vector<KeyPoint>& keypoints,
|
||||||
|
CV_OUT Mat& H, CV_OUT vector<Point2f>& corners,
|
||||||
|
CV_OUT vector<int>* pairs=0) const;
|
||||||
|
|
||||||
|
protected:
|
||||||
|
bool verbose;
|
||||||
|
Rect modelROI;
|
||||||
|
vector<KeyPoint> modelPoints;
|
||||||
|
LDetector ldetector;
|
||||||
|
FernClassifier fernClassifier;
|
||||||
|
};
|
||||||
|
|
||||||
}
|
}
|
||||||
|
|
||||||
#endif
|
#endif
|
||||||
|
221
modules/objdetect/src/planardetect.cpp
Normal file
221
modules/objdetect/src/planardetect.cpp
Normal file
@ -0,0 +1,221 @@
|
|||||||
|
/*M///////////////////////////////////////////////////////////////////////////////////////
|
||||||
|
//
|
||||||
|
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
|
||||||
|
//
|
||||||
|
// By downloading, copying, installing or using the software you agree to this license.
|
||||||
|
// If you do not agree to this license, do not download, install,
|
||||||
|
// copy or use the software.
|
||||||
|
//
|
||||||
|
//
|
||||||
|
// License Agreement
|
||||||
|
// For Open Source Computer Vision Library
|
||||||
|
//
|
||||||
|
// Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
|
||||||
|
// Copyright (C) 2009, Willow Garage Inc., all rights reserved.
|
||||||
|
// Third party copyrights are property of their respective owners.
|
||||||
|
//
|
||||||
|
// Redistribution and use in source and binary forms, with or without modification,
|
||||||
|
// are permitted provided that the following conditions are met:
|
||||||
|
//
|
||||||
|
// * Redistribution's of source code must retain the above copyright notice,
|
||||||
|
// this list of conditions and the following disclaimer.
|
||||||
|
//
|
||||||
|
// * Redistribution's in binary form must reproduce the above copyright notice,
|
||||||
|
// this list of conditions and the following disclaimer in the documentation
|
||||||
|
// and/or other materials provided with the distribution.
|
||||||
|
//
|
||||||
|
// * The name of the copyright holders may not be used to endorse or promote products
|
||||||
|
// derived from this software without specific prior written permission.
|
||||||
|
//
|
||||||
|
// This software is provided by the copyright holders and contributors "as is" and
|
||||||
|
// any express or implied warranties, including, but not limited to, the implied
|
||||||
|
// warranties of merchantability and fitness for a particular purpose are disclaimed.
|
||||||
|
// In no event shall the Intel Corporation or contributors be liable for any direct,
|
||||||
|
// indirect, incidental, special, exemplary, or consequential damages
|
||||||
|
// (including, but not limited to, procurement of substitute goods or services;
|
||||||
|
// loss of use, data, or profits; or business interruption) however caused
|
||||||
|
// and on any theory of liability, whether in contract, strict liability,
|
||||||
|
// or tort (including negligence or otherwise) arising in any way out of
|
||||||
|
// the use of this software, even if advised of the possibility of such damage.
|
||||||
|
//
|
||||||
|
//M*/
|
||||||
|
|
||||||
|
#include "precomp.hpp"
|
||||||
|
#include <stdio.h>
|
||||||
|
|
||||||
|
namespace cv
|
||||||
|
{
|
||||||
|
|
||||||
|
////////////////////////////////////// Planar Object Detector ////////////////////////////////////
|
||||||
|
|
||||||
|
PlanarObjectDetector::PlanarObjectDetector()
|
||||||
|
{
|
||||||
|
}
|
||||||
|
|
||||||
|
PlanarObjectDetector::PlanarObjectDetector(const FileNode& node)
|
||||||
|
{
|
||||||
|
read(node);
|
||||||
|
}
|
||||||
|
|
||||||
|
