mirror of
https://github.com/opencv/opencv.git
synced 2024-11-28 13:10:12 +08:00
Merge pull request #14516 from dkurt:dnn_async_samples
This commit is contained in:
commit
e7338024f6
@ -2718,9 +2718,6 @@ AsyncMat Net::forwardAsync(const String& outputName)
|
||||
{
|
||||
CV_TRACE_FUNCTION();
|
||||
#ifdef CV_CXX11
|
||||
if (impl->preferableBackend != DNN_BACKEND_INFERENCE_ENGINE)
|
||||
CV_Error(Error::StsNotImplemented, "Asynchronous forward for backend which is different from DNN_BACKEND_INFERENCE_ENGINE");
|
||||
|
||||
String layerName = outputName;
|
||||
|
||||
if (layerName.empty())
|
||||
@ -2729,6 +2726,9 @@ AsyncMat Net::forwardAsync(const String& outputName)
|
||||
std::vector<LayerPin> pins(1, impl->getPinByAlias(layerName));
|
||||
impl->setUpNet(pins);
|
||||
|
||||
if (impl->preferableBackend != DNN_BACKEND_INFERENCE_ENGINE)
|
||||
CV_Error(Error::StsNotImplemented, "Asynchronous forward for backend which is different from DNN_BACKEND_INFERENCE_ENGINE");
|
||||
|
||||
impl->isAsync = true;
|
||||
impl->forwardToLayer(impl->getLayerData(layerName));
|
||||
impl->isAsync = false;
|
||||
|
@ -5,6 +5,11 @@
|
||||
#include <opencv2/imgproc.hpp>
|
||||
#include <opencv2/highgui.hpp>
|
||||
|
||||
#ifdef CV_CXX11
|
||||
#include <thread>
|
||||
#include <queue>
|
||||
#endif
|
||||
|
||||
#include "common.hpp"
|
||||
|
||||
std::string keys =
|
||||
@ -26,8 +31,9 @@ std::string keys =
|
||||
"0: CPU target (by default), "
|
||||
"1: OpenCL, "
|
||||
"2: OpenCL fp16 (half-float precision), "
|
||||
"3: VPU }";
|
||||
|
||||
"3: VPU }"
|
||||
"{ async | 0 | Number of asynchronous forwards at the same time. "
|
||||
"Choose 0 for synchronous mode }";
|
||||
|
||||
using namespace cv;
|
||||
using namespace dnn;
|
||||
@ -35,13 +41,66 @@ using namespace dnn;
|
||||
float confThreshold, nmsThreshold;
|
||||
std::vector<std::string> classes;
|
||||
|
||||
inline void preprocess(const Mat& frame, Net& net, Size inpSize, float scale,
|
||||
const Scalar& mean, bool swapRB);
|
||||
|
||||
void postprocess(Mat& frame, const std::vector<Mat>& out, Net& net);
|
||||
|
||||
void drawPred(int classId, float conf, int left, int top, int right, int bottom, Mat& frame);
|
||||
|
||||
void callback(int pos, void* userdata);
|
||||
|
||||
std::vector<String> getOutputsNames(const Net& net);
|
||||
#ifdef CV_CXX11
|
||||
template <typename T>
|
||||
class QueueFPS : public std::queue<T>
|
||||
{
|
||||
public:
|
||||
QueueFPS() : counter(0) {}
|
||||
|
||||
void push(const T& entry)
|
||||
{
|
||||
std::lock_guard<std::mutex> lock(mutex);
|
||||
|
||||
std::queue<T>::push(entry);
|
||||
counter += 1;
|
||||
if (counter == 1)
|
||||
{
|
||||
// Start counting from a second frame (warmup).
