Commit Graph

27866 Commits

Author SHA1 Message Date
Alexander Alekhin
f53ff0d01c Merge pull request #18151 from alalek:core_trace_fix_location 2020-08-21 18:54:40 +00:00
Alexander Alekhin
4f48dab023 Merge pull request #18150 from alalek:ocl_async_cleanup_no_warning 2020-08-21 18:54:08 +00:00
Namgoo Lee
a7ffcaab28 Remove compiler warnings 2020-08-21 23:52:30 +09:00
Namgoo Lee
f617f18e46 bit-exact cuda::equalizeHist 2020-08-21 22:53:40 +09:00
Alexander Alekhin
4372d75b26 Merge pull request #18135 from AnnaPetrovicheva:logo_text 2020-08-21 13:07:26 +00:00
Clement Courbet
da555a2c9b Optimize opencv dft by vectorizing radix2 and radix3.
This is useful for non power-of-two sizes when WITH_IPP is not an option.

This shows consistent improvement over openCV benchmarks, and we measure
even larger improvements on our internal workloads.

For example, for 320x480, `32FC*`, we can see a ~5% improvement}, as
`320=2^6*5` and `480=2^5*3*5`, so the improved radix3 version is used.
`64FC*` is flat as expected, as we do not specialize the functors for `double`
in this change.

```
dft::Size_MatType_FlagsType_NzeroRows::(320x480, 32FC1, 0, false)                                1.239  1.153     1.07
dft::Size_MatType_FlagsType_NzeroRows::(320x480, 32FC1, 0, true)                                 0.991  0.926     1.07
dft::Size_MatType_FlagsType_NzeroRows::(320x480, 32FC1, DFT_COMPLEX_OUTPUT, false)               1.367  1.281     1.07
dft::Size_MatType_FlagsType_NzeroRows::(320x480, 32FC1, DFT_COMPLEX_OUTPUT, true)                1.114  1.049     1.06
dft::Size_MatType_FlagsType_NzeroRows::(320x480, 32FC1, DFT_INVERSE, false)                      1.313  1.254     1.05
dft::Size_MatType_FlagsType_NzeroRows::(320x480, 32FC1, DFT_INVERSE, true)                       1.027  0.977     1.05
dft::Size_MatType_FlagsType_NzeroRows::(320x480, 32FC1, DFT_INVERSE|DFT_COMPLEX_OUTPUT, false)   1.296  1.217     1.06
dft::Size_MatType_FlagsType_NzeroRows::(320x480, 32FC1, DFT_INVERSE|DFT_COMPLEX_OUTPUT, true)    1.039  0.963     1.08
dft::Size_MatType_FlagsType_NzeroRows::(320x480, 32FC1, DFT_ROWS, false)                         0.542  0.524     1.04
dft::Size_MatType_FlagsType_NzeroRows::(320x480, 32FC1, DFT_ROWS, true)                          0.293  0.277     1.06
dft::Size_MatType_FlagsType_NzeroRows::(320x480, 32FC1, DFT_SCALE, false)                        1.265  1.175     1.08
dft::Size_MatType_FlagsType_NzeroRows::(320x480, 32FC1, DFT_SCALE, true)                         1.004  0.942     1.07
dft::Size_MatType_FlagsType_NzeroRows::(320x480, 64FC1, 0, false)                                1.292  1.280     1.01
dft::Size_MatType_FlagsType_NzeroRows::(320x480, 64FC1, 0, true)                                 1.038  1.030     1.01
dft::Size_MatType_FlagsType_NzeroRows::(320x480, 64FC1, DFT_COMPLEX_OUTPUT, false)               1.484  1.488     1.00
dft::Size_MatType_FlagsType_NzeroRows::(320x480, 64FC1, DFT_COMPLEX_OUTPUT, true)                1.222  1.224     1.00
dft::Size_MatType_FlagsType_NzeroRows::(320x480, 64FC1, DFT_INVERSE, false)                      1.380  1.355     1.02
dft::Size_MatType_FlagsType_NzeroRows::(320x480, 64FC1, DFT_INVERSE, true)                       1.117  1.133     0.99
dft::Size_MatType_FlagsType_NzeroRows::(320x480, 64FC1, DFT_INVERSE|DFT_COMPLEX_OUTPUT, false)   1.372  1.383     0.99
dft::Size_MatType_FlagsType_NzeroRows::(320x480, 64FC1, DFT_INVERSE|DFT_COMPLEX_OUTPUT, true)    1.117  1.127     0.99
dft::Size_MatType_FlagsType_NzeroRows::(320x480, 64FC1, DFT_ROWS, false)                         0.546  0.539     1.01
dft::Size_MatType_FlagsType_NzeroRows::(320x480, 64FC1, DFT_ROWS, true)                          0.293  0.299     0.98
dft::Size_MatType_FlagsType_NzeroRows::(320x480, 64FC1, DFT_SCALE, false)                        1.351  1.339     1.01
dft::Size_MatType_FlagsType_NzeroRows::(320x480, 64FC1, DFT_SCALE, true)                         1.099  1.092     1.01
dft::Size_MatType_FlagsType_NzeroRows::(320x480, 32FC2, 0, false)                                2.235  2.123     1.05
