Modified TFLite parser for the new dnn engine #26330
The new dnn graph is creating just by defining input and output names of each layer.
Some TFLite layers has fused activation, which doesn't have layer name and input and output names. Also some layers require additional preprocessing layers (e.g. NHWC -> NCHW). All these layers should be added to the graph with some unique layer and input and output names.
I solve this problem by adding additionalPreLayer and additionalPostLayer layers.
If a layer has a fused activation, I add additionalPostLayer and change input and output names this way:
**original**: conv_relu(conv123, conv123_input, conv123_output)
**new**: conv(conv123, conv123_input, conv123_output_additional_post_layer) + relu(conv123_relu, conv1_output_additional_post_layer, conv123_output)
If a layer has additional preprocessing layer, I change input and output names this way:
**original**: permute_reshape(reshape345, reshape345_input, reshape345_output)
**new**: permute(reshape345_permute, reshape345_input, reshape345_input_additional_pre_layer) + reshape(reshape345, reshape345_input_additional_pre_layer, reshape345_output)
### Pull Request Readiness Checklist
See details at https://github.com/opencv/opencv/wiki/How_to_contribute#making-a-good-pull-request
- [x] I agree to contribute to the project under Apache 2 License.
- [x] To the best of my knowledge, the proposed patch is not based on a code under GPL or another license that is incompatible with OpenCV
- [x] The PR is proposed to the proper branch
- [ ] There is a reference to the original bug report and related work
- [x] There is accuracy test, performance test and test data in opencv_extra repository, if applicable
Patch to opencv_extra has the same branch name.
- [x] The feature is well documented and sample code can be built with the project CMake
New dnn engine #26056
This is the 1st PR with the new engine; CI is green and PR is ready to be merged, I think.
Merge together with https://github.com/opencv/opencv_contrib/pull/3794
---
**Known limitations:**
* [solved] OpenVINO is temporarily disabled, but is probably easy to restore (it's not a deal breaker to merge this PR, I guess)
* The new engine does not support any backends nor any targets except for the default CPU implementation. But it's possible to choose the old engine when loading a model, then all the functionality is available.
* [Caffe patch is here: #26208] The new engine only supports ONNX. When a model is constructed manually or is loaded from a file of different format (.tf, .tflite, .caffe, .darknet), the old engine is used.
* Even in the case of ONNX some layers are not supported by the new engine, such as all quantized layers (including DequantizeLinear, QuantizeLinear, QLinearConv etc.), LSTM, GRU, .... It's planned, of course, to have full support for ONNX by OpenCV 5.0 gold release. When a loaded model contains unsupported layers, we switch to the old engine automatically (at ONNX parsing time, not at `forward()` time).
* Some layers , e.g. Expat, are only partially supported by the new engine. In the case of unsupported flavours it switches to the old engine automatically (at ONNX parsing time, not at `forward()` time).
* 'Concat' graph optimization is disabled. The optimization eliminates Concat layer and instead makes the layers that generate tensors to be concatenated to write the outputs to the final destination. Of course, it's only possible when `axis=0` or `axis=N=1`. The optimization is not compatible with dynamic shapes since we need to know in advance where to store the tensors. Because some of the layer implementations have been modified to become more compatible with the new engine, the feature appears to be broken even when the old engine is used.
* Some `dnn::Net` API is not available with the new engine. Also, shape inference may return false if some of the output or intermediate tensors' shapes cannot be inferred without running the model. Probably this can be fixed by a dummy run of the model with zero inputs.
* Some overloads of `dnn::Net::getFLOPs()` and `dnn::Net::getMemoryConsumption()` are not exposed any longer in wrapper generators; but the most useful overloads are exposed (and checked by Java tests).
* [in progress] A few Einsum tests related to empty shapes have been disabled due to crashes in the tests and in Einsum implementations. The code and the tests need to be repaired.
* OpenCL implementation of Deconvolution is disabled. It's very bad and very slow anyway; need to be completely revised.
* Deconvolution3D test is now skipped, because it was only supported by CUDA and OpenVINO backends, both of which are not supported by the new engine.
* Some tests, such as FastNeuralStyle, checked that the in the case of CUDA backend there is no fallback to CPU. Currently all layers in the new engine are processed on CPU, so there are many fallbacks. The checks, therefore, have been temporarily disabled.
---
- [x] I agree to contribute to the project under Apache 2 License.
- [x] To the best of my knowledge, the proposed patch is not based on a code under GPL or another license that is incompatible with OpenCV
- [x] The PR is proposed to the proper branch
- [ ] There is a reference to the original bug report and related work
- [ ] There is accuracy test, performance test and test data in opencv_extra repository, if applicable
Patch to opencv_extra has the same branch name.
- [ ] The feature is well documented and sample code can be built with the project CMake
❗ Potential conflicts with #25958
C-API cleanup: highgui, videoio #26025❗ Merge with: opencv/opencv_contrib#3780
This PR removes usage of C-API from highgui and videoio modules. Only source code is affected, tests were not using obsolete API.
It should be possible to backport these changes to 4.x branch preserving removed public headers and source files (`*_c.h` and `*_c.cpp`).
#### Checklist
I tried to verify as many backends as possible, though these checks were not as thorough as I'd like them to be. Below is the checklist covering all modified backends with their statuses.
