Commit Graph

2190 Commits

Author SHA1 Message Date
Wanli
6ae1709c6a
Merge pull request #24613 from WanliZhong:softmax_default_axis
Make default axis of softmax in onnx "-1" without opset option #24613

Try to solve problem: https://github.com/opencv/opencv/pull/24476#discussion_r1404821158

**ONNX**
`opset <= 11` use 1
`else` use -1

**TensorFlow**
`TF version = 2.x` use -1
`else` use 1

**Darknet, Caffe, Torch**
use 1 by definition
2023-12-15 10:41:42 +03:00
Wanli
9bbc890d96
Merge pull request #24681 from WanliZhong:err_armv8
Fixed armv8 compilation warnings #24681 

Fixes the following warning on  armv8:
```
warning: dereferencing type-punned pointer will break strict-aliasing rules [-Wstrict-aliasing]
```
Buildbot: https://pullrequest.opencv.org/buildbot/builders/4_x_ARMv8-lin
2023-12-12 15:38:07 +03:00
Wanli
6ee71fee88
Merge pull request #24547 from WanliZhong:refactor_conv_perf_test
Classify and extend convolution and depthwise performance tests #24547

This PR aims to:
1. Extend the test cases from models: `YOLOv5`, `YOLOv8`, `EfficientNet`, `YOLOX`, `YuNet`, `SFace`, `MPPalm`, `MPHand`, `MPPose`, `ViTTrack`, `PPOCRv3`, `CRNN`, `PPHumanSeg`. (371 new test cases are added)

2. Classify the existing convolution performance test to below cases
    - CONV_1x1
    - CONV_3x3_S1_D1 (winograd)
    - CONV
    - DEPTHWISE

3. Reduce unnecessary test cases by follow 3 rules (366 test cases are pruned):
(i). For all tests, except for pad and bias related parameters, all other parameters are the same. Only one case can be reserved.
(ii). When the only difference is the channel of input shape, and other parameters are the same. Only one case can be reserved in each range `[1, 3], [4, 7], [8, 15], [16, 31], [32, 63], [64, 127], [128, 255], [256, 511], [512, 1023], [1024, 2047], [2048, 4095]`
(iii). When the only difference is the width and height of input shape, and other parameters are the same. Only one case can be reserved in each range `[1, 31], [32, 63], [64, 95]... `

> **Reproduced**: 1. follow step in https://github.com/alalek/opencv/commit/dnn_dump_conv_kernels to dump all convolution cases from new models. (declared flops may not right, need to be checked manually) 2 and 3. Use the script from python code [classify conv.txt](https://github.com/opencv/opencv/files/13522228/classify.conv.txt)


**Performance test result on Apple M2**

**Test result details**:  [M2.md](https://github.com/opencv/opencv/files/13379189/M2.md)

**Additional test result details with FP16**:  [m2_results_with_fp16.zip](https://github.com/opencv/opencv/files/13491070/m2_results_with_fp16.zip)


**Brief summary for 4.8.1 vs 4.7.0 or 4.6.0**: 
1. `CONV_1x1_S1_D1` dropped significant with small or large input shape.
2. `DEPTHWISE_5x5 ` dropped a little compared with 4.7.0. 

---

**Performance test result on [Intel Core i7-12700K](https://www.intel.com/content/www/us/en/products/sku/134594/intel-core-i712700k-processor-25m-cache-up-to-5-00-ghz/specifications.html)**: 8 Performance-cores (3.60 GHz, turbo up to 4.90 GHz), 4 Efficient-cores (2.70 GHz, turbo up to 3.80 GHz), 20 threads.

**Test result details**: [INTEL.md](https://github.com/opencv/opencv/files/13374093/INTEL.md)
**Brief summary for 4.8.1 vs 4.5.5**: 
1. `CONV_5x5_S1_D1` dropped significant. 
2. `CONV_1x1_S1_D1`, `CONV_3x3_S1_D1`, `DEPTHWISE_3x3_S1_D1`, `DEPTHWISW_3x3_S2_D1` dropped with small input shape.

