Commit Graph

35235 Commits

Author SHA1 Message Date
Alexander Smorkalov
331412dfad
Merge pull request #26357 from dkurt:dkurt/ov_out_names_from_graph
OpenVINO friendly output names from non-compiled Model
2024-10-23 13:42:01 +03:00
Dmitry Kurtaev
d193554a5f OpenVINO friendly output names from non-compiled Model 2024-10-23 09:29:05 +03:00
Alexander Smorkalov
898a2a3811
Merge pull request #26353 from asmorkalov:as/ade_1.2e
ADE update to 0.1.2e
2024-10-23 08:10:16 +03:00
Hardik Kamboj
9fc7ca8ed1
Update py_thresholding.markdown
Changed "If the pixel value is smaller than the threshold" to "If the pixel value is smaller than or equal to the threshold" to make the line align with the working of the code.
2024-10-23 09:49:23 +05:30
Alexander Smorkalov
983086411f ADE update to 0.1.2e 2024-10-22 17:45:00 +03:00
Alexander Smorkalov
9f0c3f5b2b
Merge pull request #26327 from asmorkalov:as/drop_convertFp16
Finally dropped convertFp16 function in favor of cv::Mat::convertTo() #26327 

Partially address https://github.com/opencv/opencv/issues/24909
Related PR to contrib: https://github.com/opencv/opencv_contrib/pull/3812

### Pull Request Readiness Checklist

See details at https://github.com/opencv/opencv/wiki/How_to_contribute#making-a-good-pull-request

- [x] I agree to contribute to the project under Apache 2 License.
- [x] To the best of my knowledge, the proposed patch is not based on a code under GPL or another license that is incompatible with OpenCV
- [x] The PR is proposed to the proper branch
- [x] There is a reference to the original bug report and related work
- [ ] There is accuracy test, performance test and test data in opencv_extra repository, if applicable
      Patch to opencv_extra has the same branch name.
- [ ] The feature is well documented and sample code can be built with the project CMake
2024-10-22 15:17:24 +03:00
Alexander Smorkalov
57ccbee25d
Merge pull request #26245 from cudawarped:cuda_update_to_npp_stream_ctx
cuda - update npp calls to use the new NppStreamContext API if available
2024-10-22 14:44:42 +03:00
Kumataro
4398e0b62b
Merge pull request #26340 from Kumataro:wa26339
doc: fix the position of toggle button #26340 

Close #26339 

### Pull Request Readiness Checklist

See details at https://github.com/opencv/opencv/wiki/How_to_contribute#making-a-good-pull-request

- [x] I agree to contribute to the project under Apache 2 License.
- [x] To the best of my knowledge, the proposed patch is not based on a code under GPL or another license that is incompatible with OpenCV
- [x] The PR is proposed to the proper branch
- [x] There is a reference to the original bug report and related work
- [ ] There is accuracy test, performance test and test data in opencv_extra repository, if applicable
      Patch to opencv_extra has the same branch name.
- [ ] The feature is well documented and sample code can be built with the project CMake
2024-10-22 11:57:14 +03:00
alexlyulkov
a40ceff215
Merge pull request #26330 from alexlyulkov:al/new-engine-tflite-parser2
Modified TFLite parser for the new dnn engine #26330

The new dnn graph is creating just by defining input and output names of each layer.
Some TFLite layers has fused activation, which doesn't have layer name and input and output names. Also some layers require additional preprocessing layers (e.g. NHWC -> NCHW). All these layers should be added to the graph with some unique layer and input and output names. 

I solve this problem by adding additionalPreLayer and additionalPostLayer layers.

If a layer has a fused activation, I add additionalPostLayer and change input and output names this way:
**original**: conv_relu(conv123, conv123_input, conv123_output)
**new**: conv(conv123, conv123_input, conv123_output_additional_post_layer) + relu(conv123_relu,  conv1_output_additional_post_layer, conv123_output)

If a layer has additional preprocessing layer, I change input and output names this way:
**original**: permute_reshape(reshape345, reshape345_input, reshape345_output)
**new**: permute(reshape345_permute, reshape345_input, reshape345_input_additional_pre_layer) + reshape(reshape345, reshape345_input_additional_pre_layer, reshape345_output)


### Pull Request Readiness Checklist

See details at https://github.com/opencv/opencv/wiki/How_to_contribute#making-a-good-pull-request

- [x] I agree to contribute to the project under Apache 2 License.
- [x] To the best of my knowledge, the proposed patch is not based on a code under GPL or another license that is incompatible with OpenCV
- [x] The PR is proposed to the proper branch
- [ ] There is a reference to the original bug report and related work
- [x] There is accuracy test, performance test and test data in opencv_extra repository, if applicable
      Patch to opencv_extra has the same branch name.
- [x] The feature is well documented and sample code can be built with the project CMake
2024-10-22 09:05:58 +03:00
Alexander Smorkalov
6648482b69
Merge pull request #26324 from asmorkalov:as/model_diagnostics_engine
Added DNN engine selector to model diagnostics tool.
2024-10-21 15:51:53 +03:00
Alexander Smorkalov
94d5ad09ff
Merge pull request #26284 from fzuuzf:enum_arithmetic_fixes_for_c++26
C++26 Deprecated Enum Arithmetic Conversion: Fix core/mat.inl.hpp
2024-10-21 15:47:53 +03:00
Alexander Smorkalov
e026a5ad8a
Merge pull request #26281 from kallaballa:clgl_device_discovery
Rewrote OpenCL-OpenGL-interop device discovery routine without extensions and with Apple support
2024-10-18 15:52:17 +03:00
Alexander Smorkalov
c79b72a838
Merge pull request #26335 from migueldaipre:4.x
fix: performance typo
2024-10-18 15:44:32 +03:00
Vadim Pisarevsky
6e3c5db1c6
Merge pull request #26333 from vpisarev:fix_26322
Fix #26322: construction of another Mat header for empty matrix #26333

The PR fixes #26322

- [x] I agree to contribute to the project under Apache 2 License.
- [x] To the best of my knowledge, the proposed patch is not based on a code under GPL or another license that is incompatible with OpenCV
- [x] The PR is proposed to the proper branch
- [x] There is a reference to the original bug report and related work
- [x] There is accuracy test, performance test and test data in opencv_extra repository, if applicable
      Patch to opencv_extra has the same branch name.
- [x] The feature is well documented and sample code can be built with the project CMake
2024-10-18 14:50:27 +03:00
Vadim Pisarevsky
2f35847960
Merge pull request #26321 from vpisarev:better_bfloat
2x more accurate float => bfloat conversion #26321

There is a magic trick to make float => bfloat conversion more accurate (_original reference needed, is it done this way in PyTorch?_). In simplified form it looks like:

```
uint16_t f2bf(float x) {
    union {
        unsigned u;
        float f;
    } u;
    u.f = x;
    // return (uint16_t)(u.u >> 16); <== the old method before this patch
    return (uint16_t)((u.u + 0x8000) >> 16);
} 
```

it works correctly for almost all valid floating-point values, positive, zero or negative, and even for some extreme cases, like `+/-inf`, `nan` etc. The addition of `0x8000` to integer representation of 32-bit float before retrieving the highest 16 bits reduces the rounding error by ~2x.