> 🔹 - small changes
> 🟢 - consider working
> ⚪ - considered untested
##### highgui
Pass | Backend | Local check | CI check
-----|---------|-------------|---------
🟢 | GTK2 | build + test, plugin build | build + test ❔🟢 | GTK3 | build + test, plugin build | build + test
🟢 | QT | build + test, plugin build |
⚪ | Wayland 🔹 | |
🟢 | WIN32 🔹 | | build + test
🟢 | Cocoa 🔹 | | build + test
⚪ | WinRT | |
##### videoio
Pass | Backend | Local check | CI check
-----|---------|-------------|---------
🟢 | Android Camera/MediaNDK 🔹 | | build
🟢 | Aravis | build |
🟢 | AVFoundation OSX | | build + test
⚪ | AVFoundation iOS | | build
🟢 | DC1394 | build |
🟢 | DShow 🔹 | | build
🟢 | FFMpeg | build, plugin build | build + test
🟢 | GPhoto 🔹 | build |
🟢 | GStreamer | build, plugin build | build + test
🟢 | Images | build | build + test
🟢 | MSMF 🔹 | | build + test
🟢 | OpenNI | build |
🟢 | PVAPI | build |
🟢 | V4L | build + test | build
🟢 | XIMEA | build |
🟢 | XINE 🔹 | build |
#### Notes
- local linux build checks performed using [this framework](https://github.com/mshabunin/opencv-videoio-build-check)
- minor extra changes made in both `cap_avfoundation*.mm` to make them slightly more synchronized - it would be better to combine them into a single one in the future
- configurations with plugins have been build but not tested
- **moved unrelated changes to separate PRs** ~two issues have been fixed in separate commits:~
- ~imgproc: missing `cv::hal::` color conversion functions has been used in MediaSDK backend~
- ~videoio/V4L: wrong color conversion mode caused bad colors for NV12 camera input format (RGB instead of BGR)~
It would be nice to check following functionality manually:
- [ ] OSX: camera input
- [ ] iOS: camera and file input
- [ ] WinRT: build, some testing
- [x] Linux/Wayland: build
Support for GatherND layer #26106
This PR adds support for GatherND layer. The layer was in comformance deny list initially.
### Pull Request Readiness Checklist
See details at https://github.com/opencv/opencv/wiki/How_to_contribute#making-a-good-pull-request
- [x] I agree to contribute to the project under Apache 2 License.
- [x] To the best of my knowledge, the proposed patch is not based on a code under GPL or another license that is incompatible with OpenCV
- [x] The PR is proposed to the proper branch
- [x] There is a reference to the original bug report and related work
- [x] There is accuracy test, performance test and test data in opencv_extra repository, if applicable
Patch to opencv_extra has the same branch name.
- [ ] The feature is well documented and sample code can be built with the project CMake
Add Support for Hardmax Layer #26079
This PR add support for `Hardmax` layer, which as previously listed in conformance deny list.
### Pull Request Readiness Checklist
See details at https://github.com/opencv/opencv/wiki/How_to_contribute#making-a-good-pull-request
- [x] I agree to contribute to the project under Apache 2 License.
- [x] To the best of my knowledge, the proposed patch is not based on a code under GPL or another license that is incompatible with OpenCV
- [x] The PR is proposed to the proper branch
- [ ] There is a reference to the original bug report and related work
- [x] There is accuracy test, performance test and test data in opencv_extra repository, if applicable
Patch to opencv_extra has the same branch name.
- [x] The feature is well documented and sample code can be built with the project CMake
dnn: add ONNX TopK #23279
Merge with https://github.com/opencv/opencv_extra/pull/1200
Partially fixes#22890 and #20258
To-do:
- [x] TopK forward impl
- [x] add tests
- [x] support Opset 1 & 10 if possible
- [ ] ~Support other backends~ (TopK has two outputs, which is not supported by other backends, such as openvino)
Perf:
M1 (time in millisecond)
| input shape | axis | dnn | ort |
| --------------- | ---- | ---- | ---- |
| (1000, 100) | 0 | 1.68 | 4.07 |
| (1000, 100) K5 | 0 | 1.13 | 0.12 |
| (1000, 100) | 1 | 0.96 | 0.77 |
| (100, 100, 100) | 0 | 10.00 | 31.13 |
| (100, 100, 100) | 1 | 7.33 | 9.17 |
| (100, 100, 100) | 2 | 7.52 | 9.48 |
M2 (time in milisecond)
| input shape | axis | dnn | ort |
| --------------- | ---- | ---- | ---- |
| (1000, 100) | 0 | 0.76 | 2.44 |
| (1000, 100) K5 | 0 | 0.68 | 0.07 |
| (1000, 100) | 1 | 0.41 | 0.50 |
| (100, 100, 100) | 0 | 4.83 | 17.52|
| (100, 100, 100) | 1 | 3.60 | 5.08 |
| (100, 100, 100) | 2 | 3.73 | 5.10 |
ONNXRuntime performance testing script: https://gist.github.com/fengyuentau/a119f94fd16721ec9974b8c7b0a45d4c
### Pull Request Readiness Checklist
See details at https://github.com/opencv/opencv/wiki/How_to_contribute#making-a-good-pull-request
- [x] I agree to contribute to the project under Apache 2 License.