dft::Size_MatType_FlagsType_NzeroRows::(320x480, 32FC2, 0, true)                                 1.843  1.727     1.07
dft::Size_MatType_FlagsType_NzeroRows::(320x480, 32FC2, DFT_COMPLEX_OUTPUT, false)               2.189  2.109     1.04
dft::Size_MatType_FlagsType_NzeroRows::(320x480, 32FC2, DFT_COMPLEX_OUTPUT, true)                1.827  1.754     1.04
dft::Size_MatType_FlagsType_NzeroRows::(320x480, 32FC2, DFT_INVERSE, false)                      2.392  2.309     1.04
dft::Size_MatType_FlagsType_NzeroRows::(320x480, 32FC2, DFT_INVERSE, true)                       1.951  1.865     1.05
dft::Size_MatType_FlagsType_NzeroRows::(320x480, 32FC2, DFT_INVERSE|DFT_COMPLEX_OUTPUT, false)   2.391  2.293     1.04
dft::Size_MatType_FlagsType_NzeroRows::(320x480, 32FC2, DFT_INVERSE|DFT_COMPLEX_OUTPUT, true)    1.954  1.882     1.04
dft::Size_MatType_FlagsType_NzeroRows::(320x480, 32FC2, DFT_ROWS, false)                         0.811  0.815     0.99
dft::Size_MatType_FlagsType_NzeroRows::(320x480, 32FC2, DFT_ROWS, true)                          0.426  0.437     0.98
dft::Size_MatType_FlagsType_NzeroRows::(320x480, 32FC2, DFT_SCALE, false)                        2.268  2.152     1.05
dft::Size_MatType_FlagsType_NzeroRows::(320x480, 32FC2, DFT_SCALE, true)                         1.893  1.788     1.06
dft::Size_MatType_FlagsType_NzeroRows::(800x600, 32FC1, 0, false)                                4.546  4.395     1.03
dft::Size_MatType_FlagsType_NzeroRows::(800x600, 32FC1, 0, true)                                 3.616  3.426     1.06
dft::Size_MatType_FlagsType_NzeroRows::(800x600, 32FC1, DFT_COMPLEX_OUTPUT, false)               4.843  4.668     1.04
dft::Size_MatType_FlagsType_NzeroRows::(800x600, 32FC1, DFT_COMPLEX_OUTPUT, true)                3.825  3.748     1.02
dft::Size_MatType_FlagsType_NzeroRows::(800x600, 32FC1, DFT_INVERSE, false)                      4.720  4.525     1.04
dft::Size_MatType_FlagsType_NzeroRows::(800x600, 32FC1, DFT_INVERSE, true)                       3.743  3.601     1.04
dft::Size_MatType_FlagsType_NzeroRows::(800x600, 32FC1, DFT_INVERSE|DFT_COMPLEX_OUTPUT, false)   4.755  4.527     1.05
dft::Size_MatType_FlagsType_NzeroRows::(800x600, 32FC1, DFT_INVERSE|DFT_COMPLEX_OUTPUT, true)    3.744  3.586     1.04
dft::Size_MatType_FlagsType_NzeroRows::(800x600, 32FC1, DFT_ROWS, false)                         1.992  2.012     0.99
dft::Size_MatType_FlagsType_NzeroRows::(800x600, 32FC1, DFT_ROWS, true)                          1.048  1.048     1.00
dft::Size_MatType_FlagsType_NzeroRows::(800x600, 32FC1, DFT_SCALE, false)                        4.625  4.451     1.04
dft::Size_MatType_FlagsType_NzeroRows::(800x600, 32FC1, DFT_SCALE, true)                         3.643  3.491     1.04
dft::Size_MatType_FlagsType_NzeroRows::(800x600, 64FC1, 0, false)                                4.499  4.488     1.00
dft::Size_MatType_FlagsType_NzeroRows::(800x600, 64FC1, 0, true)                                 3.559  3.555     1.00
dft::Size_MatType_FlagsType_NzeroRows::(800x600, 64FC1, DFT_COMPLEX_OUTPUT, false)               5.155  5.165     1.00
dft::Size_MatType_FlagsType_NzeroRows::(800x600, 64FC1, DFT_COMPLEX_OUTPUT, true)                4.103  4.101     1.00
dft::Size_MatType_FlagsType_NzeroRows::(800x600, 64FC1, DFT_INVERSE, false)                      5.484  5.474     1.00
dft::Size_MatType_FlagsType_NzeroRows::(800x600, 64FC1, DFT_INVERSE, true)                       4.617  4.518     1.02
dft::Size_MatType_FlagsType_NzeroRows::(800x600, 64FC1, DFT_INVERSE|DFT_COMPLEX_OUTPUT, false)   5.547  5.509     1.01
dft::Size_MatType_FlagsType_NzeroRows::(800x600, 64FC1, DFT_INVERSE|DFT_COMPLEX_OUTPUT, true)    4.553  4.554     1.00
dft::Size_MatType_FlagsType_NzeroRows::(800x600, 64FC1, DFT_ROWS, false)                         2.067  2.018     1.02
dft::Size_MatType_FlagsType_NzeroRows::(800x600, 64FC1, DFT_ROWS, true)                          1.104  1.079     1.02