PlanarObjectDetector::PlanarObjectDetector(const vector<Mat>& pyr, int npoints,
|
||||||
|
int patchSize, int nstructs, int structSize,
|
||||||
|
int nviews, const LDetector& detector,
|
||||||
|
const PatchGenerator& patchGenerator)
|
||||||
|
{
|
||||||
|
train(pyr, npoints, patchSize, nstructs,
|
||||||
|
structSize, nviews, detector, patchGenerator);
|
||||||
|
}
|
||||||
|
|
||||||
|
PlanarObjectDetector::~PlanarObjectDetector()
|
||||||
|
{
|
||||||
|
}
|
||||||
|
|
||||||
|
vector<KeyPoint> PlanarObjectDetector::getModelPoints() const
|
||||||
|
{
|
||||||
|
return modelPoints;
|
||||||
|
}
|
||||||
|
|
||||||
|
void PlanarObjectDetector::train(const vector<Mat>& pyr, int npoints,
|
||||||
|
int patchSize, int nstructs, int structSize,
|
||||||
|
int nviews, const LDetector& detector,
|
||||||
|
const PatchGenerator& patchGenerator)
|
||||||
|
{
|
||||||
|
modelROI = Rect(0, 0, pyr[0].cols, pyr[0].rows);
|
||||||
|
ldetector = detector;
|
||||||
|
ldetector.setVerbose(verbose);
|
||||||
|
ldetector.getMostStable2D(pyr[0], modelPoints, npoints, patchGenerator);
|
||||||
|
|
||||||
|
npoints = (int)modelPoints.size();
|
||||||
|
fernClassifier.setVerbose(verbose);
|
||||||
|
fernClassifier.trainFromSingleView(pyr[0], modelPoints,
|
||||||
|
patchSize, (int)modelPoints.size(), nstructs, structSize, nviews,
|
||||||
|
FernClassifier::COMPRESSION_NONE, patchGenerator);
|
||||||
|
}
|
||||||
|
|
||||||
|
void PlanarObjectDetector::train(const vector<Mat>& pyr, const vector<KeyPoint>& keypoints,
|
||||||
|
int patchSize, int nstructs, int structSize,
|
||||||
|
int nviews, const LDetector& detector,
|
||||||
|
const PatchGenerator& patchGenerator)
|
||||||
|
{
|
||||||
|
modelROI = Rect(0, 0, pyr[0].cols, pyr[0].rows);
|
||||||
|
ldetector = detector;
|
||||||
|
ldetector.setVerbose(verbose);
|
||||||
|
modelPoints.resize(keypoints.size());
|
||||||
|
std::copy(keypoints.begin(), keypoints.end(), modelPoints.begin());
|
||||||
|
|
||||||
|
fernClassifier.setVerbose(verbose);
|
||||||
|
fernClassifier.trainFromSingleView(pyr[0], modelPoints,
|
||||||
|
patchSize, (int)modelPoints.size(), nstructs, structSize, nviews,
|
||||||
|
FernClassifier::COMPRESSION_NONE, patchGenerator);
|
||||||
|
}
|
||||||
|
|
||||||
|
void PlanarObjectDetector::read(const FileNode& node)
|
||||||
|
{
|
||||||
|
FileNodeIterator it = node["model-roi"].begin(), it_end;
|
||||||
|
it >> modelROI.x >> modelROI.y >> modelROI.width >> modelROI.height;
|
||||||
|
ldetector.read(node["detector"]);
|
||||||
|
fernClassifier.read(node["fern-classifier"]);
|
||||||
|
cv::read(node["model-points"], modelPoints);
|
||||||
|
CV_Assert(modelPoints.size() == (size_t)fernClassifier.getClassCount());
|
||||||
|
}
|
||||||
|
|
||||||
|
|
||||||
|
void PlanarObjectDetector::write(FileStorage& fs, const String& objname) const
|
||||||
|
{
|
||||||
|
WriteStructContext ws(fs, objname, CV_NODE_MAP);
|
||||||
|
|
||||||
|
{
|
||||||
|
WriteStructContext wsroi(fs, "model-roi", CV_NODE_SEQ + CV_NODE_FLOW);
|
||||||
|
cv::write(fs, modelROI.x);
|
||||||
|
cv::write(fs, modelROI.y);
|
||||||
|
cv::write(fs, modelROI.width);
|
||||||
|
cv::write(fs, modelROI.height);
|
||||||
|
}
|
||||||
|
ldetector.write(fs, "detector");
|
||||||
|
cv::write(fs, "model-points", modelPoints);
|
||||||
|
fernClassifier.write(fs, "fern-classifier");
|
||||||
|
}
|
||||||
|
|
||||||
|
|
||||||
|
bool PlanarObjectDetector::operator()(const Mat& image, Mat& H, vector<Point2f>& corners) const
|
||||||
|
{
|
||||||
|
vector<Mat> pyr;
|
||||||
|
buildPyramid(image, pyr, ldetector.nOctaves - 1);