- [x] To the best of my knowledge, the proposed patch is not based on a code under GPL or another license that is incompatible with OpenCV
- [x] The PR is proposed to the proper branch
- [x] There is a reference to the original bug report and related work
- [x] There is accuracy test, performance test and test data in opencv_extra repository, if applicable
Patch to opencv_extra has the same branch name.
- [x] The feature is well documented and sample code can be built with the project CMake
Add sample for GPT2 inference #25868
### Pull Request Readiness Checklist
This PR adds sample for inferencing GPT-2 model. More specificly implementation of GPT-2 from [this repository](https://github.com/karpathy/build-nanogpt). Currently inference in OpenCV is only possible to do with fixed window size due to not supported dynamic shapes.
See details at https://github.com/opencv/opencv/wiki/How_to_contribute#making-a-good-pull-request
- [x] I agree to contribute to the project under Apache 2 License.
- [x] To the best of my knowledge, the proposed patch is not based on a code under GPL or another license that is incompatible with OpenCV
- [x] The PR is proposed to the proper branch
- [ ] There is a reference to the original bug report and related work
- [ ] There is accuracy test, performance test and test data in opencv_extra repository, if applicable
Patch to opencv_extra has the same branch name.
- [x] The feature is well documented and sample code can be built with the project CMake
python: attempts to fix 3d mat parsing problem for dnn #25810
Fixes https://github.com/opencv/opencv/issues/25762https://github.com/opencv/opencv/issues/23242
Relates https://github.com/opencv/opencv/issues/25763https://github.com/opencv/opencv/issues/19091
Although `cv.Mat` has already been introduced to workaround this problem, people do not know it and it kind of leads to confusion with `numpy.array`. This patch adds a "switch" to turn off the auto multichannel feature when the API is from cv::dnn::Net (more specifically, `setInput`) and the parameter is of type `Mat`. This patch only leads to changes of three places in `pyopencv_generated_types_content.h`:
```.diff
static PyObject* pyopencv_cv_dnn_dnn_Net_setInput(PyObject* self, PyObject* py_args, PyObject* kw)
{
...
- pyopencv_to_safe(pyobj_blob, blob, ArgInfo("blob", 0)) &&
+ pyopencv_to_safe(pyobj_blob, blob, ArgInfo("blob", 8)) &&
...
}
// I guess we also need to change this as one-channel blob is expected for param
static PyObject* pyopencv_cv_dnn_dnn_Net_setParam(PyObject* self, PyObject* py_args, PyObject* kw)
{
...
- pyopencv_to_safe(pyobj_blob, blob, ArgInfo("blob", 0)) )
+ pyopencv_to_safe(pyobj_blob, blob, ArgInfo("blob", 8)) )
...
- pyopencv_to_safe(pyobj_blob, blob, ArgInfo("blob", 0)) )
+ pyopencv_to_safe(pyobj_blob, blob, ArgInfo("blob", 8)) )
...
}
```
Others are unchanged, e.g. `dnn_SegmentationModel` and stuff like that.
### Pull Request Readiness Checklist
See details at https://github.com/opencv/opencv/wiki/How_to_contribute#making-a-good-pull-request
- [x] I agree to contribute to the project under Apache 2 License.
- [x] To the best of my knowledge, the proposed patch is not based on a code under GPL or another license that is incompatible with OpenCV
- [x] The PR is proposed to the proper branch
- [x] There is a reference to the original bug report and related work
- [x] There is accuracy test, performance test and test data in opencv_extra repository, if applicable
Patch to opencv_extra has the same branch name.
- [x] The feature is well documented and sample code can be built with the project CMake
dnn: add DepthToSpace and SpaceToDepth #25779
We are working on updating WeChat QRCode module. One of the new models is a fully convolutional model and hence it should be able to run with different input shapes. However, it has an operator `DepthToSpace`, which is parsed as a subgraph of `Reshape -> Permute -> Reshape` with a fixed shape getting during parsing. The subgraph itself is not a problem, but the true problem is the subgraph with a fixed input and output shape regardless input changes. This does not allow the model to run with different input shapes.
Solution is to add a dedicated layer for DepthtoSpace and SpaceToDepth.
Backend support:
- [x] CPU
- [x] CUDA
- [x] OpenCL
- [x] OpenVINO
- [x] CANN
- [x] TIMVX
- ~Vulkan~ (missing fundamental tools, like permutation and reshape)
### Pull Request Readiness Checklist
See details at https://github.com/opencv/opencv/wiki/How_to_contribute#making-a-good-pull-request
- [x] I agree to contribute to the project under Apache 2 License.
- [x] To the best of my knowledge, the proposed patch is not based on a code under GPL or another license that is incompatible with OpenCV
- [x] The PR is proposed to the proper branch
- [x] There is a reference to the original bug report and related work
- [x] There is accuracy test, performance test and test data in opencv_extra repository, if applicable
Patch to opencv_extra has the same branch name.
- [x] The feature is well documented and sample code can be built with the project CMake
Added bool support to dnn #25605
Added bool support to dnn pipeline (CPU, OpenVINO and CUDA pipelines).