dft::Size_MatType_FlagsType_NzeroRows::(800x600, 64FC1, DFT_SCALE, false)                        4.665  4.619     1.01
dft::Size_MatType_FlagsType_NzeroRows::(800x600, 64FC1, DFT_SCALE, true)                         3.698  3.681     1.00
dft::Size_MatType_FlagsType_NzeroRows::(800x600, 32FC2, 0, false)                                8.774  8.275     1.06
dft::Size_MatType_FlagsType_NzeroRows::(800x600, 32FC2, 0, true)                                 6.975  6.527     1.07
dft::Size_MatType_FlagsType_NzeroRows::(800x600, 32FC2, DFT_COMPLEX_OUTPUT, false)               8.720  8.270     1.05
dft::Size_MatType_FlagsType_NzeroRows::(800x600, 32FC2, DFT_COMPLEX_OUTPUT, true)                6.928  6.532     1.06
dft::Size_MatType_FlagsType_NzeroRows::(800x600, 32FC2, DFT_INVERSE, false)                      9.272  8.862     1.05
dft::Size_MatType_FlagsType_NzeroRows::(800x600, 32FC2, DFT_INVERSE, true)                       7.323  6.946     1.05
dft::Size_MatType_FlagsType_NzeroRows::(800x600, 32FC2, DFT_INVERSE|DFT_COMPLEX_OUTPUT, false)   9.262  8.768     1.06
dft::Size_MatType_FlagsType_NzeroRows::(800x600, 32FC2, DFT_INVERSE|DFT_COMPLEX_OUTPUT, true)    7.298  6.871     1.06
dft::Size_MatType_FlagsType_NzeroRows::(800x600, 32FC2, DFT_ROWS, false)                         3.766  3.639     1.03
dft::Size_MatType_FlagsType_NzeroRows::(800x600, 32FC2, DFT_ROWS, true)                          1.932  1.889     1.02
dft::Size_MatType_FlagsType_NzeroRows::(800x600, 32FC2, DFT_SCALE, false)                        8.865  8.417     1.05
dft::Size_MatType_FlagsType_NzeroRows::(800x600, 32FC2, DFT_SCALE, true)                         7.067  6.643     1.06
dft::Size_MatType_FlagsType_NzeroRows::(1280x1024, 32FC1, 0, false)                              10.014 10.141    0.99
dft::Size_MatType_FlagsType_NzeroRows::(1280x1024, 32FC1, 0, true)                               7.600  7.632     1.00
dft::Size_MatType_FlagsType_NzeroRows::(1280x1024, 32FC1, DFT_COMPLEX_OUTPUT, false)             11.059 11.283    0.98
dft::Size_MatType_FlagsType_NzeroRows::(1280x1024, 32FC1, DFT_COMPLEX_OUTPUT, true)              8.475  8.552     0.99
dft::Size_MatType_FlagsType_NzeroRows::(1280x1024, 32FC1, DFT_INVERSE, false)                    12.678 12.789    0.99
dft::Size_MatType_FlagsType_NzeroRows::(1280x1024, 32FC1, DFT_INVERSE, true)                     10.445 10.359    1.01
dft::Size_MatType_FlagsType_NzeroRows::(1280x1024, 32FC1, DFT_INVERSE|DFT_COMPLEX_OUTPUT, false) 12.626 12.925    0.98
dft::Size_MatType_FlagsType_NzeroRows::(1280x1024, 32FC1, DFT_INVERSE|DFT_COMPLEX_OUTPUT, true)  10.538 10.553    1.00
dft::Size_MatType_FlagsType_NzeroRows::(1280x1024, 32FC1, DFT_ROWS, false)                       5.041  5.084     0.99
dft::Size_MatType_FlagsType_NzeroRows::(1280x1024, 32FC1, DFT_ROWS, true)                        2.595  2.607     1.00
dft::Size_MatType_FlagsType_NzeroRows::(1280x1024, 32FC1, DFT_SCALE, false)                      10.231 10.330    0.99
dft::Size_MatType_FlagsType_NzeroRows::(1280x1024, 32FC1, DFT_SCALE, true)                       7.786  7.815     1.00
dft::Size_MatType_FlagsType_NzeroRows::(1280x1024, 64FC1, 0, false)                              13.597 13.302    1.02
dft::Size_MatType_FlagsType_NzeroRows::(1280x1024, 64FC1, 0, true)                               10.377 10.207    1.02
dft::Size_MatType_FlagsType_NzeroRows::(1280x1024, 64FC1, DFT_COMPLEX_OUTPUT, false)             15.940 15.545    1.03
dft::Size_MatType_FlagsType_NzeroRows::(1280x1024, 64FC1, DFT_COMPLEX_OUTPUT, true)              12.299 12.230    1.01
dft::Size_MatType_FlagsType_NzeroRows::(1280x1024, 64FC1, DFT_INVERSE, false)                    15.270 15.181    1.01
dft::Size_MatType_FlagsType_NzeroRows::(1280x1024, 64FC1, DFT_INVERSE, true)                     12.757 12.339    1.03
dft::Size_MatType_FlagsType_NzeroRows::(1280x1024, 64FC1, DFT_INVERSE|DFT_COMPLEX_OUTPUT, false) 15.512 15.157    1.02
dft::Size_MatType_FlagsType_NzeroRows::(1280x1024, 64FC1, DFT_INVERSE|DFT_COMPLEX_OUTPUT, true)  12.505 12.635    0.99