---

TODO:
- [x] Perform tests on arm with each opencv version
- [x] Perform tests on x86 with each opencv version
- [x] Split each test classification with single test config
- [x] test enable fp16
2023-12-11 21:35:33 +03:00
Abduragim Shtanchaev
d3dd2e463c
Merge pull request #24611 from Abdurrahheem:ash/add_yolov6_test
Add test for YoloX Yolo v6 and Yolo v8 #24611

This PR adds test for YOLOv6 model (which was absent before)
The onnx weights for the test are located in this PR [ #1126](https://github.com/opencv/opencv_extra/pull/1126)

### Pull Request Readiness Checklist

See details at https://github.com/opencv/opencv/wiki/How_to_contribute#making-a-good-pull-request

- [x] I agree to contribute to the project under Apache 2 License.
- [x] To the best of my knowledge, the proposed patch is not based on a code under GPL or another license that is incompatible with OpenCV
- [x] The PR is proposed to the proper branch
- [ ] There is a reference to the original bug report and related work
- [x] There is accuracy test, performance test and test data in opencv_extra repository, if applicable
      Patch to opencv_extra has the same branch name.
- [x] The feature is well documented and sample code can be built with the project CMake
2023-12-11 16:42:51 +03:00
Dmitry Kurtaev
ac4b26a561 Replace Slice optional inputs removal to adjustment 2023-12-08 23:29:52 +03:00
Yuantao Feng
a2edf4d929
Merge pull request #24647 from fengyuentau:cuda_sub
dnn cuda: support Sub #24647

Related https://github.com/opencv/opencv/issues/24606#issuecomment-1837390257

### Pull Request Readiness Checklist

See details at https://github.com/opencv/opencv/wiki/How_to_contribute#making-a-good-pull-request

- [x] I agree to contribute to the project under Apache 2 License.
- [x] To the best of my knowledge, the proposed patch is not based on a code under GPL or another license that is incompatible with OpenCV
- [x] The PR is proposed to the proper branch
- [x] There is a reference to the original bug report and related work
- [x] There is accuracy test, performance test and test data in opencv_extra repository, if applicable
      Patch to opencv_extra has the same branch name.
- [x] The feature is well documented and sample code can be built with the project CMake
2023-12-06 13:46:24 +03:00
Yuantao Feng
f5ec92e4ca
Merge pull request #24655 from fengyuentau:graph_simplifier_optional_input
dnn onnx graph simplifier: handle optional inputs of Slice #24655

Resolves https://github.com/opencv/opencv/issues/24609

### Pull Request Readiness Checklist

See details at https://github.com/opencv/opencv/wiki/How_to_contribute#making-a-good-pull-request

- [x] I agree to contribute to the project under Apache 2 License.
- [x] To the best of my knowledge, the proposed patch is not based on a code under GPL or another license that is incompatible with OpenCV
- [x] The PR is proposed to the proper branch
- [x] There is a reference to the original bug report and related work
- [x] There is accuracy test, performance test and test data in opencv_extra repository, if applicable
      Patch to opencv_extra has the same branch name.
- [x] The feature is well documented and sample code can be built with the project CMake
2023-12-06 13:43:54 +03:00
Alexander Smorkalov
7b1a5fb3de Migrate Android Face Detection sample to DNN. 2023-11-29 11:02:44 +03:00
Abduragim Shtanchaev
5278560252
Merge pull request #24569 from Abdurrahheem:ash/padding_value_fix
Add support for custom padding in DNN preprocessing #24569

This PR add functionality for specifying value in padding.
It is required in many preprocessing pipelines in DNNs such as Yolox object detection model

### Pull Request Readiness Checklist

See details at https://github.com/opencv/opencv/wiki/How_to_contribute#making-a-good-pull-request

- [x] I agree to contribute to the project under Apache 2 License.
- [x] To the best of my knowledge, the proposed patch is not based on a code under GPL or another license that is incompatible with OpenCV
- [x] The PR is proposed to the proper branch
- [ ] There is a reference to the original bug report and related work
- [x] There is accuracy test, performance test and test data in opencv_extra repository, if applicable
      Patch to opencv_extra has the same branch name.
- [x] The feature is well documented and sample code can be built with the project CMake
2023-11-28 11:54:09 +03:00
Dmitry Kurtaev
332748dd55
Merge pull request #24577 from dkurt:dnn_graph_match_stack
Fix graph fusion with commutative ops #24577

### Pull Request Readiness Checklist

resolves https://github.com/opencv/opencv/issues/24568

**Merge with extra**: https://github.com/opencv/opencv_extra/pull/1125

TODO:
- [x]  replace recursive function to sequential

See details at https://github.com/opencv/opencv/wiki/How_to_contribute#making-a-good-pull-request