Added bool support to these layers(CPU and OpenVINO):
- Equal, Greater, GreaterOrEqual, Less, LessOrEqual
- Not
- And, Or, Xor
- Where
Enabled all the conformance tests for these layers.
### Pull Request Readiness Checklist
See details at https://github.com/opencv/opencv/wiki/How_to_contribute#making-a-good-pull-request
- [x] I agree to contribute to the project under Apache 2 License.
- [x] To the best of my knowledge, the proposed patch is not based on a code under GPL or another license that is incompatible with OpenCV
- [x] The PR is proposed to the proper branch
- [ ] There is a reference to the original bug report and related work
- [x] There is accuracy test, performance test and test data in opencv_extra repository, if applicable
Patch to opencv_extra has the same branch name.
- [x] The feature is well documented and sample code can be built with the project CMake
Current net exporter `dump` and `dumpToFile` exports the network structure (and its params) to a .dot file which works with `graphviz`. This is hard to use and not friendly to new user. What's worse, the produced picture is not looking pretty.
dnn: better net exporter that works with netron #25582
This PR introduces new exporter `dumpToPbtxt` and uses this new exporter by default with environment variable `OPENCV_DNN_NETWORK_DUMP`. It mimics the string output of a onnx model but modified with dnn-specific changes, see below for an example.
![image](https://github.com/opencv/opencv/assets/17219438/0644bed1-da71-4019-8466-88390698e4df)
## Usage
Call `cv::dnn::Net::dumpToPbtxt`:
```cpp
TEST(DumpNet, dumpToPbtxt) {
std::string path = "/path/to/model.onnx";
auto net = readNet(path);
Mat input(std::vector<int>{1, 3, 640, 480}, CV_32F);
net.setInput(input);
net.dumpToPbtxt("yunet.pbtxt");
}
```
Set `export OPENCV_DNN_NETWORK_DUMP=1`
```cpp
TEST(DumpNet, env) {
std::string path = "/path/to/model.onnx";
auto net = readNet(path);
Mat input(std::vector<int>{1, 3, 640, 480}, CV_32F);
net.setInput(input);
net.forward();
}
```
---
Note:
- `pbtxt` is registered as one of the ONNX model suffix in netron. So you can see `module: ai.onnx` and such in the model.
- We can get the string output of an ONNX model with the following script
```python
import onnx
net = onnx.load("/path/to/model.onnx")
net_str = str(net)
file = open("/path/to/model.pbtxt", "w")
file.write(net_str)
file.close()
```
### Pull Request Readiness Checklist
See details at https://github.com/opencv/opencv/wiki/How_to_contribute#making-a-good-pull-request
- [x] I agree to contribute to the project under Apache 2 License.
- [x] To the best of my knowledge, the proposed patch is not based on a code under GPL or another license that is incompatible with OpenCV
- [x] The PR is proposed to the proper branch
- [ ] There is a reference to the original bug report and related work
- [ ] There is accuracy test, performance test and test data in opencv_extra repository, if applicable
Patch to opencv_extra has the same branch name.
- [x] The feature is well documented and sample code can be built with the project CMake
Remove dnn::layer::allocate in doc #25591
### Pull Request Readiness Checklist
See details at https://github.com/opencv/opencv/wiki/How_to_contribute#making-a-good-pull-request
- [x] I agree to contribute to the project under Apache 2 License.
- [x] To the best of my knowledge, the proposed patch is not based on a code under GPL or another license that is incompatible with OpenCV
- [x] The PR is proposed to the proper branch
- [x] There is a reference to the original bug report and related work #25589
- [ ] There is accuracy test, performance test and test data in opencv_extra repository, if applicable
Patch to opencv_extra has the same branch name.
- [ ] The feature is well documented and sample code can be built with the project CMake
Added int32, int64 support and type inference to dnn #24411
**Added a type inference to dnn similar to the shape inference, added int32 and int64 support.**
- Added getTypes method for layers that calculates layer outputs types and internals types from inputs types (Similar to getMemoryShapes). By default outputs and internals types = input[0] type
- Added type inference pipeline similar to shape inference pipeline. LayersShapes struct (that is used in shape inference pipeline) now contains both shapes and types
- All layers output blobs are now allocated using the calculated types from the type inference.
- Inputs and constants with int32 and int64 types are not automatically converted into float32 now.
- Added int32 and int64 support for all the layers with indexing and for all the layers required in tests.
Added int32 and int64 support for CUDA:
- Added host<->device data moving for int32 and int64
- Added int32 and int64 support for several layers (just slightly modified CUDA C++ templates)
Passed all the accuracy tests on CPU, OCL, OCL_FP16, CUDA, CUDA_FP16. (except RAFT model)
**CURRENT PROBLEMS**:
- ONNX parser always converts int64 constants and layers attributes to int32, so some models with int64 constants doesn't work (e.g. RAFT). The solution is to disable int64->int32 conversion and fix attributes reading in a lot of ONNX layers parsers (https://github.com/opencv/opencv/issues/25102)
- I didn't add type inference and int support to VULCAN, so it doesn't work at all now.
- Some layers don't support int yet, so some unknown models may not work.