dft::Size_MatType_FlagsType_NzeroRows::(1280x1024, 64FC1, DFT_ROWS, false)                       6.359  6.255     1.02
dft::Size_MatType_FlagsType_NzeroRows::(1280x1024, 64FC1, DFT_ROWS, true)                        3.314  3.248     1.02
dft::Size_MatType_FlagsType_NzeroRows::(1280x1024, 64FC1, DFT_SCALE, false)                      13.937 13.733    1.01
dft::Size_MatType_FlagsType_NzeroRows::(1280x1024, 64FC1, DFT_SCALE, true)                       10.782 10.495    1.03
dft::Size_MatType_FlagsType_NzeroRows::(1280x1024, 32FC2, 0, false)                              18.985 18.926    1.00
dft::Size_MatType_FlagsType_NzeroRows::(1280x1024, 32FC2, 0, true)                               14.256 14.509    0.98
dft::Size_MatType_FlagsType_NzeroRows::(1280x1024, 32FC2, DFT_COMPLEX_OUTPUT, false)             18.696 19.021    0.98
dft::Size_MatType_FlagsType_NzeroRows::(1280x1024, 32FC2, DFT_COMPLEX_OUTPUT, true)              14.290 14.429    0.99
dft::Size_MatType_FlagsType_NzeroRows::(1280x1024, 32FC2, DFT_INVERSE, false)                    20.135 20.296    0.99
dft::Size_MatType_FlagsType_NzeroRows::(1280x1024, 32FC2, DFT_INVERSE, true)                     15.390 15.512    0.99
dft::Size_MatType_FlagsType_NzeroRows::(1280x1024, 32FC2, DFT_INVERSE|DFT_COMPLEX_OUTPUT, false) 20.121 20.354    0.99
dft::Size_MatType_FlagsType_NzeroRows::(1280x1024, 32FC2, DFT_INVERSE|DFT_COMPLEX_OUTPUT, true)  15.341 15.605    0.98
dft::Size_MatType_FlagsType_NzeroRows::(1280x1024, 32FC2, DFT_ROWS, false)                       8.932  9.084     0.98
dft::Size_MatType_FlagsType_NzeroRows::(1280x1024, 32FC2, DFT_ROWS, true)                        4.539  4.649     0.98
dft::Size_MatType_FlagsType_NzeroRows::(1280x1024, 32FC2, DFT_SCALE, false)                      19.137 19.303    0.99
dft::Size_MatType_FlagsType_NzeroRows::(1280x1024, 32FC2, DFT_SCALE, true)                       14.565 14.808    0.98
dft::Size_MatType_FlagsType_NzeroRows::(1920x1080, 32FC1, 0, false)                              22.553 21.171    1.07
dft::Size_MatType_FlagsType_NzeroRows::(1920x1080, 32FC1, 0, true)                               17.850 16.390    1.09
dft::Size_MatType_FlagsType_NzeroRows::(1920x1080, 32FC1, DFT_COMPLEX_OUTPUT, false)             24.062 22.634    1.06
dft::Size_MatType_FlagsType_NzeroRows::(1920x1080, 32FC1, DFT_COMPLEX_OUTPUT, true)              19.342 17.932    1.08
dft::Size_MatType_FlagsType_NzeroRows::(1920x1080, 32FC1, DFT_INVERSE, false)                    28.609 27.326    1.05
dft::Size_MatType_FlagsType_NzeroRows::(1920x1080, 32FC1, DFT_INVERSE, true)                     24.591 23.289    1.06
dft::Size_MatType_FlagsType_NzeroRows::(1920x1080, 32FC1, DFT_INVERSE|DFT_COMPLEX_OUTPUT, false) 28.667 27.467    1.04
dft::Size_MatType_FlagsType_NzeroRows::(1920x1080, 32FC1, DFT_INVERSE|DFT_COMPLEX_OUTPUT, true)  24.671 23.309    1.06
dft::Size_MatType_FlagsType_NzeroRows::(1920x1080, 32FC1, DFT_ROWS, false)                       9.458  9.077     1.04
dft::Size_MatType_FlagsType_NzeroRows::(1920x1080, 32FC1, DFT_ROWS, true)                        4.709  4.566     1.03
dft::Size_MatType_FlagsType_NzeroRows::(1920x1080, 32FC1, DFT_SCALE, false)                      22.791 21.583    1.06
dft::Size_MatType_FlagsType_NzeroRows::(1920x1080, 32FC1, DFT_SCALE, true)                       18.029 16.691    1.08
dft::Size_MatType_FlagsType_NzeroRows::(1920x1080, 64FC1, 0, false)                              25.238 24.427    1.03
dft::Size_MatType_FlagsType_NzeroRows::(1920x1080, 64FC1, 0, true)                               19.636 19.270    1.02
dft::Size_MatType_FlagsType_NzeroRows::(1920x1080, 64FC1, DFT_COMPLEX_OUTPUT, false)             28.342 27.957    1.01
dft::Size_MatType_FlagsType_NzeroRows::(1920x1080, 64FC1, DFT_COMPLEX_OUTPUT, true)              22.413 22.477    1.00
dft::Size_MatType_FlagsType_NzeroRows::(1920x1080, 64FC1, DFT_INVERSE, false)                    26.465 26.085    1.01
dft::Size_MatType_FlagsType_NzeroRows::(1920x1080, 64FC1, DFT_INVERSE, true)                     21.972 21.704    1.01
