mirror of
https://github.com/opencv/opencv.git
synced 2025-06-11 11:45:30 +08:00
Include code snippets with doxygen notation and small fix in table_of_content_objdetect.markdown
This commit is contained in:
parent
c3b83b8354
commit
e2a9cff3dc
@ -27,8 +27,7 @@ Example
|
||||
4. Set the required parameters for both GeneralizedHough variants
|
||||
5. Detect and show found results
|
||||
|
||||
Note:
|
||||
|
||||
@note
|
||||
- Both variants can't be instantiated directly. Using the create methods is required.
|
||||
- Guil Hough is very slow. Calculating the results for the "mini" files used in this tutorial
|
||||
takes only a few seconds. With image and template in a higher resolution, as shown below,
|
||||
@ -40,31 +39,14 @@ Note:
|
||||
### Code
|
||||
|
||||
The complete code for this tutorial is shown below.
|
||||
@include generalizedHoughTransform.cpp
|
||||
@include samples/cpp/tutorial_code/objectDetection/generalizedHoughTransform.cpp
|
||||
|
||||
Explanation
|
||||
-----------
|
||||
|
||||
### Load image, template and setup variables
|
||||
|
||||
```c++
|
||||
// load source images
|
||||
Mat image = imread("images/generalized_hough_mini_image.jpg");
|
||||
Mat imgTemplate = imread("images/generalized_hough_mini_template.jpg");
|
||||
|
||||
// create grayscale image and template
|
||||
Mat templ = Mat(imgTemplate.rows, imgTemplate.cols, CV_8UC1);
|
||||
Mat grayImage;
|
||||
cvtColor(imgTemplate, templ, COLOR_RGB2GRAY);
|
||||
cvtColor(image, grayImage, COLOR_RGB2GRAY);
|
||||
|
||||
// create variable for location, scale and rotation of detected templates
|
||||
vector<Vec4f> positionBallard, positionGuil;
|
||||
|
||||
// template width and height
|
||||
int w = templ.cols;
|
||||
int h = templ.rows;
|
||||
```
|
||||
@snippet samples/cpp/tutorial_code/objectDetection/generalizedHoughTransform.cpp generalized-hough-transform-load-and-setup
|
||||
|
||||
The position vectors will contain the matches the detectors will find.
|
||||
Every entry contains four floating point values:
|
||||
@ -79,87 +61,19 @@ An example could look as follows: `[200, 100, 0.9, 120]`
|
||||
|
||||
### Setup parameters
|
||||
|
||||
```c++
|
||||
// create ballard and set options
|
||||
Ptr<GeneralizedHoughBallard> ballard = createGeneralizedHoughBallard();
|
||||
ballard->setMinDist(10);
|
||||
ballard->setLevels(360);
|
||||
ballard->setDp(2);
|
||||
ballard->setMaxBufferSize(1000);
|
||||
ballard->setVotesThreshold(40);
|
||||
|
||||
ballard->setCannyLowThresh(30);
|
||||
ballard->setCannyHighThresh(110);
|
||||
ballard->setTemplate(templ);
|
||||
|
||||
|
||||
// create guil and set options
|
||||
Ptr<GeneralizedHoughGuil> guil = createGeneralizedHoughGuil();
|
||||
guil->setMinDist(10);
|
||||
guil->setLevels(360);
|
||||
guil->setDp(3);
|
||||
guil->setMaxBufferSize(1000);
|
||||
|
||||
guil->setMinAngle(0);
|
||||
guil->setMaxAngle(360);
|
||||
guil->setAngleStep(1);
|
||||
guil->setAngleThresh(1500);
|
||||
|
||||
guil->setMinScale(0.5);
|
||||
guil->setMaxScale(2.0);
|
||||
guil->setScaleStep(0.05);
|
||||
guil->setScaleThresh(50);
|
||||
|
||||
guil->setPosThresh(10);
|
||||
|
||||
guil->setCannyLowThresh(30);
|
||||
guil->setCannyHighThresh(110);
|
||||
|
||||
guil->setTemplate(templ);
|
||||
```
|
||||
@snippet samples/cpp/tutorial_code/objectDetection/generalizedHoughTransform.cpp generalized-hough-transform-setup-parameters
|
||||
|
||||
Finding the optimal values can end up in trial and error and depends on many factors, such as the image resolution.
|
||||
|
||||
### Run detection
|
||||
|
||||
```c++
|
||||
// execute ballard detection
|
||||
ballard->detect(grayImage, positionBallard);
|
||||
// execute guil detection
|
||||
guil->detect(grayImage, positionGuil);
|
||||
```
|
||||
@snippet samples/cpp/tutorial_code/objectDetection/generalizedHoughTransform.cpp generalized-hough-transform-run
|
||||
|
||||
As mentioned above, this step will take some time, especially with larger images and when using Guil.