**CURRENT WORKAROUNDS**:
- CPU arg_layer indides are implemented in int32 followed by a int32->int64 conversion (the master branch has the same workaround with int32->float conversion)
- CPU and OCL pooling_layer indices are implemented in float followed by a float->int64 conversion
- CPU gather_layer indices are implemented in int32, so int64 indices are converted to int32 (the master branch has the same workaround with float->int32 conversion)
**DISABLED TESTS**:
- RAFT model
**REMOVED TESTS**:
- Greater_input_dtype_int64 (because it doesn't fit ONNX rules, the whole test is just comparing float tensor with int constant)
**TODO IN NEXT PULL REQUESTS**:
- Add int64 support for ONNX parser
- Add int support for more layers
- Add int support for OCL (currently int layers just run on CPU)
- Add int tests
- Add int support for other backends
dnn cleanup: On-fly-quantization removal #2498
On-fly-quantization is first introduced via https://github.com/opencv/opencv/pull/20228.
We decided to remove it but keep int8 layers implementation because on-fly-quantization
is less practical given the fact that there has been so many dedicated tools for model
quantization.
### Pull Request Readiness Checklist
See details at https://github.com/opencv/opencv/wiki/How_to_contribute#making-a-good-pull-request
- [x] I agree to contribute to the project under Apache 2 License.
- [x] To the best of my knowledge, the proposed patch is not based on a code under GPL or another license that is incompatible with OpenCV
- [x] The PR is proposed to the proper branch
- [x] There is a reference to the original bug report and related work
- [x] There is accuracy test, performance test and test data in opencv_extra repository, if applicable
Patch to opencv_extra has the same branch name.
- [x] The feature is well documented and sample code can be built with the project CMake
python: accept path-like objects wherever file names are expected #24773
Merry Christmas, all 🎄
Implements #15731
Support is enabled for all arguments named `filename` or `filepath` (case-insensitive), or annotated with `CV_WRAP_FILE_PATH`.
Support is based on `PyOS_FSPath`, which is available in Python 3.6+. When running on older Python versions the arguments must have a `str` value as before.
### Pull Request Readiness Checklist
See details at https://github.com/opencv/opencv/wiki/How_to_contribute#making-a-good-pull-request
- [x] I agree to contribute to the project under Apache 2 License.
- [x] To the best of my knowledge, the proposed patch is not based on a code under GPL or another license that is incompatible with OpenCV
- [x] The PR is proposed to the proper branch
- [x] There is a reference to the original bug report and related work
- [ ] There is accuracy test, performance test and test data in opencv_extra repository, if applicable
Patch to opencv_extra has the same branch name.
- [ ] The feature is well documented and sample code can be built with the project CMake
dnn onnx: add group norm layer #24610
dnn onnx: add group norm layer
Todo:
- [x] speed up by multi-threading
- [x] add perf
- [x] add backend: OpenVINO
- [x] add backend: CUDA
- [x] add backend: OpenCL (no fp16)
- [ ] add backend: CANN
### Pull Request Readiness Checklist
See details at https://github.com/opencv/opencv/wiki/How_to_contribute#making-a-good-pull-request
- [x] I agree to contribute to the project under Apache 2 License.
- [x] To the best of my knowledge, the proposed patch is not based on a code under GPL or another license that is incompatible with OpenCV
- [x] The PR is proposed to the proper branch
- [ ] There is a reference to the original bug report and related work
- [x] There is accuracy test, performance test and test data in opencv_extra repository, if applicable
Patch to opencv_extra has the same branch name.
- [x] The feature is well documented and sample code can be built with the project CMake
Co-authored-by: fengyuentau <yuantao.feng@opencv.org.cn>
Try to enable Winograd by default in FP32 mode and disable it by default in FP16 mode #24709
Hopefully, it will resolve regressions since 4.8.1 (see also https://github.com/opencv/opencv/pull/24587)
### Pull Request Readiness Checklist
See details at https://github.com/opencv/opencv/wiki/How_to_contribute#making-a-good-pull-request
- [ ] I agree to contribute to the project under Apache 2 License.
- [ ] To the best of my knowledge, the proposed patch is not based on a code under GPL or another license that is incompatible with OpenCV
- [ ] The PR is proposed to the proper branch
- [ ] There is a reference to the original bug report and related work
- [ ] There is accuracy test, performance test and test data in opencv_extra repository, if applicable
Patch to opencv_extra has the same branch name.
- [ ] The feature is well documented and sample code can be built with the project CMake
dnn: add attention layer #24476Resolves#24609
Merge with: https://github.com/opencv/opencv_extra/pull/1128.
Attention operator spec from onnxruntime: https://github.com/microsoft/onnxruntime/blob/v1.16.1/docs/ContribOperators.md#com.microsoft.Attention.
TODO:
- [x] benchmark (before this PR vs. with this PR vs. ORT).
- [x] Layer fusion: Take care Slice with end=INT64_MAX.
- [x] Layer fusion: match more potential attention (VIT) patterns.
- [x] Single-head attention is supported.
- [x] Test AttentionSubgraph fusion.
- [x] Add acc tests for VIT_B_32 and VitTrack
- [x] Add perf tests for VIT_B_32 and VitTrack
## Benchmarks
Platform: Macbook Air M1.