dft::Size_MatType_FlagsType_NzeroRows::(1920x1080, 64FC1, DFT_INVERSE|DFT_COMPLEX_OUTPUT, false) 26.497 26.127    1.01
dft::Size_MatType_FlagsType_NzeroRows::(1920x1080, 64FC1, DFT_INVERSE|DFT_COMPLEX_OUTPUT, true)  22.010 21.523    1.02
dft::Size_MatType_FlagsType_NzeroRows::(1920x1080, 64FC1, DFT_ROWS, false)                       11.188 10.774    1.04
dft::Size_MatType_FlagsType_NzeroRows::(1920x1080, 64FC1, DFT_ROWS, true)                        6.094  5.916     1.03
dft::Size_MatType_FlagsType_NzeroRows::(1920x1080, 64FC1, DFT_SCALE, false)                      25.728 24.934    1.03
dft::Size_MatType_FlagsType_NzeroRows::(1920x1080, 64FC1, DFT_SCALE, true)                       20.077 19.653    1.02
dft::Size_MatType_FlagsType_NzeroRows::(1920x1080, 32FC2, 0, false)                              43.834 40.726    1.08
dft::Size_MatType_FlagsType_NzeroRows::(1920x1080, 32FC2, 0, true)                               35.198 32.218    1.09
dft::Size_MatType_FlagsType_NzeroRows::(1920x1080, 32FC2, DFT_COMPLEX_OUTPUT, false)             43.743 40.897    1.07
dft::Size_MatType_FlagsType_NzeroRows::(1920x1080, 32FC2, DFT_COMPLEX_OUTPUT, true)              35.240 32.226    1.09
dft::Size_MatType_FlagsType_NzeroRows::(1920x1080, 32FC2, DFT_INVERSE, false)                    46.022 42.612    1.08
dft::Size_MatType_FlagsType_NzeroRows::(1920x1080, 32FC2, DFT_INVERSE, true)                     36.779 33.961    1.08
dft::Size_MatType_FlagsType_NzeroRows::(1920x1080, 32FC2, DFT_INVERSE|DFT_COMPLEX_OUTPUT, false) 46.396 42.723    1.09
dft::Size_MatType_FlagsType_NzeroRows::(1920x1080, 32FC2, DFT_INVERSE|DFT_COMPLEX_OUTPUT, true)  37.025 33.874    1.09
dft::Size_MatType_FlagsType_NzeroRows::(1920x1080, 32FC2, DFT_ROWS, false)                       17.334 16.832    1.03
dft::Size_MatType_FlagsType_NzeroRows::(1920x1080, 32FC2, DFT_ROWS, true)                        9.212  8.970     1.03
dft::Size_MatType_FlagsType_NzeroRows::(1920x1080, 32FC2, DFT_SCALE, false)                      44.190 41.211    1.07
dft::Size_MatType_FlagsType_NzeroRows::(1920x1080, 32FC2, DFT_SCALE, true)                       35.900 32.888    1.09
dft::Size_MatType_FlagsType_NzeroRows::(2048x2048, 32FC1, 0, false)                              40.948 38.256    1.07
dft::Size_MatType_FlagsType_NzeroRows::(2048x2048, 32FC1, 0, true)                               33.825 30.759    1.10
dft::Size_MatType_FlagsType_NzeroRows::(2048x2048, 32FC1, DFT_COMPLEX_OUTPUT, false)             53.210 53.584    0.99
dft::Size_MatType_FlagsType_NzeroRows::(2048x2048, 32FC1, DFT_COMPLEX_OUTPUT, true)              46.356 46.712    0.99
dft::Size_MatType_FlagsType_NzeroRows::(2048x2048, 32FC1, DFT_INVERSE, false)                    47.471 47.213    1.01
dft::Size_MatType_FlagsType_NzeroRows::(2048x2048, 32FC1, DFT_INVERSE, true)                     40.491 41.363    0.98
dft::Size_MatType_FlagsType_NzeroRows::(2048x2048, 32FC1, DFT_INVERSE|DFT_COMPLEX_OUTPUT, false) 46.724 47.049    0.99
dft::Size_MatType_FlagsType_NzeroRows::(2048x2048, 32FC1, DFT_INVERSE|DFT_COMPLEX_OUTPUT, true)  40.834 41.381    0.99
dft::Size_MatType_FlagsType_NzeroRows::(2048x2048, 32FC1, DFT_ROWS, false)                       14.508 14.490    1.00
dft::Size_MatType_FlagsType_NzeroRows::(2048x2048, 32FC1, DFT_ROWS, true)                        7.832  7.828     1.00
dft::Size_MatType_FlagsType_NzeroRows::(2048x2048, 32FC1, DFT_SCALE, false)                      41.491 38.341    1.08
dft::Size_MatType_FlagsType_NzeroRows::(2048x2048, 32FC1, DFT_SCALE, true)                       34.587 31.208    1.11
dft::Size_MatType_FlagsType_NzeroRows::(2048x2048, 64FC1, 0, false)                              65.155 63.173    1.03
dft::Size_MatType_FlagsType_NzeroRows::(2048x2048, 64FC1, 0, true)                               56.091 54.752    1.02
dft::Size_MatType_FlagsType_NzeroRows::(2048x2048, 64FC1, DFT_COMPLEX_OUTPUT, false)             71.549 70.626    1.01