|
||||
tm.reset();
|
||||
tm.start();
|
||||
}
|
||||
}
|
||||
|
||||
T get()
|
||||
{
|
||||
std::lock_guard<std::mutex> lock(mutex);
|
||||
T entry = this->front();
|
||||
this->pop();
|
||||
return entry;
|
||||
}
|
||||
|
||||
float getFPS()
|
||||
{
|
||||
tm.stop();
|
||||
double fps = counter / tm.getTimeSec();
|
||||
tm.start();
|
||||
return static_cast<float>(fps);
|
||||
}
|
||||
|
||||
void clear()
|
||||
{
|
||||
std::lock_guard<std::mutex> lock(mutex);
|
||||
while (!this->empty())
|
||||
this->pop();
|
||||
}
|
||||
|
||||
unsigned int counter;
|
||||
|
||||
private:
|
||||
TickMeter tm;
|
||||
std::mutex mutex;
|
||||
};
|
||||
#endif // CV_CXX11
|
||||
|
||||
int main(int argc, char** argv)
|
||||
{
|
||||
@ -67,6 +126,7 @@ int main(int argc, char** argv)
|
||||
bool swapRB = parser.get<bool>("rgb");
|
||||
int inpWidth = parser.get<int>("width");
|
||||
int inpHeight = parser.get<int>("height");
|
||||
size_t async = parser.get<int>("async");
|
||||
CV_Assert(parser.has("model"));
|
||||
std::string modelPath = findFile(parser.get<String>("model"));
|
||||
std::string configPath = findFile(parser.get<String>("config"));
|
||||
@ -104,6 +164,108 @@ int main(int argc, char** argv)
|
||||
else
|
||||
cap.open(parser.get<int>("device"));
|
||||
|
||||
#ifdef CV_CXX11
|
||||
bool process = true;
|
||||
|
||||
// Frames capturing thread
|
||||
QueueFPS<Mat> framesQueue;
|
||||
std::thread framesThread([&](){
|
||||
Mat frame;
|
||||
while (process)
|
||||
{
|
||||
cap >> frame;
|
||||
if (!frame.empty())
|
||||
framesQueue.push(frame.clone());
|
||||
else
|
||||
break;
|
||||
}
|
||||
});
|
||||
|
||||
// Frames processing thread
|
||||
QueueFPS<Mat> processedFramesQueue;
|
||||
QueueFPS<std::vector<Mat> > predictionsQueue;
|
||||
std::thread processingThread([&](){
|
||||
std::queue<std::future<Mat> > futureOutputs;
|
||||
Mat blob;
|
||||
while (process)
|
||||
{
|
||||
// Get a next frame
|
||||
Mat frame;
|
||||
{
|
||||
if (!framesQueue.empty())
|
||||
{
|
||||
frame = framesQueue.get();
|
||||
if (async)
|
||||
{
|
||||
if (futureOutputs.size() == async)
|
||||
frame = Mat();
|
||||
}
|
||||
else
|
||||
framesQueue.clear(); // Skip the rest of frames
|
||||
}
|
||||
}
|
||||
|
||||
// Process the frame
|
||||
if (!frame.empty())
|
||||
{
|
||||
preprocess(frame, net, Size(inpWidth, inpHeight), scale, mean, swapRB);
|
||||
processedFramesQueue.push(frame);
|
||||
|
||||
if (async)
|
||||
{
|
||||
futureOutputs.push(net.forwardAsync());
|
||||
}
|
||||
else
|
||||
{
|
||||
std::vector<Mat> outs;
|
||||
net.forward(outs, outNames);
|
||||
predictionsQueue.push(outs);
|
||||
}
|
||||
}
|
||||
|
||||
while (!futureOutputs.empty() &&
|
||||
futureOutputs.front().wait_for(std::chrono::seconds(0)) == std::future_status::ready)
|
||||