### Attention Subgraph
Input scale: [1, 197, 768].
| | mean (ms) | median (ms) | min (ms) |
| ---------------------- | --------- | ----------- | -------- |
| w/ Attention (this PR) | 3.75 | 3.68 | 3.22 |
| w/o Attention | 9.06 | 9.01 | 8.24 |
| ORT (python) | 4.32 | 2.63 | 2.50 |
### ViTs
All data in millisecond (ms).
| ViTs | With Attention | Without Attention | ORT |
| -------- | -------------- | ----------------- | ------ |
| vit_b_16 | 302.77 | 365.35 | 109.70 |
| vit_b_32 | 89.92 | 116.22 | 30.36 |
| vit_l_16 | 1593.32 | 1730.74 | 419.92 |
| vit_l_32 | 468.11 | 577.41 | 134.12 |
| VitTrack | 3.80 | 3.87 | 2.25 |
### Pull Request Readiness Checklist
See details at https://github.com/opencv/opencv/wiki/How_to_contribute#making-a-good-pull-request
- [x] I agree to contribute to the project under Apache 2 License.
- [x] To the best of my knowledge, the proposed patch is not based on a code under GPL or another license that is incompatible with OpenCV
- [x] The PR is proposed to the proper branch
- [x] There is a reference to the original bug report and related work
- [x] There is accuracy test, performance test and test data in opencv_extra repository, if applicable
Patch to opencv_extra has the same branch name.
- [x] The feature is well documented and sample code can be built with the project CMake
Add blobrecttoimage #24539
### Pull Request Readiness Checklist
resolves https://github.com/opencv/opencv/issues/14659
See details at https://github.com/opencv/opencv/wiki/How_to_contribute#making-a-good-pull-request
- [x] I agree to contribute to the project under Apache 2 License.
- [x] To the best of my knowledge, the proposed patch is not based on a code under GPL or another license that is incompatible with OpenCV
- [x] The PR is proposed to the proper branch
- [x] There is a reference to the original bug report and related work #14659
- [x] There is accuracy test, performance test and test data in opencv_extra repository, if applicable
Patch to opencv_extra has the same branch name.
- [x] The feature is well documented and sample code can be built with the project CMake
dnn: refactor ONNX MatMul with fastGemm #24694
Done:
- [x] add backends
- [x] CUDA
- [x] OpenVINO
- [x] CANN
- [x] OpenCL
- [x] Vulkan
- [x] add perf tests
- [x] const B case
### Benchmark
Tests are done on M1. All data is in milliseconds (ms).
| Configuration | MatMul (Prepacked) | MatMul | InnerProduct |
| - | - | - | - |
| A=[12, 197, 197], B=[12, 197, 64], trans_a=0, trans_b=0 | **0.39** | 0.41 | 1.33 |
| A=[12, 197, 64], B=[12, 64, 197], trans_a=0, trans_b=0 | **0.42** | 0.42 | 1.17 |
| A=[12, 50, 64], B=[12, 64, 50], trans_a=0, trans_b=0 | **0.13** | 0.15 | 0.33 |
| A=[12, 50, 50], B=[12, 50, 64], trans_a=0, trans_b=0 | **0.11** | 0.13 | 0.22 |
| A=[16, 197, 197], B=[16, 197, 64], trans_a=0, trans_b=0 | **0.46** | 0.54 | 1.46 |
| A=[16, 197, 64], B=[16, 64, 197], trans_a=0, trans_b=0 | **0.46** | 0.95 | 1.74 |
| A=[16, 50, 64], B=[16, 64, 50], trans_a=0, trans_b=0 | **0.18** | 0.32 | 0.43 |
| A=[16, 50, 50], B=[16, 50, 64], trans_a=0, trans_b=0 | **0.15** | 0.25 | 0.25 |
### Pull Request Readiness Checklist
See details at https://github.com/opencv/opencv/wiki/How_to_contribute#making-a-good-pull-request
- [x] I agree to contribute to the project under Apache 2 License.
- [x] To the best of my knowledge, the proposed patch is not based on a code under GPL or another license that is incompatible with OpenCV
- [x] The PR is proposed to the proper branch
- [x] There is a reference to the original bug report and related work
- [x] There is accuracy test, performance test and test data in opencv_extra repository, if applicable
Patch to opencv_extra has the same branch name.
- [x] The feature is well documented and sample code can be built with the project CMake
Add support for custom padding in DNN preprocessing #24569
This PR add functionality for specifying value in padding.
It is required in many preprocessing pipelines in DNNs such as Yolox object detection model
### Pull Request Readiness Checklist
See details at https://github.com/opencv/opencv/wiki/How_to_contribute#making-a-good-pull-request
- [x] I agree to contribute to the project under Apache 2 License.
- [x] To the best of my knowledge, the proposed patch is not based on a code under GPL or another license that is incompatible with OpenCV
- [x] The PR is proposed to the proper branch
- [ ] There is a reference to the original bug report and related work
- [x] There is accuracy test, performance test and test data in opencv_extra repository, if applicable
Patch to opencv_extra has the same branch name.