- [x] I agree to contribute to the project under Apache 2 License.
- [x] To the best of my knowledge, the proposed patch is not based on a code under GPL or another license that is incompatible with OpenCV
- [x] The PR is proposed to the proper branch
- [x] There is a reference to the original bug report and related work
- [x] There is accuracy test, performance test and test data in opencv_extra repository, if applicable
      Patch to opencv_extra has the same branch name.
- [x] The feature is well documented and sample code can be built with the project CMake
2023-11-24 10:40:32 +03:00
skycat8
848dd12a1f
Merge pull request #24553 from skycat8:yolov5
Add yolov5n to tests #24553

### Pull Request Readiness Checklist

See details at https://github.com/opencv/opencv/wiki/How_to_contribute#making-a-good-pull-request

- [ X] I agree to contribute to the project under Apache 2 License.
- [ X] To the best of my knowledge, the proposed patch is not based on a code under GPL or another license that is incompatible with OpenCV
- [ X] The PR is proposed to the proper branch
- [ X] There is a reference to the original bug report and related work
- [ X] There is accuracy test, performance test and test data in opencv_extra repository, if applicable
      Patch to opencv_extra has the same branch name.
- [ X] The feature is well documented and sample code can be built with the project CMake
2023-11-24 10:36:06 +03:00
Yuantao Feng
d05fb709f9
Merge pull request #24552 from fengyuentau:layernorm_backends
dnn: add openvino, opencl and cuda backends for layer normalization layer #24552

Merge after https://github.com/opencv/opencv/pull/24544.

Todo:

- [x] openvino
- [x] opencl
- [x] cuda

### Pull Request Readiness Checklist

See details at https://github.com/opencv/opencv/wiki/How_to_contribute#making-a-good-pull-request

- [x] I agree to contribute to the project under Apache 2 License.
- [x] To the best of my knowledge, the proposed patch is not based on a code under GPL or another license that is incompatible with OpenCV
- [x] The PR is proposed to the proper branch
- [x] There is a reference to the original bug report and related work
- [x] There is accuracy test, performance test and test data in opencv_extra repository, if applicable
      Patch to opencv_extra has the same branch name.
- [x] The feature is well documented and sample code can be built with the project CMake
2023-11-21 15:33:01 +03:00
zihaomu
b913e73d04
DNN: add the Winograd fp16 support (#23654)
* add Winograd FP16 implementation

* fixed dispatching of FP16 code paths in dnn; use dynamic dispatcher only when NEON_FP16 is enabled in the build and the feature is present in the host CPU at runtime

* fixed some warnings

* hopefully fixed winograd on x64 (and maybe other platforms)

---------

Co-authored-by: Vadim Pisarevsky <vadim.pisarevsky@gmail.com>
2023-11-20 13:45:37 +03:00
Yuantao Feng
a478757483
Merge pull request #24544 from fengyuentau:layernorm_conformance
dnn test: move layer norm tests into conformance tests #24544

Merge with https://github.com/opencv/opencv_extra/pull/1122

## Motivation

Some ONNX operators, such as `LayerNormalization`, `BatchNormalization` and so on, produce outputs for training (mean, stdev). So they have reference outputs of conformance tests for those training outputs as well. However, when it comes to inference, we do not need and produce those outputs for training here in dnn. Hence, output size does not match if we use dnn to infer those conformance models. This has become the barrier if we want to test these operators using their conformance tests.

<!--
| Operator                | Inference needed                    | Outputs (required - total) | Optional outputs for training? |
| ----------------------- | ----------------------------------- | -------------------------- | ------------------------------ |
| BatchNormalization      | Yes                                 | 1 - 3                      | Yes                            |
| Dropout                 | Maybe, can be eliminated via fusion | 1 - 2                      | Yes                            |
| GRU                     | Yes                                 | 0 - 2                      | No                             |
| LSTM                    | Yes                                 | 0 - 3                      | No                             |
| LayerNormalization      | Yes                                 | 1 - 3                      | Yes                            |
| MaxPool                 | Yes                                 | 1 - 2                      | Yes                            |
| RNN                     | Yes                                 | 0 - 2                      | No                             |
| SoftmaxCrossEntropyLoss | No                                  | 1 - 2                      | --                             |
-->

**I checked all ONNX operators with optional outputs. Turns out there are only `BatchNormalization`, `Dropout`, `LayerNormalization` and `MaxPool` has optional outputs for training. All except `LayerNormalization` have models set for training mode and eval mode. Blame ONNX for that.**

## Solution

In this pull request, we remove graph outputs if the graph looks like the following:

```
    [X]   [Scale]  [Bias]                      [X]   [Scale]  [Bias]
      \      |      /         this patch         \      |      /
     LayerNormalization      ----------->       LayerNormalization
      /      |      \                                   |
    [Y]    [Mean]  [Stdev]                             [Y]
```

We can update conformance tests and turn on some cases as well if extending to more layers.