{
|
||||
Mat out = futureOutputs.front().get();
|
||||
predictionsQueue.push({out});
|
||||
futureOutputs.pop();
|
||||
}
|
||||
}
|
||||
});
|
||||
|
||||
// Postprocessing and rendering loop
|
||||
while (waitKey(1) < 0)
|
||||
{
|
||||
if (predictionsQueue.empty())
|
||||
continue;
|
||||
|
||||
std::vector<Mat> outs = predictionsQueue.get();
|
||||
Mat frame = processedFramesQueue.get();
|
||||
|
||||
postprocess(frame, outs, net);
|
||||
|
||||
if (predictionsQueue.counter > 1)
|
||||
{
|
||||
std::string label = format("Camera: %.2f FPS", framesQueue.getFPS());
|
||||
putText(frame, label, Point(0, 15), FONT_HERSHEY_SIMPLEX, 0.5, Scalar(0, 255, 0));
|
||||
|
||||
label = format("Network: %.2f FPS", predictionsQueue.getFPS());
|
||||
putText(frame, label, Point(0, 30), FONT_HERSHEY_SIMPLEX, 0.5, Scalar(0, 255, 0));
|
||||
|
||||
label = format("Skipped frames: %d", framesQueue.counter - predictionsQueue.counter);
|
||||
putText(frame, label, Point(0, 45), FONT_HERSHEY_SIMPLEX, 0.5, Scalar(0, 255, 0));
|
||||
}
|
||||
imshow(kWinName, frame);
|
||||
}
|
||||
|
||||
process = false;
|
||||
framesThread.join();
|
||||
processingThread.join();
|
||||
|
||||
#else // CV_CXX11
|
||||
if (async)
|
||||
CV_Error(Error::StsNotImplemented, "Asynchronous forward is supported only with Inference Engine backend.");
|
||||
|
||||
// Process frames.
|
||||
Mat frame, blob;
|
||||
while (waitKey(1) < 0)
|
||||
@ -115,19 +277,8 @@ int main(int argc, char** argv)
|
||||
break;
|
||||
}
|
||||
|
||||
// Create a 4D blob from a frame.
|
||||
Size inpSize(inpWidth > 0 ? inpWidth : frame.cols,
|
||||
inpHeight > 0 ? inpHeight : frame.rows);
|
||||
blobFromImage(frame, blob, scale, inpSize, mean, swapRB, false);
|
||||
preprocess(frame, net, Size(inpWidth, inpHeight), scale, mean, swapRB);
|
||||
|
||||
// Run a model.
|
||||
net.setInput(blob);
|
||||
if (net.getLayer(0)->outputNameToIndex("im_info") != -1) // Faster-RCNN or R-FCN
|
||||
{
|
||||
resize(frame, frame, inpSize);
|
||||
Mat imInfo = (Mat_<float>(1, 3) << inpSize.height, inpSize.width, 1.6f);
|
||||
net.setInput(imInfo, "im_info");
|
||||
}
|
||||
std::vector<Mat> outs;
|
||||
net.forward(outs, outNames);
|
||||
|
||||
@ -142,9 +293,29 @@ int main(int argc, char** argv)
|
||||
|
||||
imshow(kWinName, frame);
|
||||
}
|
||||
#endif // CV_CXX11
|
||||
return 0;
|
||||
}
|
||||
|
||||
inline void preprocess(const Mat& frame, Net& net, Size inpSize, float scale,
|
||||
const Scalar& mean, bool swapRB)
|
||||
{
|
||||
static Mat blob;
|
||||
// Create a 4D blob from a frame.
|
||||
if (inpSize.width <= 0) inpSize.width = frame.cols;
|
||||
if (inpSize.height <= 0) inpSize.height = frame.rows;
|
||||
blobFromImage(frame, blob, 1.0, inpSize, Scalar(), swapRB, false, CV_8U);
|
||||
|
||||
// Run a model.