The slight problem with this improved method is that the numbers very close to or equal to `+/-FLT_MAX` are mistakenly converted to `+/-inf`, respectively.

This patch implements improved algorithm for `float => bfloat` conversion in scalar and vector form; it fixes the above-mentioned problem using some extra bit magic, i.e. 0x8000 is not added to very big (by absolute value) numbers:

```
// the actual implementation is more efficient,
// without conditions or floating-point operations, see the source code
return (uint16_t)(u.u + (fabsf(x) <= big_threshold ? 0x8000 : 0)) >> 16);
```

The corresponding test has been added as well and this is output from the test:

```
[----------] 1 test from Core_BFloat
[ RUN      ] Core_BFloat.convert
maxerr0 = 0.00774842, mean0 = 0.00190643, stddev0 = 0.00186063
maxerr1 = 0.00389057, mean1 = 0.000952614, stddev1 = 0.000931268
[       OK ] Core_BFloat.convert (7 ms)
```

Here `maxerr0, mean0, stddev0` are for the original method and `maxerr1, mean1, stddev1` are for the new method. As you can see, there is a significant improvement in accuracy.

**Note:**

_Actually, on ~32,000,000 random FP32 numbers with uniformly distributed sign, exponent and mantissa the new method is always at least as accurate as the old one._

The test also checks all the corner cases, where we see no degradation either vs the original method.

- [x] I agree to contribute to the project under Apache 2 License.
- [x] To the best of my knowledge, the proposed patch is not based on a code under GPL or another license that is incompatible with OpenCV
- [x] The PR is proposed to the proper branch
- [ ] There is a reference to the original bug report and related work
- [x] There is accuracy test, performance test and test data in opencv_extra repository, if applicable
      Patch to opencv_extra has the same branch name.
- [x] The feature is well documented and sample code can be built with the project CMake
2024-10-18 14:46:40 +03:00
Kumataro
35dbf32227
Merge pull request #26211 from Kumataro:fix26207
imgcodecs: implement imencodemulti() #26211

Close #26207
### Pull Request Readiness Checklist

See details at https://github.com/opencv/opencv/wiki/How_to_contribute#making-a-good-pull-request

- [x] I agree to contribute to the project under Apache 2 License.
- [x] To the best of my knowledge, the proposed patch is not based on a code under GPL or another license that is incompatible with OpenCV
- [x] The PR is proposed to the proper branch
- [x] There is a reference to the original bug report and related work
- [x] There is accuracy test, performance test and test data in opencv_extra repository, if applicable
      Patch to opencv_extra has the same branch name.
- [x] The feature is well documented and sample code can be built with the project CMake
2024-10-18 14:44:55 +03:00
Miguel Daipré
888469a842
fix: performance typo 2024-10-18 08:37:32 -03:00
Alexander Smorkalov
9773694527 Added DNN engine selector to model diagnostics tool. 2024-10-17 15:09:13 +03:00
Gursimar Singh
1696819abb
Merge pull request #25667 from gursimarsingh:improved_person_reid_python
Improved person reid cpp and python sample #25667

#25006 

This sample has been rewritten to track a selected target in a video or camera stream. Person detection has been integrated using yolov8 and the user can provide a target image via command line or interactively select the target at start of the execution


### Pull Request Readiness Checklist

See details at https://github.com/opencv/opencv/wiki/How_to_contribute#making-a-good-pull-request

- [x] I agree to contribute to the project under Apache 2 License.
- [x] To the best of my knowledge, the proposed patch is not based on a code under GPL or another license that is incompatible with OpenCV
- [x] The PR is proposed to the proper branch
- [x] There is a reference to the original bug report and related work
- [ ] There is accuracy test, performance test and test data in opencv_extra repository, if applicable
      Patch to opencv_extra has the same branch name.
- [x] The feature is well documented and sample code can be built with the project CMake
2024-10-17 10:46:53 +03:00
Septimiu Neaga
3919f33e21
Merge pull request #26293 from SeptimiuIoachimNeagaIntel:EISW-140103_optimization_flag
G-API: Introduce level optimization flag for ONNXRT backend #26293

### Pull Request Readiness Checklist

See details at https://github.com/opencv/opencv/wiki/How_to_contribute#making-a-good-pull-request

- [x] I agree to contribute to the project under Apache 2 License.
- [x] To the best of my knowledge, the proposed patch is not based on a code under GPL or another license that is incompatible with OpenCV
- [x] The PR is proposed to the proper branch
- [ ] There is a reference to the original bug report and related work
- [ ] There is accuracy test, performance test and test data in opencv_extra repository, if applicable
      Patch to opencv_extra has the same branch name.
- [x] The feature is well documented and sample code can be built with the project CMake
2024-10-17 10:22:08 +03:00
FantasqueX
489df18a13
Merge pull request #26313 from FantasqueX:ipp-warp-affine-border-value
Use border value in ipp version of warp affine #26313

### Pull Request Readiness Checklist

See details at https://github.com/opencv/opencv/wiki/How_to_contribute#making-a-good-pull-request

- [x] I agree to contribute to the project under Apache 2 License.
- [x] To the best of my knowledge, the proposed patch is not based on a code under GPL or another license that is incompatible with OpenCV
- [x] The PR is proposed to the proper branch
- [ ] There is a reference to the original bug report and related work
- [ ] There is accuracy test, performance test and test data in opencv_extra repository, if applicable
      Patch to opencv_extra has the same branch name.
- [ ] The feature is well documented and sample code can be built with the project CMake
2024-10-17 08:50:30 +03:00
Alexander Smorkalov
d20c456ab7
Merge pull request #26320 from mshabunin:fix-cmake-in-list
build: set cmake policy for if(IN_LIST) support
2024-10-17 07:36:02 +03:00
Maksim Shabunin
8ba76e65e9 build: set cmake policy for if(IN_LIST) support 2024-10-16 22:40:47 +03:00
Vadim Pisarevsky
3cd57ea09e
Merge pull request #26056 from vpisarev:new_dnn_engine
New dnn engine #26056