Notes:
1. This workaround does not solve expanded function operators if they are fused into a single operator, such as `$onnx/onnx/backend/test/data/node/test_layer_normalization_2d_axis1_expanded`, but they can be run without fusion. Note that either dnn or onnxruntime does not fuse those expanded function operators.

### Pull Request Readiness Checklist

See details at https://github.com/opencv/opencv/wiki/How_to_contribute#making-a-good-pull-request

- [x] I agree to contribute to the project under Apache 2 License.
- [x] To the best of my knowledge, the proposed patch is not based on a code under GPL or another license that is incompatible with OpenCV
- [x] The PR is proposed to the proper branch
- [x] There is a reference to the original bug report and related work
- [x] There is accuracy test, performance test and test data in opencv_extra repository, if applicable
      Patch to opencv_extra has the same branch name.
- [x] The feature is well documented and sample code can be built with the project CMake
2023-11-20 11:19:24 +03:00
Abduragim Shtanchaev
8c10545d3c
Merge pull request #24509 from Abdurrahheem:ash/dev_einsum_fast_gemm
Fast gemm for einsum #24509

## This PR adds performance tests for Einsum Layer with FastGemm. See below results of performance test on different inputs

### Pull Request Readiness Checklist

See details at https://github.com/opencv/opencv/wiki/How_to_contribute#making-a-good-pull-request

- [x] I agree to contribute to the project under Apache 2 License.
- [x] To the best of my knowledge, the proposed patch is not based on a code under GPL or another license that is incompatible with OpenCV
- [x] The PR is proposed to the proper branch
- [ ] There is a reference to the original bug report and related work
- [x] There is accuracy test, performance test and test data in opencv_extra repository, if applicable
      Patch to opencv_extra has the same branch name.
- [x] The feature is well documented and sample code can be built with the project CMake
2023-11-16 16:20:17 +03:00
Yuantao Feng
024dfd54af
dnn cann backend: add hardswish, layernorm and instasnce norm for cann and bug fix (#24462)
* add hardswish for cann

* gemm cann bug fix

* fix indentation

* cann: add layer norm

* cann: add instance norm

* add supportBackend

* cann: layer norm does not support axis=-1 due to 1d mat issue

* disable instance norm for now

* fix doc

* remove tensor desc initialization for 1D tensor
2023-11-15 17:57:52 +03:00
fengyuentau
031846f2e1 remove filter 2023-11-13 14:47:40 +08:00
Alexander Smorkalov
960a926055
Merge pull request #24510 from asmorkalov:as/softmax_rvv
Enable softmax layer vectorization on RISC-V RVV #24510 

Related: https://github.com/opencv/opencv/pull/24466

### Pull Request Readiness Checklist

See details at https://github.com/opencv/opencv/wiki/How_to_contribute#making-a-good-pull-request

- [x] I agree to contribute to the project under Apache 2 License.
- [x] To the best of my knowledge, the proposed patch is not based on a code under GPL or another license that is incompatible with OpenCV
- [x] The PR is proposed to the proper branch
- [x] There is a reference to the original bug report and related work
- [x] There is accuracy test, performance test and test data in opencv_extra repository, if applicable
      Patch to opencv_extra has the same branch name.
- [ ] The feature is well documented and sample code can be built with the project CMake
2023-11-11 09:09:14 +03:00
Dmitry Kurtaev
b7ec2ebb55
Merge pull request #24483 from dkurt:dnn_fusion_commutative_ops
Commutative rules for DNN subgraphs fusion #24483

### Pull Request Readiness Checklist

related: https://github.com/opencv/opencv/pull/24463#issuecomment-1783033931

See details at https://github.com/opencv/opencv/wiki/How_to_contribute#making-a-good-pull-request

- [x] I agree to contribute to the project under Apache 2 License.
- [x] To the best of my knowledge, the proposed patch is not based on a code under GPL or another license that is incompatible with OpenCV
- [x] The PR is proposed to the proper branch
- [x] There is a reference to the original bug report and related work
- [x] There is accuracy test, performance test and test data in opencv_extra repository, if applicable
      Patch to opencv_extra has the same branch name.
- [x] The feature is well documented and sample code can be built with the project CMake
2023-11-08 16:26:33 +03:00
Abduragim Shtanchaev
9d0c8a9edb
Merge pull request #24445 from Abdurrahheem:ash/dev_einsum_pref
Einsum Layer Performance Test #24445