dft::Size_MatType_FlagsType_NzeroRows::(2048x2048, 64FC1, DFT_COMPLEX_OUTPUT, true)              62.319 61.437    1.01
dft::Size_MatType_FlagsType_NzeroRows::(2048x2048, 64FC1, DFT_INVERSE, false)                    61.480 59.540    1.03
dft::Size_MatType_FlagsType_NzeroRows::(2048x2048, 64FC1, DFT_INVERSE, true)                     54.047 52.650    1.03
dft::Size_MatType_FlagsType_NzeroRows::(2048x2048, 64FC1, DFT_INVERSE|DFT_COMPLEX_OUTPUT, false) 61.752 61.366    1.01
dft::Size_MatType_FlagsType_NzeroRows::(2048x2048, 64FC1, DFT_INVERSE|DFT_COMPLEX_OUTPUT, true)  54.400 53.665    1.01
dft::Size_MatType_FlagsType_NzeroRows::(2048x2048, 64FC1, DFT_ROWS, false)                       20.219 19.704    1.03
dft::Size_MatType_FlagsType_NzeroRows::(2048x2048, 64FC1, DFT_ROWS, true)                        11.145 10.868    1.03
dft::Size_MatType_FlagsType_NzeroRows::(2048x2048, 64FC1, DFT_SCALE, false)                      66.220 64.525    1.03
dft::Size_MatType_FlagsType_NzeroRows::(2048x2048, 64FC1, DFT_SCALE, true)                       57.389 56.114    1.02
dft::Size_MatType_FlagsType_NzeroRows::(2048x2048, 32FC2, 0, false)                              86.761 88.128    0.98
dft::Size_MatType_FlagsType_NzeroRows::(2048x2048, 32FC2, 0, true)                               75.528 76.725    0.98
dft::Size_MatType_FlagsType_NzeroRows::(2048x2048, 32FC2, DFT_COMPLEX_OUTPUT, false)             86.750 88.223    0.98
dft::Size_MatType_FlagsType_NzeroRows::(2048x2048, 32FC2, DFT_COMPLEX_OUTPUT, true)              75.830 76.809    0.99
dft::Size_MatType_FlagsType_NzeroRows::(2048x2048, 32FC2, DFT_INVERSE, false)                    91.728 92.161    1.00
dft::Size_MatType_FlagsType_NzeroRows::(2048x2048, 32FC2, DFT_INVERSE, true)                     78.797 79.876    0.99
dft::Size_MatType_FlagsType_NzeroRows::(2048x2048, 32FC2, DFT_INVERSE|DFT_COMPLEX_OUTPUT, false) 92.163 92.177    1.00
dft::Size_MatType_FlagsType_NzeroRows::(2048x2048, 32FC2, DFT_INVERSE|DFT_COMPLEX_OUTPUT, true)  78.957 79.863    0.99
dft::Size_MatType_FlagsType_NzeroRows::(2048x2048, 32FC2, DFT_ROWS, false)                       24.781 25.576    0.97
dft::Size_MatType_FlagsType_NzeroRows::(2048x2048, 32FC2, DFT_ROWS, true)                        13.226 13.695    0.97
dft::Size_MatType_FlagsType_NzeroRows::(2048x2048, 32FC2, DFT_SCALE, false)                      87.990 89.324    0.99
dft::Size_MatType_FlagsType_NzeroRows::(2048x2048, 32FC2, DFT_SCALE, true)                       76.732 77.869    0.99
```
2020-08-21 14:06:09 +02:00
Anna Petrovicheva
885fb703cf Added a note about OpenCV logo 2020-08-21 11:18:40 +03:00
Alexander Alekhin
cd00d8f3f0 core(trace): lazy quering for OPENCV_TRACE_LOCATION
- fixes proper initialization of non-trivial variable
2020-08-20 21:48:05 +00:00
Alexander Alekhin
b3755e617c ocl: silence warning in case of async cleanup
- OpenCL kernel cleanup processing is asynchronous and can be called even after forced clFinish()
- buffers are released later in asynchronous mode
- silence these false positive cases for asynchronous cleanup
2020-08-20 19:33:37 +00:00
Alexander Alekhin
fc0f9da7a7 Merge pull request #18084 from pemmanuelviel:pev--add-DNA-distances 2020-08-20 13:26:02 +00:00
Alexander Alekhin
277961fa25 Merge pull request #18085 from pemmanuelviel:pev--add-DbgAssert-checks 2020-08-20 13:25:02 +00:00
Alexander Alekhin
14a9103fc0 Merge pull request #18129 from pemmanuelviel:pev--update-stereo-sample 2020-08-20 13:21:58 +00:00
Pierre-Emmanuel Viel
6d1f7c2b1b Update the stereo sample:
* add the HH4 mode
* option to display disparity with a color map
* display current settings in the title bar
* don't close app when wanting to take screenshots
2020-08-20 12:20:25 +02:00
Alexander Alekhin
2c1f3487a4 Merge pull request #18037 from danielenricocahall:improve-brisk-init-perf 2020-08-18 20:06:17 +00:00
Alexander Alekhin
acc6189da0 Merge pull request #18022 from SoheibKadi:Update_CornerSubPix_Documentation 2020-08-18 13:19:18 +00:00
danielenricocahall
ac177b849c Improve initialization performance of Brisk
reformatting