This is the 1st PR with the new engine; CI is green and PR is ready to be merged, I think.
Merge together with https://github.com/opencv/opencv_contrib/pull/3794

---

**Known limitations:**
* [solved] OpenVINO is temporarily disabled, but is probably easy to restore (it's not a deal breaker to merge this PR, I guess)
* The new engine does not support any backends nor any targets except for the default CPU implementation. But it's possible to choose the old engine when loading a model, then all the functionality is available.
* [Caffe patch is here: #26208] The new engine only supports ONNX. When a model is constructed manually or is loaded from a file of different format (.tf, .tflite, .caffe, .darknet), the old engine is used.
* Even in the case of ONNX some layers are not supported by the new engine, such as all quantized layers (including DequantizeLinear, QuantizeLinear, QLinearConv etc.), LSTM, GRU, .... It's planned, of course, to have full support for ONNX by OpenCV 5.0 gold release. When a loaded model contains unsupported layers, we switch to the old engine automatically  (at ONNX parsing time, not at `forward()` time).
* Some layers , e.g. Expat, are only partially supported by the new engine. In the case of unsupported flavours it switches to the old engine automatically (at ONNX parsing time, not at `forward()` time).
* 'Concat' graph optimization is disabled. The optimization eliminates Concat layer and instead makes the layers that generate tensors to be concatenated to write the outputs to the final destination. Of course, it's only possible when `axis=0` or `axis=N=1`. The optimization is not compatible with dynamic shapes since we need to know in advance where to store the tensors. Because some of the layer implementations have been modified to become more compatible with the new engine, the feature appears to be broken even when the old engine is used.
* Some `dnn::Net` API is not available with the new engine. Also, shape inference may return false if some of the output or intermediate tensors' shapes cannot be inferred without running the model. Probably this can be fixed by a dummy run of the model with zero inputs.
* Some overloads of `dnn::Net::getFLOPs()` and `dnn::Net::getMemoryConsumption()` are not exposed any longer in wrapper generators; but the most useful overloads are exposed (and checked by Java tests).
* [in progress] A few Einsum tests related to empty shapes have been disabled due to crashes in the tests and in Einsum implementations. The code and the tests need to be repaired.
* OpenCL implementation of Deconvolution is disabled. It's very bad and very slow anyway; need to be completely revised.
* Deconvolution3D test is now skipped, because it was only supported by CUDA and OpenVINO backends, both of which are not supported by the new engine.
* Some tests, such as FastNeuralStyle, checked that the in the case of CUDA backend there is no fallback to CPU. Currently all layers in the new engine are processed on CPU, so there are many fallbacks. The checks, therefore, have been temporarily disabled.

---

- [x] I agree to contribute to the project under Apache 2 License.
- [x] To the best of my knowledge, the proposed patch is not based on a code under GPL or another license that is incompatible with OpenCV
- [x] The PR is proposed to the proper branch
- [ ] There is a reference to the original bug report and related work
- [ ] There is accuracy test, performance test and test data in opencv_extra repository, if applicable
      Patch to opencv_extra has the same branch name.
- [ ] The feature is well documented and sample code can be built with the project CMake
2024-10-16 15:28:19 +03:00
Maksim Shabunin
e2f583a9ee C-API cleanup: removed or updated some of 3d and calib tests 2024-10-15 18:27:23 +03:00
Yuantao Feng
12738deaef
Merge pull request #26271 from fengyuentau:imgproc/warpperspective_opt
imgproc: add optimized warpPerspective linear kernels for inputs of type CV_8U/16U/32F+C1/C3/C4