- [x] The feature is well documented and sample code can be built with the project CMake
* add Winograd FP16 implementation
* fixed dispatching of FP16 code paths in dnn; use dynamic dispatcher only when NEON_FP16 is enabled in the build and the feature is present in the host CPU at runtime
* fixed some warnings
* hopefully fixed winograd on x64 (and maybe other platforms)
---------
Co-authored-by: Vadim Pisarevsky <vadim.pisarevsky@gmail.com>
dnn onnx: add instance norm layer #24378
Resolves https://github.com/opencv/opencv/issues/24377
Relates https://github.com/opencv/opencv/pull/24092#discussion_r1349841644
| Perf | multi-thread | single-thread |
| - | - | - |
| x: [2, 64, 180, 240] | 3.95ms | 11.12ms |
Todo:
- [x] speed up by multi-threading
- [x] add perf
- [x] add backend: OpenVINO
- [x] add backend: CUDA
- [x] add backend: OpenCL (no fp16)
- [ ] add backend: CANN (will be done via https://github.com/opencv/opencv/pull/24462)
### Pull Request Readiness Checklist
See details at https://github.com/opencv/opencv/wiki/How_to_contribute#making-a-good-pull-request
- [x] I agree to contribute to the project under Apache 2 License.
- [x] To the best of my knowledge, the proposed patch is not based on a code under GPL or another license that is incompatible with OpenCV
- [x] The PR is proposed to the proper branch
- [x] There is a reference to the original bug report and related work
- [x] There is accuracy test, performance test and test data in opencv_extra repository, if applicable
Patch to opencv_extra has the same branch name.
- [x] The feature is well documented and sample code can be built with the project CMake
```
force_builders=Linux OpenCL,Win64 OpenCL,Custom
buildworker:Custom=linux-4
build_image:Custom=ubuntu:18.04
modules_filter:Custom=none
disable_ipp:Custom=ON
```
dnn: add shared fastNorm kernel for mvn, instance norm and layer norm #24409
Relates https://github.com/opencv/opencv/pull/24378#issuecomment-1756906570
TODO:
- [x] add fastNorm
- [x] refactor layer norm with fastNorm
- [x] refactor mvn with fastNorm
- [ ] add onnx mvn in importer (in a new PR?)
- [ ] refactor instance norm with fastNorm (in another PR https://github.com/opencv/opencv/pull/24378, need to merge this one first though)
### Pull Request Readiness Checklist
See details at https://github.com/opencv/opencv/wiki/How_to_contribute#making-a-good-pull-request
- [x] I agree to contribute to the project under Apache 2 License.
- [x] To the best of my knowledge, the proposed patch is not based on a code under GPL or another license that is incompatible with OpenCV
- [x] The PR is proposed to the proper branch
- [x] There is a reference to the original bug report and related work
- [x] There is accuracy test, performance test and test data in opencv_extra repository, if applicable
Patch to opencv_extra has the same branch name.
- [x] The feature is well documented and sample code can be built with the project CMake
Remove torch (old torch7) from dnn in 5.x #24294
Merge with https://github.com/opencv/opencv_extra/pull/1097
Completely removed torch (old torch7) from dnn:
- removed modules/dnn/src/torch directory that contained torch7 model parser
- removed readNetFromTorch() and readTorchBlob() public functions
- removed torch7 references from comments and help texts
- replaced links to t7 models by links to similar onnx models in js_style_transfer turtorial (similar to https://github.com/opencv/opencv/pull/24245/files)
Native ONNX to Inference Engine backend #21066Resolves#21052
### Pull Request Readiness Checklist
See details at https://github.com/opencv/opencv/wiki/How_to_contribute#making-a-good-pull-request
- [x] I agree to contribute to the project under Apache 2 License.
- [x] To the best of my knowledge, the proposed patch is not based on a code under GPL or other license that is incompatible with OpenCV
- [x] The PR is proposed to proper branch
- [x] There is reference to original bug report and related work
- [ ] There is accuracy test, performance test and test data in opencv_extra repository, if applicable
- [ ] The feature is well documented and sample code can be built with the project CMake
GSoC Add ONNX Support for GatherElements #24092
Merge with: https://github.com/opencv/opencv_extra/pull/1082
Adds support to the ONNX operator GatherElements [operator docs](https://github.com/onnx/onnx/blob/main/docs/Operators.md#GatherElements)
Added tests to opencv_extra at pull request https://github.com/opencv/opencv_extra/pull/1082
### Pull Request Readiness Checklist
See details at https://github.com/opencv/opencv/wiki/How_to_contribute#making-a-good-pull-request
- [x] I agree to contribute to the project under Apache 2 License.
- [x] To the best of my knowledge, the proposed patch is not based on a code under GPL or another license that is incompatible with OpenCV
- [x] The PR is proposed to the proper branch
- [x] There is a reference to the original bug report and related work
- [x] There is accuracy test, performance test and test data in opencv_extra repository, if applicable
Patch to opencv_extra has the same branch name.
- [x] The feature is well documented and sample code can be built with the project CMake
dnn: cleanup of halide backend for 5.x #24231
Merge with https://github.com/opencv/opencv_extra/pull/1092.
### Pull Request Readiness Checklist
See details at https://github.com/opencv/opencv/wiki/How_to_contribute#making-a-good-pull-request
- [x] I agree to contribute to the project under Apache 2 License.
- [x] To the best of my knowledge, the proposed patch is not based on a code under GPL or another license that is incompatible with OpenCV
- [x] The PR is proposed to the proper branch
- [x] There is a reference to the original bug report and related work
- [x] There is accuracy test, performance test and test data in opencv_extra repository, if applicable
Patch to opencv_extra has the same branch name.
