Modified tensorflow parser for the new dnn engine #26394
### Pull Request Readiness Checklist
See details at https://github.com/opencv/opencv/wiki/How_to_contribute#making-a-good-pull-request
- [x] I agree to contribute to the project under Apache 2 License.
- [x] To the best of my knowledge, the proposed patch is not based on a code under GPL or another license that is incompatible with OpenCV
- [x] The PR is proposed to the proper branch
- [ ] There is a reference to the original bug report and related work
- [x] There is accuracy test, performance test and test data in opencv_extra repository, if applicable
Patch to opencv_extra has the same branch name.
- [x] The feature is well documented and sample code can be built with the project CMake
Support CV_32U, CV_64U and CV_64S for TIFF #26508
Close https://github.com/opencv/opencv/issues/26507
Note: Predictor 2 for 64-bit is only supported after libtiff 4.4.0. But Linux x64 Debug uses libtiff 4.1.0 (releases at 2019/11/3). I append fallback fix to NONE. I hope It works well.
### Pull Request Readiness Checklist
See details at https://github.com/opencv/opencv/wiki/How_to_contribute#making-a-good-pull-request
- [x] I agree to contribute to the project under Apache 2 License.
- [x] To the best of my knowledge, the proposed patch is not based on a code under GPL or another license that is incompatible with OpenCV
- [x] The PR is proposed to the proper branch
- [x] There is a reference to the original bug report and related work
- [x] There is accuracy test, performance test and test data in opencv_extra repository, if applicable
Patch to opencv_extra has the same branch name.
- [x] The feature is well documented and sample code can be built with the project CMake
LSTM layer for new graph engine. #26391
Merge with extra: https://github.com/opencv/opencv_extra/pull/1218
This PR updates/creates LSTM layer compatible with new graph engine. It is based on previous LSTM implementation with some modification on how initializers blobs are processed.
Note: Following tests are currently are disabled
Two following two tests are disbled since ONNNRuntime does not support `layout=1` attiribute inference. See a detailed issue #26456 on this.
- `LSTM_layout_seq`
- `LSTM_layout_batch`
Following test fails with the new engine as it is not able to deal with shapes of the form [?, C, H, W]
- `LSTM_Activations`
Works:
- [x] One directional case any batch type
- [x] Fix directional case when batch size large than 1
- [x] Add peepholes attribute
TODO with the next PRs:
- [ ] Activation support
Note:
> Currently `LSTM_layout_seq`, `LSTM_layout_batch` are disabled as the tests are incorrect. They do not comply with the ONNX standard. Particularly test outputs are of incorrect dimensionality. They produce 3-dimentinal output instead of 4-dimentional.
------
### Pull Request Readiness Checklist
See details at https://github.com/opencv/opencv/wiki/How_to_contribute#making-a-good-pull-request
- [x] I agree to contribute to the project under Apache 2 License.
- [x] To the best of my knowledge, the proposed patch is not based on a code under GPL or another license that is incompatible with OpenCV
- [x] The PR is proposed to the proper branch
- [x] There is a reference to the original bug report and related work
- [x] There is accuracy test, performance test and test data in opencv_extra repository, if applicable
Patch to opencv_extra has the same branch name.
- [x] The feature is well documented and sample code can be built with the project CMake
HAL added for absdiff(array, scalar) + related fixes#26459
### This PR changes
* HAL for `absdiff` when one of arguments is a scalar, including multichannel arrays and scalars
* several channels support for HAL `addScalar`
* proper data type check for `addScalar` when one of arguments is a scalar
### Pull Request Readiness Checklist
See details at https://github.com/opencv/opencv/wiki/How_to_contribute#making-a-good-pull-request
- [x] I agree to contribute to the project under Apache 2 License.
- [x] To the best of my knowledge, the proposed patch is not based on a code under GPL or another license that is incompatible with OpenCV
- [x] The PR is proposed to the proper branch
- [ ] There is a reference to the original bug report and related work
- [ ] There is accuracy test, performance test and test data in opencv_extra repository, if applicable
Patch to opencv_extra has the same branch name.
- [x] The feature is well documented and sample code can be built with the project CMake
Removed g-api from the main repo #26469
Following #25000.
CI patch: https://github.com/opencv/ci-gha-workflow/pull/196
This is migration of G-API from opencv to opencv_contrib, part 1.
Here we simply remove G-API from the main repo. The next patch should bring G-API to opencv_contrib.
- [x] I agree to contribute to the project under Apache 2 License.
- [x] To the best of my knowledge, the proposed patch is not based on a code under GPL or another license that is incompatible with OpenCV
- [x] The PR is proposed to the proper branch
- [x] There is a reference to the original bug report and related work
- [ ] There is accuracy test, performance test and test data in opencv_extra repository, if applicable
Patch to opencv_extra has the same branch name.
- [ ] The feature is well documented and sample code can be built with the project CMake
The new C++ code is copy/pasted from OpenCV5:
- functions initIntrinsicParams2D, subMatrix (the first 160 lines)
- function prepareDistCoeffs
- the different asserts
Not all the API/code is ported to C++ yet to ease the review.
HAL added for add(array, scalar) #25624
### Pull Request Readiness Checklist
See details at https://github.com/opencv/opencv/wiki/How_to_contribute#making-a-good-pull-request
- [x] I agree to contribute to the project under Apache 2 License.
- [x] To the best of my knowledge, the proposed patch is not based on a code under GPL or another license that is incompatible with OpenCV
- [x] The PR is proposed to the proper branch
- [ ] There is a reference to the original bug report and related work
- [ ] There is accuracy test, performance test and test data in opencv_extra repository, if applicable
Patch to opencv_extra has the same branch name.
- [x] The feature is well documented and sample code can be built with the project CMake