Merge with https://github.com/opencv/opencv_extra/pull/1214

## Performance

### Apple Mac Mini (M2, 16GB memory)

```
Geometric mean (ms)

                                      Name of Test                                        base  patch   patch   
                                                                                                          vs    
                                                                                                         base   
                                                                                                      (x-factor)
WarpPerspective::TestWarpPerspective::(640x480, INTER_LINEAR, BORDER_CONSTANT, 8UC1)      0.397 0.119    3.34   
WarpPerspective::TestWarpPerspective::(640x480, INTER_LINEAR, BORDER_CONSTANT, 16UC1)     0.412 0.155    2.65   
WarpPerspective::TestWarpPerspective::(640x480, INTER_LINEAR, BORDER_CONSTANT, 32FC1)     0.382 0.134    2.85   
WarpPerspective::TestWarpPerspective::(640x480, INTER_LINEAR, BORDER_CONSTANT, 8UC3)      0.562 0.201    2.80   
WarpPerspective::TestWarpPerspective::(640x480, INTER_LINEAR, BORDER_CONSTANT, 16UC3)     0.580 0.279    2.07   
WarpPerspective::TestWarpPerspective::(640x480, INTER_LINEAR, BORDER_CONSTANT, 32FC3)     0.477 0.269    1.78   
WarpPerspective::TestWarpPerspective::(640x480, INTER_LINEAR, BORDER_CONSTANT, 8UC4)      0.536 0.221    2.43   
WarpPerspective::TestWarpPerspective::(640x480, INTER_LINEAR, BORDER_CONSTANT, 16UC4)     0.662 0.328    2.02   
WarpPerspective::TestWarpPerspective::(640x480, INTER_LINEAR, BORDER_CONSTANT, 32FC4)     0.511 0.325    1.57   
WarpPerspective::TestWarpPerspective::(640x480, INTER_LINEAR, BORDER_REPLICATE, 8UC1)     0.433 0.171    2.54   
WarpPerspective::TestWarpPerspective::(640x480, INTER_LINEAR, BORDER_REPLICATE, 16UC1)    0.452 0.204    2.21   
WarpPerspective::TestWarpPerspective::(640x480, INTER_LINEAR, BORDER_REPLICATE, 32FC1)    0.410 0.180    2.27   
WarpPerspective::TestWarpPerspective::(640x480, INTER_LINEAR, BORDER_REPLICATE, 8UC3)     0.624 0.243    2.57   
WarpPerspective::TestWarpPerspective::(640x480, INTER_LINEAR, BORDER_REPLICATE, 16UC3)    0.636 0.331    1.92   
WarpPerspective::TestWarpPerspective::(640x480, INTER_LINEAR, BORDER_REPLICATE, 32FC3)    0.511 0.315    1.62   
WarpPerspective::TestWarpPerspective::(640x480, INTER_LINEAR, BORDER_REPLICATE, 8UC4)     0.604 0.281    2.15   
WarpPerspective::TestWarpPerspective::(640x480, INTER_LINEAR, BORDER_REPLICATE, 16UC4)    0.712 0.393    1.81   
WarpPerspective::TestWarpPerspective::(640x480, INTER_LINEAR, BORDER_REPLICATE, 32FC4)    0.552 0.368    1.50   
WarpPerspective::TestWarpPerspective::(1280x720, INTER_LINEAR, BORDER_CONSTANT, 8UC1)     0.768 0.214    3.58   
WarpPerspective::TestWarpPerspective::(1280x720, INTER_LINEAR, BORDER_CONSTANT, 16UC1)    0.743 0.260    2.86   
WarpPerspective::TestWarpPerspective::(1280x720, INTER_LINEAR, BORDER_CONSTANT, 32FC1)    0.722 0.235    3.07   
WarpPerspective::TestWarpPerspective::(1280x720, INTER_LINEAR, BORDER_CONSTANT, 8UC3)     1.091 0.333    3.28   
WarpPerspective::TestWarpPerspective::(1280x720, INTER_LINEAR, BORDER_CONSTANT, 16UC3)    1.035 0.453    2.29   
WarpPerspective::TestWarpPerspective::(1280x720, INTER_LINEAR, BORDER_CONSTANT, 32FC3)    0.955 0.442    2.16   
WarpPerspective::TestWarpPerspective::(1280x720, INTER_LINEAR, BORDER_CONSTANT, 8UC4)     1.097 0.364    3.01   
WarpPerspective::TestWarpPerspective::(1280x720, INTER_LINEAR, BORDER_CONSTANT, 16UC4)    1.141 0.547    2.09   
WarpPerspective::TestWarpPerspective::(1280x720, INTER_LINEAR, BORDER_CONSTANT, 32FC4)    1.015 0.591    1.72   
WarpPerspective::TestWarpPerspective::(1280x720, INTER_LINEAR, BORDER_REPLICATE, 8UC1)    1.012 1.006    1.01   
WarpPerspective::TestWarpPerspective::(1280x720, INTER_LINEAR, BORDER_REPLICATE, 16UC1)   0.996 1.060    0.94   
WarpPerspective::TestWarpPerspective::(1280x720, INTER_LINEAR, BORDER_REPLICATE, 32FC1)   0.930 0.993    0.94   
WarpPerspective::TestWarpPerspective::(1280x720, INTER_LINEAR, BORDER_REPLICATE, 8UC3)    1.560 1.260    1.24   
WarpPerspective::TestWarpPerspective::(1280x720, INTER_LINEAR, BORDER_REPLICATE, 16UC3)   1.374 1.410    0.97   
WarpPerspective::TestWarpPerspective::(1280x720, INTER_LINEAR, BORDER_REPLICATE, 32FC3)   1.212 1.292    0.94   
WarpPerspective::TestWarpPerspective::(1280x720, INTER_LINEAR, BORDER_REPLICATE, 8UC4)    1.702 1.354    1.26   
WarpPerspective::TestWarpPerspective::(1280x720, INTER_LINEAR, BORDER_REPLICATE, 16UC4)   1.554 1.522    1.02   
WarpPerspective::TestWarpPerspective::(1280x720, INTER_LINEAR, BORDER_REPLICATE, 32FC4)   1.342 1.435    0.94   
WarpPerspective::TestWarpPerspective::(1920x1080, INTER_LINEAR, BORDER_CONSTANT, 8UC1)    1.561 0.364    4.29   
WarpPerspective::TestWarpPerspective::(1920x1080, INTER_LINEAR, BORDER_CONSTANT, 16UC1)   1.444 0.406    3.56   
WarpPerspective::TestWarpPerspective::(1920x1080, INTER_LINEAR, BORDER_CONSTANT, 32FC1)   1.423 0.394    3.61   
WarpPerspective::TestWarpPerspective::(1920x1080, INTER_LINEAR, BORDER_CONSTANT, 8UC3)    2.177 0.533    4.08   
WarpPerspective::TestWarpPerspective::(1920x1080, INTER_LINEAR, BORDER_CONSTANT, 16UC3)   2.006 0.689    2.91   
WarpPerspective::TestWarpPerspective::(1920x1080, INTER_LINEAR, BORDER_CONSTANT, 32FC3)   1.907 0.688    2.77   
WarpPerspective::TestWarpPerspective::(1920x1080, INTER_LINEAR, BORDER_CONSTANT, 8UC4)    2.213 0.581    3.81   
WarpPerspective::TestWarpPerspective::(1920x1080, INTER_LINEAR, BORDER_CONSTANT, 16UC4)   2.238 0.810    2.76   
WarpPerspective::TestWarpPerspective::(1920x1080, INTER_LINEAR, BORDER_CONSTANT, 32FC4)   2.072 1.055    1.96   
WarpPerspective::TestWarpPerspective::(1920x1080, INTER_LINEAR, BORDER_REPLICATE, 8UC1)   2.201 2.908    0.76   
WarpPerspective::TestWarpPerspective::(1920x1080, INTER_LINEAR, BORDER_REPLICATE, 16UC1)  2.108 2.951    0.71   
WarpPerspective::TestWarpPerspective::(1920x1080, INTER_LINEAR, BORDER_REPLICATE, 32FC1)  1.997 2.840    0.70   
WarpPerspective::TestWarpPerspective::(1920x1080, INTER_LINEAR, BORDER_REPLICATE, 8UC3)   3.444 3.293    1.05   
WarpPerspective::TestWarpPerspective::(1920x1080, INTER_LINEAR, BORDER_REPLICATE, 16UC3)  2.889 3.417    0.85   
WarpPerspective::TestWarpPerspective::(1920x1080, INTER_LINEAR, BORDER_REPLICATE, 32FC3)  2.671 3.354    0.80   
WarpPerspective::TestWarpPerspective::(1920x1080, INTER_LINEAR, BORDER_REPLICATE, 8UC4)   3.765 3.767    1.00   
WarpPerspective::TestWarpPerspective::(1920x1080, INTER_LINEAR, BORDER_REPLICATE, 16UC4)  3.247 3.962    0.82   
WarpPerspective::TestWarpPerspective::(1920x1080, INTER_LINEAR, BORDER_REPLICATE, 32FC4)  2.993 3.669    0.82   
```

