mirror of
https://github.com/opencv/opencv.git
synced 2024-12-16 18:39:12 +08:00
04818d6dd5
3 Commits
Author | SHA1 | Message | Date | |
---|---|---|---|---|
Dmitry Kurtaev
|
d296d29a1c
|
Merge pull request #24299 from dkurt:qrcode_decode
In-house QR codes decoding #24299 ### Pull Request Readiness Checklist QR codes decoding pipeline without 3rdparty dependency (Quirc library). Implemented according to standard https://github.com/yansikeim/QR-Code/blob/master/ISO%20IEC%2018004%202015%20Standard.pdf **Merge with extra**: https://github.com/opencv/opencv_extra/pull/1124 resolves https://github.com/opencv/opencv/issues/24225 resolves https://github.com/opencv/opencv/issues/17290 resolves https://github.com/opencv/opencv/issues/24318 https://github.com/opencv/opencv/issues/24346 Resources: * https://en.wikiversity.org/wiki/Reed%E2%80%93Solomon_codes_for_coders * https://en.wikipedia.org/wiki/Berlekamp%E2%80%93Massey_algorithm ``` Geometric mean (ms) Name of Test quirc new2 new2 vs quirc (x-factor) decode::Perf_Objdetect_Not_QRCode::("chessboard", 640x480) 9.151 9.157 1.00 decode::Perf_Objdetect_Not_QRCode::("chessboard", 1280x720) 21.609 21.609 1.00 decode::Perf_Objdetect_Not_QRCode::("chessboard", 1920x1080) 42.088 41.924 1.00 decode::Perf_Objdetect_Not_QRCode::("chessboard", 3840x2160) 169.737 169.050 1.00 decode::Perf_Objdetect_Not_QRCode::("random", 640x480) 8.552 8.611 0.99 decode::Perf_Objdetect_Not_QRCode::("random", 1280x720) 21.264 21.581 0.99 decode::Perf_Objdetect_Not_QRCode::("random", 1920x1080) 42.415 43.468 0.98 decode::Perf_Objdetect_Not_QRCode::("random", 3840x2160) 175.003 174.294 1.00 decode::Perf_Objdetect_Not_QRCode::("zero", 640x480) 8.528 8.421 1.01 decode::Perf_Objdetect_Not_QRCode::("zero", 1280x720) 21.548 21.209 1.02 decode::Perf_Objdetect_Not_QRCode::("zero", 1920x1080) 42.581 42.529 1.00 decode::Perf_Objdetect_Not_QRCode::("zero", 3840x2160) 176.231 174.410 1.01 decode::Perf_Objdetect_QRCode::"kanji.jpg" 6.105 6.072 1.01 decode::Perf_Objdetect_QRCode::"link_github_ocv.jpg" 6.069 6.076 1.00 decode::Perf_Objdetect_QRCode::"link_ocv.jpg" 6.143 6.240 0.98 decode::Perf_Objdetect_QRCode::"link_wiki_cv.jpg" 6.369 6.420 0.99 decode::Perf_Objdetect_QRCode::"russian.jpg" 6.558 6.549 1.00 decode::Perf_Objdetect_QRCode::"version_1_down.jpg" 5.634 5.621 1.00 decode::Perf_Objdetect_QRCode::"version_1_left.jpg" 5.560 5.609 0.99 decode::Perf_Objdetect_QRCode::"version_1_right.jpg" 5.539 5.631 0.98 decode::Perf_Objdetect_QRCode::"version_1_top.jpg" 5.622 5.566 1.01 decode::Perf_Objdetect_QRCode::"version_1_up.jpg" 5.569 5.534 1.01 decode::Perf_Objdetect_QRCode::"version_5_down.jpg" 6.514 6.436 1.01 decode::Perf_Objdetect_QRCode::"version_5_left.jpg" 6.668 6.479 1.03 decode::Perf_Objdetect_QRCode::"version_5_top.jpg" 6.481 6.484 1.00 decode::Perf_Objdetect_QRCode::"version_5_up.jpg" 7.011 6.513 1.08 decodeMulti::Perf_Objdetect_QRCode_Multi::("2_qrcodes.png", "aruco_based") 14.885 15.089 0.99 decodeMulti::Perf_Objdetect_QRCode_Multi::("2_qrcodes.png", "contours_based") 14.896 14.906 1.00 decodeMulti::Perf_Objdetect_QRCode_Multi::("3_close_qrcodes.png", "aruco_based") 6.661 6.663 1.00 