- [x] The feature is well documented and sample code can be built with the project CMake
Add Support for Einsum Layer #24037
### This PR adding support for [Einsum Layer](https://pytorch.org/docs/stable/generated/torch.einsum.html) (in progress).
This PR is currently not to be merged but only reviewed. Test cases are located in [#1090](https://github.com/opencv/opencv_extra/pull/1090)RP in OpenCV extra
**DONE**:
- [x] 2-5D GMM support added
- [x] Matrix transpose support added
- [x] Reduction type comupte 'ij->j'
- [x] 2nd shape computation - during forward
**Next PRs**:
- [ ] Broadcasting reduction "...ii ->...i"
- [ ] Add lazy shape deduction. "...ij, ...jk->...ik"
- [ ] Add implicit output computation support. "bij,bjk ->" (output subscripts should be "bik")
- [ ] Add support for CUDA backend
- [ ] BatchWiseMultiply optimize
**Later in 5.x version (requires support for 1D matrices)**:
- [ ] Add 1D vector multiplication support
- [ ] Inter product "i, i" (problems with 1D shapes)
### Pull Request Readiness Checklist
See details at https://github.com/opencv/opencv/wiki/How_to_contribute#making-a-good-pull-request
- [x] I agree to contribute to the project under Apache 2 License.
- [x] To the best of my knowledge, the proposed patch is not based on a code under GPL or another license that is incompatible with OpenCV
- [x] The PR is proposed to the proper branch
- [ ] There is a reference to the original bug report and related work
- [x] There is accuracy test, performance test and test data in opencv_extra repository, if applicable
Patch to opencv_extra has the same branch name.
- [x] The feature is well documented and sample code can be built with the project CMake
* attempt to add 0d/1d mat support to OpenCV
* revised the patch; now 1D mat is treated as 1xN 2D mat rather than Nx1.
* a step towards 'green' tests
* another little step towards 'green' tests
* calib test failures seem to be fixed now
* more fixes _core & _dnn
* another step towards green ci; even 0D mat's (a.k.a. scalars) are now partly supported!
* * fixed strange bug in aruco/charuco detector, not sure why it did not work
* also fixed a few remaining failures (hopefully) in dnn & core
* disabled failing GAPI tests - too complex to dig into this compiler pipeline
* hopefully fixed java tests
* trying to fix some more tests
* quick followup fix
* continue to fix test failures and warnings
* quick followup fix
* trying to fix some more tests
* partly fixed support for 0D/scalar UMat's
* use updated parseReduce() from upstream
* trying to fix the remaining test failures
* fixed [ch]aruco tests in Python
* still trying to fix tests
* revert "fix" in dnn's CUDA tensor
* trying to fix dnn+CUDA test failures
* fixed 1D umat creation
* hopefully fixed remaining cuda test failures
* removed training whitespaces
* first commit
* turned C from input to constant; force C constant in impl; better handling 0d/1d cases
* integrate with gemm from ficus nn
* fix const inputs
* adjust threshold for int8 tryQuantize
* adjust threshold for int8 quantized 2
* support batched gemm and matmul; tune threshold for rcnn_ilsvrc13; update googlenet
* add gemm perf against innerproduct
* add perf tests for innerproduct with bias
* fix perf
* add memset
* renamings for next step
* add dedicated perf gemm
* add innerproduct in perf_gemm
* remove gemm and innerproduct perf tests from perf_layer
* add perf cases for vit sizes; prepack constants
* remove batched gemm; fix wrong trans; optimize KC
* remove prepacking for const A; several fixes for const B prepacking
* add todos and gemm expression
* add optimized branch for avx/avx2
* trigger build
* update macros and signature
* update signature
* fix macro
* fix bugs for neon aarch64 & x64
* add backends: cuda, cann, inf_ngraph and vkcom
* fix cuda backend
* test commit for cuda
* test cuda backend
* remove debug message from cuda backend
* use cpu dispatcher
* fix neon macro undef in dispatcher
* fix dispatcher
* fix inner kernel for neon aarch64
* fix compiling issue on armv7; try fixing accuracy issue on other platforms
* broadcast C with beta multiplied; improve func namings
* fix bug for avx and avx2
* put all platform-specific kernels in dispatcher
* fix typos
* attempt to fix compile issues on x64
* run old gemm when neon, avx, avx2 are all not available; add kernel for armv7 neon
* fix typo
* quick fix: add macros for pack4
* quick fix: use vmlaq_f32 for armv7
* quick fix for missing macro of fast gemm pack f32 4
* disable conformance tests when optimized branches are not supported
* disable perf tests when optimized branches are not supported
* decouple cv_try_neon and cv_neon_aarch64
* drop googlenet_2023; add fastGemmBatched
* fix step in fastGemmBatched
* cpu: fix initialization ofb; gpu: support batch
* quick followup fix for cuda
* add default kernels
* quick followup fix to avoid macro redef
* optmized kernels for lasx
* resolve mis-alignment; remove comments
* tune performance for x64 platform
* tune performance for neon aarch64
* tune for armv7
* comment time consuming tests
* quick follow-up fix