Improve initialization performance of Brisk

fix formatting

Improve initialization performance of Brisk

formatting

Improve initialization performance of Brisk

make a lookup table for ring

use cosine/sine lookup table for theta in brisk and utilize trig identity

fix ring lookup table

use cosine/sine lookup table for theta in brisk and utilize trig identity

formatting

use cosine/sine lookup table for theta in brisk and utilize trig identity

move scale radius product to ring loop to ensure it's not recomputed for each rot

revert change

move scale radius product to ring loop to ensure it's not recomputed for each rot

remove rings lookup table

move scale radius product to ring loop to ensure it's not recomputed for each rot

fix formatting of for loop

move scale radius product to ring loop to ensure it's not recomputed for each rot

use sine/cosine approximations for brisk lookup table.

add documentation for sine/cosine lookup tables

Improve initialization performance of BRISK
2020-08-18 07:11:21 -04:00
Alexander Alekhin
29aeebf5bc Merge pull request #18119 from tomoaki0705:fixFfmpegBuildFailure 2020-08-17 19:25:55 +00:00
Tomoaki Teshima
cc769ff19d fix build error on odroid-n2-plus 2020-08-17 21:24:54 +09:00
Yosshi999
1834eed809
Merge pull request #18001 from Yosshi999:sift-8bit-descr
* 8-bit SIFT descriptors

* use clearer parameter

* update docs

* propagate type info

* overload function for avoiding ABI-break

* bugfix: some values are undefined when CV_SIMD is absent
2020-08-17 10:28:44 +00:00
Alexander Alekhin
b34234ac14 Merge pull request #18105 from alalek:highgui_gtk_dont_terminate 2020-08-17 08:52:01 +00:00
Alexander Alekhin
7ec9f52509 highgui: don't terminate if we can't initialize GTK backend
- allow Users to handle such case
- exception will be thrown instead
2020-08-16 09:30:09 +00:00
nhlsm
68f527267b
Merge pull request #18080 from nhlsm:improve-mat-operator-assign-scalar
* improve Mat::operator=(Scalar)

* touch

* remove trailing whitespace

* TEST: check if old code pass test or not

* remove CV_Error

* remove warning

* fix: is -> Scalar

* 1) Mat *mat -> Mat &mat 2) return bool, add output param

* add comment
2020-08-14 17:21:23 +00:00
Alexander Alekhin
7f22b34c78 Merge pull request #18092 from alalek:ocl_fix_image_format 2020-08-14 17:10:36 +00:00
Liubov Batanina
ad63d24dba
Merge pull request #18096 from l-bat:update_onnx_importer
* Added ReduceSum to ONNX importer

* Fix comments

* Fix Mul
2020-08-14 16:49:42 +00:00
Alexander Alekhin
3b5813c035 Merge pull request #18078 from l-bat:fix_matmul 2020-08-14 13:46:46 +00:00
Liubov Batanina
339b963e6b Fix MatMul and Add axes 2020-08-14 11:18:58 +03:00
Alexander Alekhin
00890aecdf core(ocl): fix ocl::Image2d::isFormatSupported()
in case of OPENCV_OPENCL_DEVICE=disabled
2020-08-13 18:33:18 +00:00
Yashas Samaga B L
2171cae8ff
Merge pull request #17976 from YashasSamaga:dnn-fusion-tests-fix-ocl
dnn: add exhaustive fusion tests, enable more eltwise fusions

* add eltwise fusion tests, enable more eltwise fusions

* merge weighted eltwise tests with eltwise tests
2020-08-13 10:55:41 +00:00
Pierre-Emmanuel Viel
3f55152ca0 Add debug assert to check in FLANN the vectors size is multiple of the architecture word size 2020-08-12 23:07:35 +02:00
Liubov Batanina
f3cebb3e1b
Merge pull request #18077 from l-bat:reduce_sum
* Supported ReduceSum op