|
||||
net.setInput(blob, "", scale, mean);
|
||||
if (net.getLayer(0)->outputNameToIndex("im_info") != -1) // Faster-RCNN or R-FCN
|
||||
{
|
||||
resize(frame, frame, inpSize);
|
||||
Mat imInfo = (Mat_<float>(1, 3) << inpSize.height, inpSize.width, 1.6f);
|
||||
net.setInput(imInfo, "im_info");
|
||||
}
|
||||
}
|
||||
|
||||
void postprocess(Mat& frame, const std::vector<Mat>& outs, Net& net)
|
||||
{
|
||||
static std::vector<int> outLayers = net.getUnconnectedOutLayers();
|
||||
|
@ -1,6 +1,13 @@
|
||||
import cv2 as cv
|
||||
import argparse
|
||||
import numpy as np
|
||||
import sys
|
||||
import time
|
||||
from threading import Thread
|
||||
if sys.version_info[0] == '2':
|
||||
import Queue as queue
|
||||
else:
|
||||
import queue
|
||||
|
||||
from common import *
|
||||
from tf_text_graph_common import readTextMessage
|
||||
@ -35,6 +42,9 @@ parser.add_argument('--target', choices=targets, default=cv.dnn.DNN_TARGET_CPU,
|
||||
'%d: OpenCL, '
|
||||
'%d: OpenCL fp16 (half-float precision), '
|
||||
'%d: VPU' % targets)
|
||||
parser.add_argument('--async', type=int, default=0,
|
||||
help='Number of asynchronous forwards at the same time. '
|
||||
'Choose 0 for synchronous mode')
|
||||
args, _ = parser.parse_known_args()
|
||||
add_preproc_args(args.zoo, parser, 'object_detection')
|
||||
parser = argparse.ArgumentParser(parents=[parser],
|
||||
@ -173,32 +183,125 @@ def callback(pos):
|
||||
cv.createTrackbar('Confidence threshold, %', winName, int(confThreshold * 100), 99, callback)
|
||||
|
||||
cap = cv.VideoCapture(cv.samples.findFileOrKeep(args.input) if args.input else 0)
|
||||
|
||||
class QueueFPS(queue.Queue):
|
||||
def __init__(self):
|
||||
queue.Queue.__init__(self)
|
||||
self.startTime = 0
|
||||
self.counter = 0
|
||||
|
||||
def put(self, v):
|
||||
queue.Queue.put(self, v)
|
||||
self.counter += 1
|
||||
if self.counter == 1:
|
||||
self.startTime = time.time()
|
||||
|
||||
def getFPS(self):
|
||||
return self.counter / (time.time() - self.startTime)
|
||||
|
||||
|
||||
process = True
|
||||
|
||||
#
|
||||
# Frames capturing thread
|
||||
#
|
||||
framesQueue = QueueFPS()
|
||||
def framesThreadBody():
|
||||
global framesQueue, process
|
||||
|
||||
while process:
|
||||
hasFrame, frame = cap.read()
|
||||
if not hasFrame:
|
||||
break
|
||||
framesQueue.put(frame)
|
||||
|
||||
|
||||
#
|
||||
# Frames processing thread
|
||||
#
|
||||
processedFramesQueue = queue.Queue()
|
||||
predictionsQueue = QueueFPS()
|
||||
def processingThreadBody():
|
||||
global processedFramesQueue, predictionsQueue, args, process
|
||||
|
||||
futureOutputs = []
|
||||
while process:
|
||||
# Get a next frame
|
||||
frame = None
|
||||
try:
|
||||
frame = framesQueue.get_nowait()
|
||||
|
||||
if args.async:
|
||||
if len(futureOutputs) == args.async:
|
||||
frame = None # Skip the frame
|
||||
else:
|
||||
framesQueue.queue.clear() # Skip the rest of frames
|
||||
except queue.Empty:
|
||||
pass
|
||||
|
||||
|
||||
if not frame is None:
|
||||
frameHeight = frame.shape[0]
|
||||
frameWidth = frame.shape[1]