## This PR adds performance tests for Einsum Layer. See below results of performance test on different inputs

**Notation:**
- WX: windows10_x64
- MX: macos_x64
- MA: macos_arm64
- UX: ubuntu_x64
- UA: ubuntu_arm64

All data in ms (milliseconds).
Gemm is backend for matrix multiplication

---

Benchmarks:


| Equation                | Inputs Mat Dims                   | UX (ms)        | UA (ms) | MX (ms) | MA (ms) | WX (ms) |
|-------------------------|-----------------------------------|----------------|---------|---------|---------|---------|
| "ij, jk -> ik"          | [2, 3], [3,2]                     | 0.04 ± 0.00    | -       | -       | -       | -       |
| "ij, jk -> ik"          | [20, 30], [30,20]                 | 0.08 ± 0.00    | -       | -       | -       | -       |
| "ij, jk -> ik"          | [113, 127], [127,113]             | 2.41 ± 0.05    | -       | -       | -       | -       |
| "imkj, injs -> imnks"   | [1, 4, 7, 9], [1, 5, 9, 8]        | 0.11 ± 0.00    | -       | -       | -       | -       |
| "imkj, injs -> imnks"   | [1, 4, 70, 90], [1, 5, 90, 80]    | 15.49 ± 0.46   | -       | -       | -       | -       |
| "imkj, injs -> imnks"   | [1, 4, 73, 91], [1, 5, 91, 57]    | 11.53 ± 0.06   | -       | -       | -       | -       |
| "ij -> i"               | [30, 40]                          | 0.03 ± 0.00    | -       | -       | -       | -       |
| "ij -> i"               | [113, 374]                        | 0.13 ± 0.00    | -       | -       | -       | -       |
| "...ij -> ...i"         | [30, 40]                          | 0.03 ± 0.00    | -       | -       | -       | -       |
| "...ij -> ...i"         | [113, 374]                        | 0.13 ± 0.00    | -       | -       | -       | -       |
| "...ij, ...jk -> ...ik" | [40, 50], [50,80]                 | 0.37 ± 0.01    | -       | -       | -       | -       |
| "...ij, ...jk -> ...ik" | [47, 51], [51, 83]                | 0.43 ± 0.01    | -       | -       | -       | -       |

-----

### Pull Request Readiness Checklist

See details at https://github.com/opencv/opencv/wiki/How_to_contribute#making-a-good-pull-request

- [x] I agree to contribute to the project under Apache 2 License.
- [x] To the best of my knowledge, the proposed patch is not based on a code under GPL or another license that is incompatible with OpenCV
- [x] The PR is proposed to the proper branch
- [ ] There is a reference to the original bug report and related work
- [x] There is accuracy test, performance test and test data in opencv_extra repository, if applicable
      Patch to opencv_extra has the same branch name.
- [x] The feature is well documented and sample code can be built with the project CMake
2023-11-08 11:56:21 +03:00
Yuantao Feng
6079e22523
Merge pull request #24500 from fengyuentau:test_layer_fusion
dnn (onnx): add subgraph fusion tests #24500

### Pull Request Readiness Checklist

See details at https://github.com/opencv/opencv/wiki/How_to_contribute#making-a-good-pull-request

- [x] I agree to contribute to the project under Apache 2 License.
- [x] To the best of my knowledge, the proposed patch is not based on a code under GPL or another license that is incompatible with OpenCV
- [x] The PR is proposed to the proper branch
- [x] There is a reference to the original bug report and related work
- [x] There is accuracy test, performance test and test data in opencv_extra repository, if applicable
      Patch to opencv_extra has the same branch name.
- [x] The feature is well documented and sample code can be built with the project CMake
2023-11-07 17:40:31 +03:00
Yuantao Feng
ee0822dc4d
Merge pull request #24378 from fengyuentau:instance_norm
dnn onnx: add instance norm layer #24378

Resolves https://github.com/opencv/opencv/issues/24377
Relates https://github.com/opencv/opencv/pull/24092#discussion_r1349841644

| Perf | multi-thread | single-thread |
| - | - | - |
| x: [2, 64, 180, 240] | 3.95ms | 11.12ms |

Todo:

- [x] speed up by multi-threading
- [x] add perf
- [x] add backend: OpenVINO
- [x] add backend: CUDA
- [x] add backend: OpenCL (no fp16)
- [ ] add backend: CANN (will be done via https://github.com/opencv/opencv/pull/24462)


### Pull Request Readiness Checklist

See details at https://github.com/opencv/opencv/wiki/How_to_contribute#making-a-good-pull-request

