Commit Graph

2 Commits

Author SHA1 Message Date
Gursimar Singh
b605fc13d8
Extension to PR #26605 ldm inpainting sample (#26904)
Extension to PR #26605 ldm inpainting sample #26904

This PR adds and fixes following points in the ldm_inpainting sample on top of original PR #26605 by @Abdurrahheem 

DONE:

1. Added functionality to load models from a YAML configuration file, allowing for automatic downloading if models are not found locally.
2. Updated the script usage instructions to reflect the correct command format.
3. Improved user interaction by adding instructions to the image window for inpainting controls.
4. Introduced a new models.yml configuration section for inpainting models weights downloading, including placeholders for model SHA1 checksums.
5. Fixed input types and names of the onnx graph generation.
6. Added links to onnx graphs in models.yml
7. Support added for findModels and standarized the sample usage similar to other dnn samples
8. Fixes issue in download_models.py for downloading models from dl.opencv.org
9. Fixes issue in common.py which used to print duplicated positional arguments in case of samples that use multiple models. 

### Pull Request Readiness Checklist

See details at https://github.com/opencv/opencv/wiki/How_to_contribute#making-a-good-pull-request

- [x] I agree to contribute to the project under Apache 2 License.
- [x] To the best of my knowledge, the proposed patch is not based on a code under GPL or another license that is incompatible with OpenCV
- [x] The PR is proposed to the proper branch
- [x] There is a reference to the original bug report and related work
- [] There is accuracy test, performance test and test data in opencv_extra repository, if applicable
      Patch to opencv_extra has the same branch name.
- [x] The feature is well documented and sample code can be built with the project CMake

---------

Co-authored-by: Abdurrahheem <abduragim.shtanchaev@xperience.ai>
2025-02-11 17:58:39 +03:00
Abduragim Shtanchaev
050085c996
Merge pull request #25950 from Abdurrahheem:ash/add-inpainting-sample
Diffusion Inpainting Sample #25950

This PR adds inpaiting sample that is based on [High-Resolution Image Synthesis with Latent Diffusion Models](https://arxiv.org/pdf/2112.10752) paper (reference github [repository](https://github.com/CompVis/latent-diffusion)).


Steps to run the model:

1. Firstly needs ONNX graph of the Latent Diffusion Model. You can get it in two different ways. 

> a. Generate the using this [repo](https://github.com/Abdurrahheem/latent-diffusion/tree/ash/export2onnx) and follow instructions below

```bash
git clone https://github.com/Abdurrahheem/latent-diffusion.git
cd latent-diffusion
conda env create -f environment.yaml
conda activate ldm
wget -O models/ldm/inpainting_big/last.ckpt https://heibox.uni-heidelberg.de/f/4d9ac7ea40c64582b7c9/?dl=1
python -m scripts.inpaint.py --indir data/inpainting_examples/ --outdir outputs/inpainting_results --export=True
```

> b. Download the ONNX graph (there 3 fiels) using this link: TODO make a link

2. Build opencv (preferebly with CUDA support enabled
3. Run the script 

```bash
cd opencv/samples/dnn
python ldm_inpainting.py 
python ldm_inpainting.py -e=<path-to-InpaintEncoder.onnx file> -d=<path-to-InpaintDecoder.onnx file> -df=<path-to-LatenDiffusion.onnx file> -i=<path-to-image>
```
Right after the last command you will be prompted with image. You can click on left mouse bottom and starting selection a region you would like to be inpainted (deleted). Once you finish marking the region, click on left mouse botton again and press esc button on your keyboard. The inpainting proccess will start. 

Note: If you are running it on CPU it might take a large chank of time. Also make sure to have about 15GB of RAM to make process faster (other wise swapping will click in and everything will be slower)
 
Current challenges: 

1. Diffusion process is slow (many layers fallback to CPU with running with CUDA backend) 
2. The diffusion result is does exactly mach that of the original torch pipeline

### Pull Request Readiness Checklist

See details at https://github.com/opencv/opencv/wiki/How_to_contribute#making-a-good-pull-request

- [x] I agree to contribute to the project under Apache 2 License.
- [x] To the best of my knowledge, the proposed patch is not based on a code under GPL or another license that is incompatible with OpenCV
- [x]The PR is proposed to the proper branch
- [ ] There is a reference to the original bug report and related work
- [ ] There is accuracy test, performance test and test data in opencv_extra repository, if applicable
      Patch to opencv_extra has the same branch name.
- [x] The feature is well documented and sample code can be built with the project CMake
2024-08-21 14:48:37 +03:00