|
||||
|
||||
# Create a 4D blob from a frame.
|
||||
inpWidth = args.width if args.width else frameWidth
|
||||
inpHeight = args.height if args.height else frameHeight
|
||||
blob = cv.dnn.blobFromImage(frame, size=(inpWidth, inpHeight), swapRB=args.rgb, ddepth=cv.CV_8U)
|
||||
processedFramesQueue.put(frame)
|
||||
|
||||
# Run a model
|
||||
net.setInput(blob, scalefactor=args.scale, mean=args.mean)
|
||||
if net.getLayer(0).outputNameToIndex('im_info') != -1: # Faster-RCNN or R-FCN
|
||||
frame = cv.resize(frame, (inpWidth, inpHeight))
|
||||
net.setInput(np.array([[inpHeight, inpWidth, 1.6]], dtype=np.float32), 'im_info')
|
||||
|
||||
if args.async:
|
||||
futureOutputs.append(net.forwardAsync())
|
||||
else:
|
||||
outs = net.forward(outNames)
|
||||
predictionsQueue.put(np.copy(outs))
|
||||
|
||||
while futureOutputs and futureOutputs[0].wait_for(0) == 0:
|
||||
out = futureOutputs[0].get()
|
||||
predictionsQueue.put(np.copy([out]))
|
||||
|
||||
del futureOutputs[0]
|
||||
|
||||
|
||||
framesThread = Thread(target=framesThreadBody)
|
||||
framesThread.start()
|
||||
|
||||
processingThread = Thread(target=processingThreadBody)
|
||||
processingThread.start()
|
||||
|
||||
#
|
||||
# Postprocessing and rendering loop
|
||||
#
|
||||
while cv.waitKey(1) < 0:
|
||||
hasFrame, frame = cap.read()
|
||||
if not hasFrame:
|
||||
cv.waitKey()
|
||||
break
|
||||
try:
|
||||
# Request prediction first because they put after frames
|
||||
outs = predictionsQueue.get_nowait()
|
||||
frame = processedFramesQueue.get_nowait()
|
||||
|
||||
frameHeight = frame.shape[0]
|
||||
frameWidth = frame.shape[1]
|
||||
postprocess(frame, outs)
|
||||
|
||||
# Create a 4D blob from a frame.
|
||||
inpWidth = args.width if args.width else frameWidth
|
||||
inpHeight = args.height if args.height else frameHeight
|
||||
blob = cv.dnn.blobFromImage(frame, args.scale, (inpWidth, inpHeight), args.mean, args.rgb, crop=False)
|
||||
# Put efficiency information.
|
||||
if predictionsQueue.counter > 1:
|
||||
label = 'Camera: %.2f FPS' % (framesQueue.getFPS())
|
||||
cv.putText(frame, label, (0, 15), cv.FONT_HERSHEY_SIMPLEX, 0.5, (0, 255, 0))
|
||||
|
||||
# Run a model
|
||||
net.setInput(blob)
|
||||
if net.getLayer(0).outputNameToIndex('im_info') != -1: # Faster-RCNN or R-FCN
|
||||
frame = cv.resize(frame, (inpWidth, inpHeight))
|
||||
net.setInput(np.array([[inpHeight, inpWidth, 1.6]], dtype=np.float32), 'im_info')
|
||||
outs = net.forward(outNames)
|
||||
label = 'Network: %.2f FPS' % (predictionsQueue.getFPS())
|
||||
cv.putText(frame, label, (0, 30), cv.FONT_HERSHEY_SIMPLEX, 0.5, (0, 255, 0))
|
||||
|
||||
postprocess(frame, outs)
|
||||
label = 'Skipped frames: %d' % (framesQueue.counter - predictionsQueue.counter)
|
||||
cv.putText(frame, label, (0, 45), cv.FONT_HERSHEY_SIMPLEX, 0.5, (0, 255, 0))
|
||||
|
||||
# Put efficiency information.
|
||||
t, _ = net.getPerfProfile()
|
||||
label = 'Inference time: %.2f ms' % (t * 1000.0 / cv.getTickFrequency())
|
||||
cv.putText(frame, label, (0, 15), cv.FONT_HERSHEY_SIMPLEX, 0.5, (0, 255, 0))
|
||||
cv.imshow(winName, frame)
|
||||
except queue.Empty:
|
||||
pass
|
||||
|
||||
cv.imshow(winName, frame)
|
||||
|
||||
process = False
|
||||
framesThread.join()
|
||||
processingThread.join()
|
||||
|
Loading…
Reference in New Issue
Block a user