|
||||
|
||||
### Draw results and show image
|
||||
|
||||
```c++
|
||||
// draw ballard
|
||||
for (vector<Vec4f>::iterator iter = positionBallard.begin(); iter != positionBallard.end(); ++iter) {
|
||||
RotatedRect rRect = RotatedRect(Point2f((*iter)[0], (*iter)[1]),
|
||||
Size2f(w * (*iter)[2], h * (*iter)[2]),
|
||||
(*iter)[3]);
|
||||
Point2f vertices[4];
|
||||
rRect.points(vertices);
|
||||
for (int i = 0; i < 4; i++)
|
||||
line(image, vertices[i], vertices[(i + 1) % 4], Scalar(255, 0, 0), 6);
|
||||
}
|
||||
|
||||
// draw guil
|
||||
for (vector<Vec4f>::iterator iter = positionGuil.begin(); iter != positionGuil.end(); ++iter) {
|
||||
RotatedRect rRect = RotatedRect(Point2f((*iter)[0], (*iter)[1]),
|
||||
Size2f(w * (*iter)[2], h * (*iter)[2]),
|
||||
(*iter)[3]);
|
||||
Point2f vertices[4];
|
||||
rRect.points(vertices);
|
||||
for (int i = 0; i < 4; i++)
|
||||
line(image, vertices[i], vertices[(i + 1) % 4], Scalar(0, 255, 0), 2);
|
||||
}
|
||||
|
||||
imshow("result_img", image);
|
||||
waitKey();
|
||||
return EXIT_SUCCESS;
|
||||
```
|
||||
@snippet samples/cpp/tutorial_code/objectDetection/generalizedHoughTransform.cpp generalized-hough-transform-draw-results
|
||||
|
||||
Result
|
||||
------
|
||||
|
@ -19,10 +19,10 @@ Ever wondered how your digital camera detects peoples and faces? Look here to fi
|
||||
|
||||
- @subpage tutorial_generalized_hough_ballard_guil
|
||||
|
||||
Detect an object in a picture with the help of GeneralizedHoughBallard and GeneralizedHoughGuil.
|
||||
|
||||
*Languages:* C++
|
||||
|
||||
*Compatibility:* \> OpenCV 3.4
|
||||
*Compatibility:* \>= OpenCV 3.4
|
||||
|
||||
*Author:* Markus Heck
|
||||
*Author:* Markus Heck
|
||||
|
||||
Detect an object in a picture with the help of GeneralizedHoughBallard and GeneralizedHoughGuil.
|
@ -11,6 +11,7 @@ using namespace cv;
|
||||
using namespace std;
|
||||
|
||||
int main() {
|
||||
//! [generalized-hough-transform-load-and-setup]
|
||||
// load source images
|
||||
Mat image = imread("images/generalized_hough_mini_image.jpg");
|
||||
Mat imgTemplate = imread("images/generalized_hough_mini_template.jpg");
|
||||
@ -27,7 +28,10 @@ int main() {
|
||||
// template width and height
|
||||
int w = templ.cols;
|
||||
int h = templ.rows;
|
||||
//! [generalized-hough-transform-load-and-setup]
|
||||
|
||||
|
||||
//! [generalized-hough-transform-setup-parameters]
|
||||
// create ballard and set options
|
||||
Ptr<GeneralizedHoughBallard> ballard = createGeneralizedHoughBallard();
|
||||
ballard->setMinDist(10);
|
||||
@ -64,14 +68,18 @@ int main() {
|
||||
guil->setCannyHighThresh(110);
|
||||
|
||||
guil->setTemplate(templ);
|
||||
//! [generalized-hough-transform-setup-parameters]
|
||||
|
||||
|
||||
//! [generalized-hough-transform-run]
|
||||
// execute ballard detection
|
||||
ballard->detect(grayImage, positionBallard);
|
||||
// execute guil detection
|
||||
guil->detect(grayImage, positionGuil);
|
||||
//! [generalized-hough-transform-run]
|
||||
|
||||
|
||||
//! [generalized-hough-transform-draw-results]
|
||||
// draw ballard
|
||||
for (vector<Vec4f>::iterator iter = positionBallard.begin(); iter != positionBallard.end(); ++iter) {
|
||||
RotatedRect rRect = RotatedRect(Point2f((*iter)[0], (*iter)[1]),
|
||||
@ -96,5 +104,7 @@ int main() {
|
||||
|
||||
imshow("result_img", image);
|
||||
waitKey();
|
||||
//! [generalized-hough-transform-draw-results]
|
||||
|
||||
return EXIT_SUCCESS;
|
||||
}
|
Loading…
Reference in New Issue
Block a user