### Desktop (i7-12700K, 64GB memory)

```
Geometric mean (ms)

                                      Name of Test                                        base  patch   patch   
                                                                                                          vs    
                                                                                                         base   
                                                                                                      (x-factor)
WarpPerspective::TestWarpPerspective::(640x480, INTER_LINEAR, BORDER_CONSTANT, 8UC1)      0.274 0.076    3.62   
WarpPerspective::TestWarpPerspective::(640x480, INTER_LINEAR, BORDER_CONSTANT, 16UC1)     0.299 0.058    5.14   
WarpPerspective::TestWarpPerspective::(640x480, INTER_LINEAR, BORDER_CONSTANT, 32FC1)     0.299 0.043    6.90   
WarpPerspective::TestWarpPerspective::(640x480, INTER_LINEAR, BORDER_CONSTANT, 8UC3)      0.330 0.115    2.87   
WarpPerspective::TestWarpPerspective::(640x480, INTER_LINEAR, BORDER_CONSTANT, 16UC3)     0.480 0.109    4.39   
WarpPerspective::TestWarpPerspective::(640x480, INTER_LINEAR, BORDER_CONSTANT, 32FC3)     0.608 0.180    3.37   
WarpPerspective::TestWarpPerspective::(640x480, INTER_LINEAR, BORDER_CONSTANT, 8UC4)      0.317 0.143    2.21   
WarpPerspective::TestWarpPerspective::(640x480, INTER_LINEAR, BORDER_CONSTANT, 16UC4)     0.704 0.139    5.07   
WarpPerspective::TestWarpPerspective::(640x480, INTER_LINEAR, BORDER_CONSTANT, 32FC4)     0.508 0.141    3.60   
WarpPerspective::TestWarpPerspective::(640x480, INTER_LINEAR, BORDER_REPLICATE, 8UC1)     0.293 0.064    4.57   
WarpPerspective::TestWarpPerspective::(640x480, INTER_LINEAR, BORDER_REPLICATE, 16UC1)    0.311 0.061    5.07   
WarpPerspective::TestWarpPerspective::(640x480, INTER_LINEAR, BORDER_REPLICATE, 32FC1)    0.299 0.057    5.29   
WarpPerspective::TestWarpPerspective::(640x480, INTER_LINEAR, BORDER_REPLICATE, 8UC3)     0.373 0.135    2.75   
WarpPerspective::TestWarpPerspective::(640x480, INTER_LINEAR, BORDER_REPLICATE, 16UC3)    0.501 0.129    3.87   
WarpPerspective::TestWarpPerspective::(640x480, INTER_LINEAR, BORDER_REPLICATE, 32FC3)    0.403 0.123    3.26   
WarpPerspective::TestWarpPerspective::(640x480, INTER_LINEAR, BORDER_REPLICATE, 8UC4)     0.372 0.163    2.28   
WarpPerspective::TestWarpPerspective::(640x480, INTER_LINEAR, BORDER_REPLICATE, 16UC4)    0.582 0.161    3.63   
WarpPerspective::TestWarpPerspective::(640x480, INTER_LINEAR, BORDER_REPLICATE, 32FC4)    0.459 0.152    3.03   
WarpPerspective::TestWarpPerspective::(1280x720, INTER_LINEAR, BORDER_CONSTANT, 8UC1)     0.558 0.099    5.63   
WarpPerspective::TestWarpPerspective::(1280x720, INTER_LINEAR, BORDER_CONSTANT, 16UC1)    0.607 0.098    6.20   
WarpPerspective::TestWarpPerspective::(1280x720, INTER_LINEAR, BORDER_CONSTANT, 32FC1)    0.599 0.090    6.65   
WarpPerspective::TestWarpPerspective::(1280x720, INTER_LINEAR, BORDER_CONSTANT, 8UC3)     0.636 0.198    3.22   
WarpPerspective::TestWarpPerspective::(1280x720, INTER_LINEAR, BORDER_CONSTANT, 16UC3)    0.806 0.187    4.31   
WarpPerspective::TestWarpPerspective::(1280x720, INTER_LINEAR, BORDER_CONSTANT, 32FC3)    1.329 0.227    5.85   
WarpPerspective::TestWarpPerspective::(1280x720, INTER_LINEAR, BORDER_CONSTANT, 8UC4)     0.643 0.238    2.70   
WarpPerspective::TestWarpPerspective::(1280x720, INTER_LINEAR, BORDER_CONSTANT, 16UC4)    1.401 0.233    6.02   
WarpPerspective::TestWarpPerspective::(1280x720, INTER_LINEAR, BORDER_CONSTANT, 32FC4)    1.083 0.229    4.72   
WarpPerspective::TestWarpPerspective::(1280x720, INTER_LINEAR, BORDER_REPLICATE, 8UC1)    0.682 0.358    1.91   
WarpPerspective::TestWarpPerspective::(1280x720, INTER_LINEAR, BORDER_REPLICATE, 16UC1)   0.695 0.350    1.99   
WarpPerspective::TestWarpPerspective::(1280x720, INTER_LINEAR, BORDER_REPLICATE, 32FC1)   0.666 0.334    2.00   
WarpPerspective::TestWarpPerspective::(1280x720, INTER_LINEAR, BORDER_REPLICATE, 8UC3)    0.895 0.502    1.78   
WarpPerspective::TestWarpPerspective::(1280x720, INTER_LINEAR, BORDER_REPLICATE, 16UC3)   1.035 0.492    2.11   
WarpPerspective::TestWarpPerspective::(1280x720, INTER_LINEAR, BORDER_REPLICATE, 32FC3)   0.924 0.466    1.98   
WarpPerspective::TestWarpPerspective::(1280x720, INTER_LINEAR, BORDER_REPLICATE, 8UC4)    0.969 0.551    1.76   
WarpPerspective::TestWarpPerspective::(1280x720, INTER_LINEAR, BORDER_REPLICATE, 16UC4)   1.201 0.550    2.18   
WarpPerspective::TestWarpPerspective::(1280x720, INTER_LINEAR, BORDER_REPLICATE, 32FC4)   0.948 0.544    1.74   
WarpPerspective::TestWarpPerspective::(1920x1080, INTER_LINEAR, BORDER_CONSTANT, 8UC1)    1.018 0.174    5.84   
WarpPerspective::TestWarpPerspective::(1920x1080, INTER_LINEAR, BORDER_CONSTANT, 16UC1)   0.973 0.173    5.63   
WarpPerspective::TestWarpPerspective::(1920x1080, INTER_LINEAR, BORDER_CONSTANT, 32FC1)   1.002 0.164    6.13   
WarpPerspective::TestWarpPerspective::(1920x1080, INTER_LINEAR, BORDER_CONSTANT, 8UC3)    1.100 0.297    3.71   
WarpPerspective::TestWarpPerspective::(1920x1080, INTER_LINEAR, BORDER_CONSTANT, 16UC3)   1.197 0.278    4.30   
WarpPerspective::TestWarpPerspective::(1920x1080, INTER_LINEAR, BORDER_CONSTANT, 32FC3)   3.108 0.296   10.49   
WarpPerspective::TestWarpPerspective::(1920x1080, INTER_LINEAR, BORDER_CONSTANT, 8UC4)    1.086 0.340    3.20   
WarpPerspective::TestWarpPerspective::(1920x1080, INTER_LINEAR, BORDER_CONSTANT, 16UC4)   2.987 0.336    8.88   
WarpPerspective::TestWarpPerspective::(1920x1080, INTER_LINEAR, BORDER_CONSTANT, 32FC4)   2.249 0.835    2.69   
WarpPerspective::TestWarpPerspective::(1920x1080, INTER_LINEAR, BORDER_REPLICATE, 8UC1)   1.330 1.007    1.32   
WarpPerspective::TestWarpPerspective::(1920x1080, INTER_LINEAR, BORDER_REPLICATE, 16UC1)  1.352 0.974    1.39   
WarpPerspective::TestWarpPerspective::(1920x1080, INTER_LINEAR, BORDER_REPLICATE, 32FC1)  1.241 0.933    1.33   
WarpPerspective::TestWarpPerspective::(1920x1080, INTER_LINEAR, BORDER_REPLICATE, 8UC3)   1.896 1.287    1.47   
WarpPerspective::TestWarpPerspective::(1920x1080, INTER_LINEAR, BORDER_REPLICATE, 16UC3)  2.071 1.288    1.61   
WarpPerspective::TestWarpPerspective::(1920x1080, INTER_LINEAR, BORDER_REPLICATE, 32FC3)  1.870 1.211    1.54   
WarpPerspective::TestWarpPerspective::(1920x1080, INTER_LINEAR, BORDER_REPLICATE, 8UC4)   2.059 1.362    1.51   
WarpPerspective::TestWarpPerspective::(1920x1080, INTER_LINEAR, BORDER_REPLICATE, 16UC4)  2.366 1.395    1.70   
WarpPerspective::TestWarpPerspective::(1920x1080, INTER_LINEAR, BORDER_REPLICATE, 32FC4)  1.859 1.416    1.31   
```