* Skip test
2020-08-12 14:32:16 +00:00
Alexander Alekhin
2b227f00f2 Merge pull request #18074 from pemmanuelviel:pev--kmeans-refactoring 2020-08-12 13:18:20 +00:00
Pierre-Emmanuel Viel
98de57c6c4 Refactoring to prepare for other vector types while mutualizing some methods 2020-08-12 00:57:37 +02:00
zhaoyue-zephyrus
e231be86b7 support flownet2 with arbitary input size
revise default proto to match the filename in documentations

fix a bug

beautify python codes

fix bug

beautify codes

add test samples with larger/smaller size

remove unless code

using bytearray without creating tmp file

remove useless codes
2020-08-12 00:50:58 +08:00
Elizarov Ilya
7ec221e734
Merge pull request #18033 from ieliz:dasiamrpn
Improving DaSiamRPN tracker sample

* changed layerBlobs in dnn.cpp and added DaSiamRPN tracker

* Improving DaSiamRPN tracker sample

* Docs fix

* Removed outdated changes

* Trying to reinitialize tracker without reloading models. Worked with LaSOT-based benchmark with reinit rate=250 frames

* Trying to reverse changes

* Moving the model in the constructor

* Fixing some issues with names

* Variable name changed

* Reverse parser arguments changes
2020-08-11 11:46:47 +03:00
pemmanuelviel
fe9ff64d64
Merge pull request #17643 from pemmanuelviel:pev--new-flann-demo
* Add a FLANN example showing how to search a query image in a dataset

* Clean: remove warning

* Replace dependency to boost::filesystem by calls to core/utils/filesystem

* Wait for escape key to exit

* Add an example of binary descriptors support

* Add program options for saving and loading the flann structure

* Fix warnings on Win64

* Fix warnings on 3.4 branch still relying on C++03

* Add ctor to img_info structure

* Comments modification

* * Demo file of FLANN moved and renamed

* Fix distances type when using binary vectors in the FLANN example

* Rename FLANN example file

* Remove dependency of the flann example to opencv_contrib's SURF.

* Remove mention of FLANN and other descriptors that aimed at giving hint on the other options

* Cleaner program options management

* Make waitKey usage minimal in FLANN example

* Fix the conditions order

* Use cv::Ptr
2020-08-10 13:26:40 +00:00
Alexander Alekhin
3f65c12d0c Merge pull request #17982 from nglee:dev_cudaGpuMatConvertToInplaceFix 2020-08-09 20:21:17 +00:00
Alexander Alekhin
336627a776 Merge pull request #18048 from l-bat:onnx_torchvision 2020-08-06 20:21:47 +00:00
Liubov Batanina
6226ea0085 Fix bug in ONNX Gather op 2020-08-06 15:47:34 +03:00
Alexander Alekhin
1067cd0649 Merge pull request #18036 from alalek:backport_17858 2020-08-04 20:16:22 +00:00
Vadim Pisarevsky
1537ecd931 * added depth-wise convolution; gives ~20-30% performance improvement in MobileSSD networks
* hopefully, eliminated compile warnings, errors, as well as failure in one test

* * fixed a few typos
* decreased buffer size in some cases
* added more optimal im2row branch in the case of 1x1 convolutions
* tuned fastConv to reduce the number of passes over arrays

backport of commit 77b01deb80
2020-08-04 17:34:48 +00:00
Alexander Alekhin
5b5c42d2c7 Merge pull request #18027 from dkurt:dnn_backport_ngraph 2020-08-04 16:24:11 +00:00
Alexander Alekhin
161890dad4 Merge pull request #18017 from danielenricocahall:add-relu-to-darknet 2020-08-04 16:17:07 +00:00
Alexander Alekhin
35846fe735 Merge pull request #18008 from gsmatos:document-patchnans 2020-08-04 16:15:53 +00:00
Gabriel
96ce65f021 Document PatchNANs input type 2020-08-03 22:57:18 -03:00
danielenricocahall
8457e471fd add relu as activation option in darknet
add relu option

add relu as activation option in darknet

simplify the setParams if-else ladder

add relu as activation option in darknet

correct activation_param type

format

format

add relu as activation option in darknet

spacing

spacing

add relu as activation option in darknet
2020-08-03 19:19:35 -04:00
Ilya Churaev
246de2b7f5 Replaced copy_with_new_args to clone_with_new_inputs 2020-08-03 23:08:29 +03:00
Ilya Churaev
e8c26963e9 Fixed removing is_parameter, is_constant, is_output 2020-08-03 23:08:22 +03:00
pemmanuelviel
793e7c0d9f
Merge pull request #18019 from pemmanuelviel:pev--multiple-kmeans-trees
* Possibility to set more than one tree for the hierarchical KMeans (default is still 1 tree).

This particularly improves NN retrieval results with binary vectors, allowing better quality
compared to LSH for similar processing time when speed is the criterium.

* Add explanations on the FLANN's hierarchical KMeans for binary data.
2020-08-03 18:29:57 +00:00
Alexander Alekhin
3b337a12c9 Merge pull request #18018 from danielenricocahall:add-compose-panorama-python-binding 2020-08-03 18:28:18 +00:00
Alexander Alekhin
2c32cb743c Merge pull request #18016 from pemmanuelviel:pev--cleaner-hierarchical-clustering 2020-08-03 18:27:11 +00:00