- [x] I agree to contribute to the project under Apache 2 License.
- [x] To the best of my knowledge, the proposed patch is not based on a code under GPL or another license that is incompatible with OpenCV
- [x] The PR is proposed to the proper branch
- [x] There is a reference to the original bug report and related work
- [x] There is accuracy test, performance test and test data in opencv_extra repository, if applicable
      Patch to opencv_extra has the same branch name.
- [x] The feature is well documented and sample code can be built with the project CMake

```
force_builders=Linux OpenCL,Win64 OpenCL,Custom
buildworker:Custom=linux-4
build_image:Custom=ubuntu:18.04
modules_filter:Custom=none
disable_ipp:Custom=ON
```
2023-11-07 12:59:10 +03:00
Wanli
ed52f7feea
Improve and refactor softmax layer (#24466)
* improve and refactor softmax layer

* fix building error

* compatible region layer

* fix axisStep when disable SIMD

* fix dynamic array

* try to fix error

* use nlanes from VTraits

* move axisBias to srcOffset

* fix bug caused by axisBias

* remove macro

* replace #ifdef with #if for CV_SIMD
2023-11-06 04:48:32 +03:00
Dmitry Kurtaev
fa56623458
Merge pull request #24463 from dkurt:dnn_shared_nodes_fusion
DNN graph fusion with shared nodes #24463

### Pull Request Readiness Checklist

For now, nodes from matched pattern are removed during the matching process so if nodes are used in similar subgraph, they cannot be found.

required for https://github.com/opencv/opencv/pull/24397

**Merge with extra**: https://github.com/opencv/opencv_extra/pull/1115

A part from [model_name ](https://github.com/onnx/models/blob/main/vision/object_detection_segmentation/fcn/model/fcn-resnet101-11.onnx) with two Resize subgraphs with shared nodes:
![image](https://github.com/opencv/opencv/assets/25801568/611d89d9-12fb-4add-9218-13b10d2c086a)

See details at https://github.com/opencv/opencv/wiki/How_to_contribute#making-a-good-pull-request

- [x] I agree to contribute to the project under Apache 2 License.
- [x] To the best of my knowledge, the proposed patch is not based on a code under GPL or another license that is incompatible with OpenCV
- [x] The PR is proposed to the proper branch
- [x] There is a reference to the original bug report and related work
- [x] There is accuracy test, performance test and test data in opencv_extra repository, if applicable
      Patch to opencv_extra has the same branch name.
- [x] The feature is well documented and sample code can be built with the project CMake
2023-11-03 12:34:09 +03:00
Yuantao Feng
c91af16fa7
Merge pull request #24409 from fengyuentau:norm_kernel
dnn: add shared fastNorm kernel for mvn, instance norm and layer norm #24409

Relates https://github.com/opencv/opencv/pull/24378#issuecomment-1756906570

TODO:

- [x] add fastNorm
- [x] refactor layer norm with fastNorm
- [x] refactor mvn with fastNorm
- [ ] add onnx mvn in importer (in a new PR?)
- [ ] refactor instance norm with fastNorm (in another PR https://github.com/opencv/opencv/pull/24378, need to merge this one first though)

### Pull Request Readiness Checklist

See details at https://github.com/opencv/opencv/wiki/How_to_contribute#making-a-good-pull-request

- [x] I agree to contribute to the project under Apache 2 License.
- [x] To the best of my knowledge, the proposed patch is not based on a code under GPL or another license that is incompatible with OpenCV
- [x] The PR is proposed to the proper branch
- [x] There is a reference to the original bug report and related work
- [x] There is accuracy test, performance test and test data in opencv_extra repository, if applicable
      Patch to opencv_extra has the same branch name.
- [x] The feature is well documented and sample code can be built with the project CMake
2023-11-01 14:33:57 +03:00
Kumataro
1911c63826
fix: supress GCC13 warnings (#24434)
* fix: supress GCC13 warnings

* fix for review and compile-warning on MacOS
2023-10-26 09:00:58 +03:00
Abduragim Shtanchaev
a3b3a589f9
Merge pull request #24322 from Abdurrahheem:ash/dev_einsum_ellips
Ellipses supported added for Einsum Layer #24322

This PR added addresses issues not covered in #24037. Namely these are: 
Test case for this patch is in this PR [#1106](https://github.com/opencv/opencv_extra/pull/1106) in opencv extra

Added: 
 - [x] Broadcasting reduction "...ii ->...I"
 - [x] Add lazy shape deduction. "...ij, ...jk->...ik"
 