### Khadas VIM3 (A311D, 4xA73+2xA53, no fp16 vector intrinsics support, 4GB memory)

```
Geometric mean (ms)

                                      Name of Test                                         base  patch    patch
                                                                                                            vs
                                                                                                           base
                                                                                                        (x-factor)
WarpPerspective::TestWarpPerspective::(640x480, INTER_LINEAR, BORDER_CONSTANT, 8UC1)      2.543  0.702     3.62
WarpPerspective::TestWarpPerspective::(640x480, INTER_LINEAR, BORDER_CONSTANT, 16UC1)     3.175  0.727     4.37
WarpPerspective::TestWarpPerspective::(640x480, INTER_LINEAR, BORDER_CONSTANT, 32FC1)     2.877  0.777     3.70
WarpPerspective::TestWarpPerspective::(640x480, INTER_LINEAR, BORDER_CONSTANT, 8UC3)      4.059  1.192     3.41
WarpPerspective::TestWarpPerspective::(640x480, INTER_LINEAR, BORDER_CONSTANT, 16UC3)     4.689  1.642     2.86
WarpPerspective::TestWarpPerspective::(640x480, INTER_LINEAR, BORDER_CONSTANT, 32FC3)     4.071  2.064     1.97
WarpPerspective::TestWarpPerspective::(640x480, INTER_LINEAR, BORDER_CONSTANT, 8UC4)      3.897  1.501     2.60
WarpPerspective::TestWarpPerspective::(640x480, INTER_LINEAR, BORDER_CONSTANT, 16UC4)     5.485  2.106     2.60
WarpPerspective::TestWarpPerspective::(640x480, INTER_LINEAR, BORDER_CONSTANT, 32FC4)     4.611  2.938     1.57
WarpPerspective::TestWarpPerspective::(640x480, INTER_LINEAR, BORDER_REPLICATE, 8UC1)     2.717  0.912     2.98
WarpPerspective::TestWarpPerspective::(640x480, INTER_LINEAR, BORDER_REPLICATE, 16UC1)    3.426  0.885     3.87
WarpPerspective::TestWarpPerspective::(640x480, INTER_LINEAR, BORDER_REPLICATE, 32FC1)    3.009  0.979     3.07
WarpPerspective::TestWarpPerspective::(640x480, INTER_LINEAR, BORDER_REPLICATE, 8UC3)     4.409  1.488     2.96
WarpPerspective::TestWarpPerspective::(640x480, INTER_LINEAR, BORDER_REPLICATE, 16UC3)    5.236  1.901     2.75
WarpPerspective::TestWarpPerspective::(640x480, INTER_LINEAR, BORDER_REPLICATE, 32FC3)    4.445  2.232     1.99
WarpPerspective::TestWarpPerspective::(640x480, INTER_LINEAR, BORDER_REPLICATE, 8UC4)     4.400  1.816     2.42
WarpPerspective::TestWarpPerspective::(640x480, INTER_LINEAR, BORDER_REPLICATE, 16UC4)    6.211  2.390     2.60
WarpPerspective::TestWarpPerspective::(640x480, INTER_LINEAR, BORDER_REPLICATE, 32FC4)    4.779  3.154     1.52
WarpPerspective::TestWarpPerspective::(1280x720, INTER_LINEAR, BORDER_CONSTANT, 8UC1)     5.487  1.599     3.43
WarpPerspective::TestWarpPerspective::(1280x720, INTER_LINEAR, BORDER_CONSTANT, 16UC1)    6.589  1.652     3.99
WarpPerspective::TestWarpPerspective::(1280x720, INTER_LINEAR, BORDER_CONSTANT, 32FC1)    4.916  1.779     2.76
WarpPerspective::TestWarpPerspective::(1280x720, INTER_LINEAR, BORDER_CONSTANT, 8UC3)     7.676  2.465     3.11
WarpPerspective::TestWarpPerspective::(1280x720, INTER_LINEAR, BORDER_CONSTANT, 16UC3)    8.783  3.020     2.91
WarpPerspective::TestWarpPerspective::(1280x720, INTER_LINEAR, BORDER_CONSTANT, 32FC3)    8.468  4.314     1.96
WarpPerspective::TestWarpPerspective::(1280x720, INTER_LINEAR, BORDER_CONSTANT, 8UC4)     7.670  2.944     2.60
WarpPerspective::TestWarpPerspective::(1280x720, INTER_LINEAR, BORDER_CONSTANT, 16UC4)    9.364  3.871     2.42
WarpPerspective::TestWarpPerspective::(1280x720, INTER_LINEAR, BORDER_CONSTANT, 32FC4)    9.297  5.770     1.61
WarpPerspective::TestWarpPerspective::(1280x720, INTER_LINEAR, BORDER_REPLICATE, 8UC1)    6.809  5.359     1.27
WarpPerspective::TestWarpPerspective::(1280x720, INTER_LINEAR, BORDER_REPLICATE, 16UC1)   9.010  4.745     1.90
WarpPerspective::TestWarpPerspective::(1280x720, INTER_LINEAR, BORDER_REPLICATE, 32FC1)   8.501  4.712     1.80
WarpPerspective::TestWarpPerspective::(1280x720, INTER_LINEAR, BORDER_REPLICATE, 8UC3)    10.652 7.345     1.45
WarpPerspective::TestWarpPerspective::(1280x720, INTER_LINEAR, BORDER_REPLICATE, 16UC3)   12.319 7.647     1.61
WarpPerspective::TestWarpPerspective::(1280x720, INTER_LINEAR, BORDER_REPLICATE, 32FC3)   10.466 7.849     1.33
WarpPerspective::TestWarpPerspective::(1280x720, INTER_LINEAR, BORDER_REPLICATE, 8UC4)    11.659 8.226     1.42
WarpPerspective::TestWarpPerspective::(1280x720, INTER_LINEAR, BORDER_REPLICATE, 16UC4)   13.157 8.825     1.49
WarpPerspective::TestWarpPerspective::(1280x720, INTER_LINEAR, BORDER_REPLICATE, 32FC4)   11.557 9.869     1.17
WarpPerspective::TestWarpPerspective::(1920x1080, INTER_LINEAR, BORDER_CONSTANT, 8UC1)    14.773 3.081     4.79
WarpPerspective::TestWarpPerspective::(1920x1080, INTER_LINEAR, BORDER_CONSTANT, 16UC1)   14.971 3.135     4.78
WarpPerspective::TestWarpPerspective::(1920x1080, INTER_LINEAR, BORDER_CONSTANT, 32FC1)   14.795 3.321     4.45
WarpPerspective::TestWarpPerspective::(1920x1080, INTER_LINEAR, BORDER_CONSTANT, 8UC3)    20.823 4.319     4.82
WarpPerspective::TestWarpPerspective::(1920x1080, INTER_LINEAR, BORDER_CONSTANT, 16UC3)   22.128 5.029     4.40
WarpPerspective::TestWarpPerspective::(1920x1080, INTER_LINEAR, BORDER_CONSTANT, 32FC3)   22.583 8.036     2.81
WarpPerspective::TestWarpPerspective::(1920x1080, INTER_LINEAR, BORDER_CONSTANT, 8UC4)    20.141 5.018     4.01
WarpPerspective::TestWarpPerspective::(1920x1080, INTER_LINEAR, BORDER_CONSTANT, 16UC4)   23.505 6.132     3.83
WarpPerspective::TestWarpPerspective::(1920x1080, INTER_LINEAR, BORDER_CONSTANT, 32FC4)   20.226 10.050    2.01
WarpPerspective::TestWarpPerspective::(1920x1080, INTER_LINEAR, BORDER_REPLICATE, 8UC1)   18.904 15.189    1.24
WarpPerspective::TestWarpPerspective::(1920x1080, INTER_LINEAR, BORDER_REPLICATE, 16UC1)  22.749 12.979    1.75
WarpPerspective::TestWarpPerspective::(1920x1080, INTER_LINEAR, BORDER_REPLICATE, 32FC1)  19.685 12.981    1.52
WarpPerspective::TestWarpPerspective::(1920x1080, INTER_LINEAR, BORDER_REPLICATE, 8UC3)   29.636 19.974    1.48
WarpPerspective::TestWarpPerspective::(1920x1080, INTER_LINEAR, BORDER_REPLICATE, 16UC3)  36.266 19.563    1.85
WarpPerspective::TestWarpPerspective::(1920x1080, INTER_LINEAR, BORDER_REPLICATE, 32FC3)  30.124 19.434    1.55
WarpPerspective::TestWarpPerspective::(1920x1080, INTER_LINEAR, BORDER_REPLICATE, 8UC4)   34.290 21.998    1.56
WarpPerspective::TestWarpPerspective::(1920x1080, INTER_LINEAR, BORDER_REPLICATE, 16UC4)  41.765 21.705    1.92
WarpPerspective::TestWarpPerspective::(1920x1080, INTER_LINEAR, BORDER_REPLICATE, 32FC4)  27.767 22.838    1.22
```