decodeMulti::Perf_Objdetect_QRCode_Multi::("3_close_qrcodes.png", "contours_based") 6.614 6.592 1.00 decodeMulti::Perf_Objdetect_QRCode_Multi::("3_qrcodes.png", "aruco_based") 14.814 14.592 1.02 decodeMulti::Perf_Objdetect_QRCode_Multi::("3_qrcodes.png", "contours_based") 15.245 15.135 1.01 decodeMulti::Perf_Objdetect_QRCode_Multi::("4_qrcodes.png", "aruco_based") 10.923 10.881 1.00 decodeMulti::Perf_Objdetect_QRCode_Multi::("4_qrcodes.png", "contours_based") 10.680 10.128 1.05 decodeMulti::Perf_Objdetect_QRCode_Multi::("5_qrcodes.png", "contours_based") 11.788 11.576 1.02 decodeMulti::Perf_Objdetect_QRCode_Multi::("6_qrcodes.png", "aruco_based") 25.887 25.979 1.00 decodeMulti::Perf_Objdetect_QRCode_Multi::("6_qrcodes.png", "contours_based") 26.183 25.627 1.02 decodeMulti::Perf_Objdetect_QRCode_Multi::("7_qrcodes.png", "aruco_based") 32.786 32.253 1.02 decodeMulti::Perf_Objdetect_QRCode_Multi::("7_qrcodes.png", "contours_based") 24.290 24.435 0.99 decodeMulti::Perf_Objdetect_QRCode_Multi::("8_close_qrcodes.png", "aruco_based") 89.696 89.247 1.01 decodeMulti::Perf_Objdetect_QRCode_Multi::("8_close_qrcodes.png", "contours_based") 89.872 89.600 1.00 ``` |
||
Vincent Rabaud
|
e9414169a3 |
Fix compilation when HAVE_QUIRC is not set.
One variable is unknown while the other one is unused. Fixed build warnings. |
||
Alexander Panov
|
9fa014edcd
|
Merge pull request #23264 from AleksandrPanov:add_detect_qr_with_aruco
Add detect qr with aruco #23264 Using Aruco to detect finder patterns to search QR codes. TODO (in next PR): - add single QR detect (update `detect()` and `detectAndDecode()`) - need reduce full enumeration of finder patterns - need add finder pattern info to `decode` step - need to merge the pipeline of the old and new algorithm [Current results:](https://docs.google.com/spreadsheets/d/1ufKyR-Zs-IGXwvqPgftssmTlceVjiQX364sbrjr2QU8/edit#gid=1192415584) +20% total detect, +8% total decode in OpenCV [QR benchmark](https://github.com/opencv/opencv_benchmarks/tree/develop/python_benchmarks/qr_codes) ![res1](https://user-images.githubusercontent.com/22337800/231228556-191d3eae-a318-44e1-af99-e7d420bf6248.png) 78.4% detect, 58.7% decode vs 58.5 detect, 50.5% decode in default [main.py.txt](https://github.com/opencv/opencv/files/10762369/main.py.txt) ![res2](https://user-images.githubusercontent.com/22337800/231229123-ed7f1eda-159a-444b-a3ff-f107d8eb4a20.png) add new info to [google docs](https://docs.google.com/spreadsheets/d/1ufKyR-Zs-IGXwvqPgftssmTlceVjiQX364sbrjr2QU8/edit?usp=sharing) ### Pull Request Readiness Checklist See details at https://github.com/opencv/opencv/wiki/How_to_contribute#making-a-good-pull-request - [x] I agree to contribute to the project under Apache 2 License. - [x] To the best of my knowledge, the proposed patch is not based on a code under GPL or another license that is incompatible with OpenCV - [x] The PR is proposed to the proper branch - [x] There is a reference to the original bug report and related work - [ ] There is accuracy test, performance test and test data in opencv_extra repository, if applicable Patch to opencv_extra has the same branch name. - [ ] The feature is well documented and sample code can be built with the project CMake |