 Features to add: 
- [ ] Add implicit output computation support. "bij,bjk ->" (output subscripts should be "bik")
- [ ] Add support for CUDA backend 
- [ ] BatchWiseMultiply optimize
- [ ] Performance test

### Pull Request Readiness Checklist

See details at https://github.com/opencv/opencv/wiki/How_to_contribute#making-a-good-pull-request

- [x] I agree to contribute to the project under Apache 2 License.
- [x] To the best of my knowledge, the proposed patch is not based on a code under GPL or another license that is incompatible with OpenCV
- [x] The PR is proposed to the proper branch
- [x] There is a reference to the original bug report and related work
- [ ] There is accuracy test, performance test and test data in opencv_extra repository, if applicable
      Patch to opencv_extra has the same branch name.
- [x] The feature is well documented and sample code can be built with the project CMake
2023-10-24 16:47:00 +03:00
Amir Hassan
c2f909fc86
Merge pull request #23894 from kallaballa:blobFromImagesWithParams
Pertaining Issue: https://github.com/opencv/opencv/issues/5697

### Pull Request Readiness Checklist

See details at https://github.com/opencv/opencv/wiki/How_to_contribute#making-a-good-pull-request

- [x] I agree to contribute to the project under Apache 2 License.
- [x] To the best of my knowledge, the proposed patch is not based on a code under GPL or another license that is incompatible with OpenCV
- [x] The PR is proposed to the proper branch
- [x] There is a reference to the original bug report and related work
- [x] There is accuracy test, performance test and test data in opencv_extra repository, if applicable
      Patch to opencv_extra has the same branch name.
- [x] The feature is well documented and sample code can be built with the project CMake
2023-10-20 14:27:40 +03:00
Yuantao Feng
996b6c37c7
Merge pull request #24425 from fengyuentau:fix_timvx_test
dnn: fix HAVE_TIMVX macro definition in dnn test #24425

### Pull Request Readiness Checklist

See details at https://github.com/opencv/opencv/wiki/How_to_contribute#making-a-good-pull-request

- [x] I agree to contribute to the project under Apache 2 License.
- [x] To the best of my knowledge, the proposed patch is not based on a code under GPL or another license that is incompatible with OpenCV
- [x] The PR is proposed to the proper branch
- [x] There is a reference to the original bug report and related work
- [x] There is accuracy test, performance test and test data in opencv_extra repository, if applicable
      Patch to opencv_extra has the same branch name.
- [x] The feature is well documented and sample code can be built with the project CMake
2023-10-20 14:16:51 +03:00
Alexander Smorkalov
1c0ca41b6e
Merge pull request #24371 from hanliutong:clean-up
Clean up the obsolete API of Universal Intrinsic
2023-10-20 12:50:26 +03:00
andrewerf
b44cb33d2f
Merge pull request #21066 from andrewerf:21052-openvino-native-onnx
Native ONNX to Inference Engine backend #21066

Resolves #21052

### Pull Request Readiness Checklist

See details at https://github.com/opencv/opencv/wiki/How_to_contribute#making-a-good-pull-request

- [x] I agree to contribute to the project under Apache 2 License.
- [x] To the best of my knowledge, the proposed patch is not based on a code under GPL or other license that is incompatible with OpenCV
- [x] The PR is proposed to proper branch
- [x] There is reference to original bug report and related work
- [ ] There is accuracy test, performance test and test data in opencv_extra repository, if applicable
- [ ] The feature is well documented and sample code can be built with the project CMake
2023-10-20 11:49:27 +03:00
fengyuentau
f2ef81a179 fp16 support for gather elements 2023-10-19 14:44:12 +08:00
Kumataro
6e4280ea81
Merge pull request #24372 from Kumataro:fix24369
Supporting protobuf v22 and later(with abseil-cpp/C++17) #24372

fix https://github.com/opencv/opencv/issues/24369
related https://github.com/opencv/opencv/issues/23791

1. This patch supports external protobuf v22 and later, it required abseil-cpp and c++17.
    Even if the built-in protobuf is upgraded to v22 or later, 
    the dependency on abseil-cpp and the requirement for C++17 will continue.
2. Some test for caffe required patched protobuf, so this patch disable them.