### Pull Request Readiness Checklist

See details at https://github.com/opencv/opencv/wiki/How_to_contribute#making-a-good-pull-request

- [x] I agree to contribute to the project under Apache 2 License.
- [x] To the best of my knowledge, the proposed patch is not based on a code under GPL or another license that is incompatible with OpenCV
- [x] The PR is proposed to the proper branch
- [x] There is a reference to the original bug report and related work
- [x] There is accuracy test, performance test and test data in opencv_extra repository, if applicable
      Patch to opencv_extra has the same branch name.
- [x] The feature is well documented and sample code can be built with the project CMake
2024-10-15 11:13:41 +03:00
Suleyman TURKMEN
8e5dbc03fe
Merge pull request #26298 from sturkmen72:avif
Proposed solution for the issue 26297 #26298

closes #26297

### Pull Request Readiness Checklist

See details at https://github.com/opencv/opencv/wiki/How_to_contribute#making-a-good-pull-request

- [x] I agree to contribute to the project under Apache 2 License.
- [x] To the best of my knowledge, the proposed patch is not based on a code under GPL or another license that is incompatible with OpenCV
- [x] The PR is proposed to the proper branch
- [x] There is a reference to the original bug report and related work
- [x] There is accuracy test, performance test and test data in opencv_extra repository, if applicable
      Patch to opencv_extra has the same branch name.
- [ ] The feature is well documented and sample code can be built with the project CMake
2024-10-14 11:23:02 +03:00
Alexander Smorkalov
3c627b0a97
Merge pull request #26268 from mshabunin:cpp-array-test
C-API cleanup: rework ArrayTest to use new arrays only
2024-10-14 11:14:10 +03:00
Alexander Smorkalov
58fac15a98
Merge pull request #26301 from vpisarev:ttf3
updated embedded font & stb_truetype renderer
2024-10-14 10:51:08 +03:00
Alexander Smorkalov
1909ac8650
Merge pull request #26212 from jamacias:feature/TickMeter-lasttime
Enhance cv::TickMeter to be able to get the last elapsed time
2024-10-14 07:56:24 +03:00
Letu Ren
45b9398d68 Use generic SIMD in warpAffineBlocklineNN 2024-10-14 01:28:41 +08:00
Vadim Pisarevsky
08c6d00d96 1. updated Rubik font:
1) numerals are now monospace, e.g. '1' has the same width as '0',
    2) '0' is different from capital 'o',
    3) new glyphs added
2. stb_truetype upgraded from 1.24 to 1.26 with some fixes in rendering.
2024-10-13 03:25:24 +03:00
Yuantao Feng
5aa45e9053
Merge pull request #26292 from fengyuentau:imgproc/warpaffine_opt_opencl
imgproc: update warpAffine opencl kernel to be in sync with cpu one #26292