|
||||||
|
vector<KeyPoint> keypoints;
|
||||||
|
ldetector(pyr, keypoints);
|
||||||
|
|
||||||
|
return (*this)(pyr, keypoints, H, corners);
|
||||||
|
}
|
||||||
|
|
||||||
|
bool PlanarObjectDetector::operator()(const vector<Mat>& pyr, const vector<KeyPoint>& keypoints,
|
||||||
|
Mat& matH, vector<Point2f>& corners, vector<int>* pairs) const
|
||||||
|
{
|
||||||
|
int i, j, m = (int)modelPoints.size(), n = (int)keypoints.size();
|
||||||
|
vector<int> bestMatches(m, -1);
|
||||||
|
vector<float> maxLogProb(m, -FLT_MAX);
|
||||||
|
vector<float> signature;
|
||||||
|
vector<Point2f> fromPt, toPt;
|
||||||
|
|
||||||
|
for( i = 0; i < n; i++ )
|
||||||
|
{
|
||||||
|
KeyPoint kpt = keypoints[i];
|
||||||
|
CV_Assert(0 <= kpt.octave && kpt.octave < (int)pyr.size());
|
||||||
|
kpt.pt.x /= (float)(1 << kpt.octave);
|
||||||
|
kpt.pt.y /= (float)(1 << kpt.octave);
|
||||||
|
int k = fernClassifier(pyr[kpt.octave], kpt.pt, signature);
|
||||||
|
if( k >= 0 && (bestMatches[k] < 0 || signature[k] > maxLogProb[k]) )
|
||||||
|
{
|
||||||
|
maxLogProb[k] = signature[k];
|
||||||
|
bestMatches[k] = i;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
if(pairs)
|
||||||
|
pairs->resize(0);
|
||||||
|
|
||||||
|
for( i = 0; i < m; i++ )
|
||||||
|
if( bestMatches[i] >= 0 )
|
||||||
|
{
|
||||||
|
fromPt.push_back(modelPoints[i].pt);
|
||||||
|
toPt.push_back(keypoints[bestMatches[i]].pt);
|
||||||
|
}
|
||||||
|
|
||||||
|
if( fromPt.size() < 4 )
|
||||||
|
return false;
|
||||||
|
|
||||||
|
vector<uchar> mask;
|
||||||
|
matH = findHomography(Mat(fromPt), Mat(toPt), mask, RANSAC, 10);
|
||||||
|
if( matH.data )
|
||||||
|
{
|
||||||
|
const Mat_<double>& H = matH;
|
||||||
|
corners.resize(4);
|
||||||
|
for( i = 0; i < 4; i++ )
|
||||||
|
{
|
||||||
|
Point2f pt((float)(modelROI.x + (i == 0 || i == 3 ? 0 : modelROI.width)),
|
||||||
|
(float)(modelROI.y + (i <= 1 ? 0 : modelROI.height)));
|
||||||
|
double w = 1./(H(2,0)*pt.x + H(2,1)*pt.y + H(2,2));
|
||||||
|
corners[i] = Point2f((float)((H(0,0)*pt.x + H(0,1)*pt.y + H(0,2))*w),
|
||||||
|
(float)((H(1,0)*pt.x + H(1,1)*pt.y + H(1,2))*w));
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
if( pairs )
|
||||||
|
{
|
||||||
|
for( i = j = 0; i < m; i++ )
|
||||||
|
if( bestMatches[i] >= 0 && mask[j++] )
|
||||||
|
{
|
||||||
|
pairs->push_back(i);
|
||||||
|
pairs->push_back(bestMatches[i]);
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
return matH.data != 0;
|
||||||
|
}
|
||||||
|
|
||||||
|
|
||||||
|
void PlanarObjectDetector::setVerbose(bool _verbose)
|
||||||
|
{
|
||||||
|
verbose = _verbose;
|
||||||
|
}
|
||||||
|
|
||||||
|
}
|
@ -57,5 +57,7 @@
|
|||||||
#include "opencv2/core/core_c.h"
|
#include "opencv2/core/core_c.h"
|
||||||
#include "opencv2/highgui/highgui.hpp"
|
#include "opencv2/highgui/highgui.hpp"
|
||||||
#include "opencv2/core/internal.hpp"
|
#include "opencv2/core/internal.hpp"
|
||||||
|
#include "opencv2/features2d/features2d.hpp"
|
||||||
|
#include "opencv2/calib3d/calib3d.hpp"
|
||||||
|
|
||||||
#endif
|
#endif
|
||||||
|
@ -2,6 +2,7 @@
|
|||||||
#include "opencv2/core/core.hpp"
|
#include "opencv2/core/core.hpp"
|
||||||
#include "opencv2/imgproc/imgproc.hpp"
|
#include "opencv2/imgproc/imgproc.hpp"
|
||||||
#include "opencv2/features2d/features2d.hpp"
|
#include "opencv2/features2d/features2d.hpp"
|
||||||
|
#include "opencv2/objdetect/objdetect.hpp"
|
||||||
|
|
||||||
#include <algorithm>
|
#include <algorithm>
|
||||||
#include <iostream>
|
#include <iostream>
|
||||||
|
Loading…
Reference in New Issue
Block a user