Relates https://github.com/opencv/opencv/pull/26242

### Pull Request Readiness Checklist

See details at https://github.com/opencv/opencv/wiki/How_to_contribute#making-a-good-pull-request

- [x] I agree to contribute to the project under Apache 2 License.
- [x] To the best of my knowledge, the proposed patch is not based on a code under GPL or another license that is incompatible with OpenCV
- [x] The PR is proposed to the proper branch
- [x] There is a reference to the original bug report and related work
- [x] There is accuracy test, performance test and test data in opencv_extra repository, if applicable
      Patch to opencv_extra has the same branch name.
- [x] The feature is well documented and sample code can be built with the project CMake
2024-10-12 11:13:41 +03:00
Zach Lowry
08f7f13dfa
Merge pull request #26234 from zachlowry:apply-gcc6-fix-on-each-directory
Move the gcc6 compatibility check to occur on a per-directory basis, … #26234

Proposed fix for #26233 https://github.com/opencv/opencv/issues/26233

### Pull Request Readiness Checklist

See details at https://github.com/opencv/opencv/wiki/How_to_contribute#making-a-good-pull-request

- [x] I agree to contribute to the project under Apache 2 License.
- [x] To the best of my knowledge, the proposed patch is not based on a code under GPL or another license that is incompatible with OpenCV
- [x] The PR is proposed to the proper branch
- [x] There is a reference to the original bug report and related work
- [ ] There is accuracy test, performance test and test data in opencv_extra repository, if applicable
      Patch to opencv_extra has the same branch name.
- [ ] The feature is well documented and sample code can be built with the project CMake
2024-10-11 17:00:59 +03:00
kallaballa
3edcf410b6 more guarding 2024-10-11 02:18:14 +02:00
Alexander Smorkalov
70380a7988
Merge pull request #26285 from vrabaud:5_countnonzero_overflow
Fix sanitizer issue in countNonZero32f
2024-10-10 20:30:40 +03:00
Alexander Smorkalov
0f234209da
Merge pull request #26278 from Quantizs:feature-create-face-recognizer-from-buffer
Added buffer-based model loading to FaceRecognizerSF
2024-10-10 17:17:00 +03:00
WU Jia
ef98c25d60
Merge pull request #25292 from kaingwade:features2d_parts_to_contrib
Features2d cleanup: Move several feature detectors and descriptors to opencv_contrib #25292

features2d cleanup: #24999

The PR moves KAZE, AKAZE, AgastFeatureDetector, BRISK and BOW to opencv_contrib/xfeatures2d.

Related PR: opencv/opencv_contrib#3709
2024-10-10 17:10:22 +03:00
kallaballa
4cbb96b396 use new instead of malloc and guard it 2024-10-10 15:14:58 +02:00
kallaballa
50f6d54f87 renaming 2024-10-10 14:48:49 +02:00
Vincent Rabaud
16ea1382f7 Fix sanitizer issue in countNonZero32f
In that function, the floats are cast to int to be compared to 0.
But a float can be -0 or +0, hence
define CHECK_NZ_FP(x) ((x)*2 != 0)
to remove the sign bit. Except that can trigger the sanitizer:
runtime error: signed integer overflow: -1082130432 * 2 cannot be represented in type 'int'
Doing everything in uint instead of int is properly defined by the
standard.
2024-10-10 13:35:49 +02:00
Wanli
687e37e6a8
Merge pull request #25892 from WanliZhong:v_sincos
Add support for v_sin and v_cos (Sine and Cosine) #25892

This PR aims to implement `v_sincos(v_float16 x)`, `v_sincos(v_float32 x)` and `v_sincos(v_float64 x)`. 
Merged after https://github.com/opencv/opencv/pull/25891 and https://github.com/opencv/opencv/pull/26023

**NOTE:** 
Also, the patch changes already added `v_exp`, `v_log` and `v_erf` to pass parameters by reference instead of by value, to match API of other universal intrinsics.

TODO:
- [x] double and half float precision
- [x] tests for them
- [x] doc to explain the implementation

### Pull Request Readiness Checklist

See details at https://github.com/opencv/opencv/wiki/How_to_contribute#making-a-good-pull-request

- [x] I agree to contribute to the project under Apache 2 License.
- [x] To the best of my knowledge, the proposed patch is not based on a code under GPL or another license that is incompatible with OpenCV
- [x] The PR is proposed to the proper branch
- [ ] There is a reference to the original bug report and related work
- [ ] There is accuracy test, performance test and test data in opencv_extra repository, if applicable
      Patch to opencv_extra has the same branch name.
- [ ] The feature is well documented and sample code can be built with the project CMake
2024-10-10 13:25:12 +03:00
Karsten Wiese
2a681bbb6b C++26 Deprecated Arithmetic Conversion: Fix core/mat.inl.hpp
Prefix enums with '+' to make clang c++26 add to them again.
2024-10-10 10:40:19 +02:00
kallaballa
63b5dee274 fixed bug: variable shadowing 2024-10-10 06:35:42 +02:00
kallaballa
8ba7389b21 properly size the devices array 2024-10-10 06:32:22 +02:00
kallaballa
885bbc643f renaming 2024-10-10 06:30:33 +02:00
kallaballa
dceeb47cd3 rewrote clgl device discovery 2024-10-10 00:02:56 +02:00
Maksim Shabunin
d0e410da93 C-API cleanup: rework ArrayTest to use new arrays only 2024-10-09 22:36:20 +03:00
Alexander Smorkalov
69803e7b99
Merge pull request #26216 from hanliutong:rvv-hal-merge
Add the HAL implementation for the merge function on RISC-V Vector.
2024-10-09 17:07:57 +03:00
quantizs
e1b06371ad Added buffer-based model loading to FaceRecognizerSF
- Implemented a new `create` method in `FaceRecognizerSF` to allow model and configuration loading from memory buffers (std::vector<uchar>), similar to the existing functionality in `FaceDetectorYN`.
- Updated `face_recognize.cpp` with a new constructor in `FaceRecognizerSFImpl` that supports buffer-based loading for both model weights and network configuration.
- Ensured compatibility with both file-based and buffer-based model loading by maintaining consistent backend and target settings across both constructors.
- This change improves flexibility, allowing FaceRecognizerSF to be instantiated from memory buffers, which is useful for dynamic model loading scenarios such as embedded systems or applications where models are loaded in-memory.
2024-10-09 15:13:47 +02:00