This patch is tested by following libraries.
-  Protobuf:                    /usr/local/lib/libprotobuf.so (4.24.4)
-  abseil-cpp:                YES (20230125)

### Pull Request Readiness Checklist

See details at https://github.com/opencv/opencv/wiki/How_to_contribute#making-a-good-pull-request

- [x] I agree to contribute to the project under Apache 2 License.
- [x] To the best of my knowledge, the proposed patch is not based on a code under GPL or another license that is incompatible with OpenCV
- [x] The PR is proposed to the proper branch
- [x] There is a reference to the original bug report and related work
- [x] There is accuracy test, performance test and test data in opencv_extra repository, if applicable
      Patch to opencv_extra has the same branch name.
- [x] The feature is well documented and sample code can be built with the project CMake
2023-10-19 08:45:08 +03:00
Aser Atawya
240b245105
Merge pull request #24092 from Aser-Abdelfatah:GSoC_Support_GatherElements_ONNX
GSoC Add ONNX Support for GatherElements #24092

Merge with: https://github.com/opencv/opencv_extra/pull/1082
Adds support to the ONNX operator GatherElements [operator docs](https://github.com/onnx/onnx/blob/main/docs/Operators.md#GatherElements)
Added tests to opencv_extra at pull request https://github.com/opencv/opencv_extra/pull/1082

### Pull Request Readiness Checklist

See details at https://github.com/opencv/opencv/wiki/How_to_contribute#making-a-good-pull-request

- [x] I agree to contribute to the project under Apache 2 License.
- [x] To the best of my knowledge, the proposed patch is not based on a code under GPL or another license that is incompatible with OpenCV
- [x] The PR is proposed to the proper branch
- [x] There is a reference to the original bug report and related work
- [x] There is accuracy test, performance test and test data in opencv_extra repository, if applicable
      Patch to opencv_extra has the same branch name.
- [x] The feature is well documented and sample code can be built with the project CMake
2023-10-18 10:41:47 +03:00
alexlyulkov
014e8485b5
Merge pull request #24367 from alexlyulkov:al/fixed-cumsum-inplace-flag
Fixed CumSum layer inplace flag #24367

When exclusive is false:
dst[i] = dst[i-1] + src[i]
When exclusive is true:
dst[i] = dst[i-1] + src[i-1]
So CumSum layer can be inplace only when exclusive flag is false.
2023-10-18 09:21:40 +03:00
Liutong HAN
a287605c3e Clean up the Universal Intrinsic API. 2023-10-13 19:23:30 +08:00
Yuantao Feng
0507043a55
Merge pull request #24386 from fengyuentau:fix_dtype_nary_eltwise
dnn: fix inconsistent input dtype for nary eltwise layers #24386

Resolves https://github.com/opencv/opencv/issues/24385
Merge with https://github.com/opencv/opencv_extra/pull/1107
Relates https://github.com/opencv/opencv/pull/24092#discussion_r1353964405

### Pull Request Readiness Checklist

See details at https://github.com/opencv/opencv/wiki/How_to_contribute#making-a-good-pull-request

- [x] I agree to contribute to the project under Apache 2 License.
- [x] To the best of my knowledge, the proposed patch is not based on a code under GPL or another license that is incompatible with OpenCV
- [x] The PR is proposed to the proper branch
- [x] There is a reference to the original bug report and related work
- [x] There is accuracy test, performance test and test data in opencv_extra repository, if applicable
      Patch to opencv_extra has the same branch name.
- [x] The feature is well documented and sample code can be built with the project CMake
2023-10-13 11:56:18 +03:00
Alexander Smorkalov
58285e5468
Merge pull request #24359 from asmorkalov:as/FastNeuralStyle_eccv16_tuning
Tuned threshold for FastNeuralStyle_eccv16 test
2023-10-13 10:29:41 +03:00
Yuantao Feng
590f150d5e
dnn: hotfixes for fast gemm (#24315)
* remove Conformance from test names

* integrate neon optimization into default

* quick fix: define CV_NEON_AARCH64 0 for non NEON platforms

* remove var batch that leads to memory leak

* put neon code back to fast_gemm_kernels.simd

* reorganize code to reduce duplicate code
2023-10-07 21:48:44 +03:00
Sean McBride
5fb3869775
Merge pull request #23109 from seanm:misc-warnings
* Fixed clang -Wnewline-eof warnings
* Fixed all trivial clang -Wextra-semi and -Wc++98-compat-extra-semi warnings
* Removed trailing semi from various macros
* Fixed various -Wunused-macros warnings
* Fixed some trivial -Wdocumentation warnings
* Fixed some -Wdocumentation-deprecated-sync warnings
* Fixed incorrect indentation
* Suppressed some clang warnings in 3rd party code
* Fixed QRCodeEncoder::Params documentation.

---------

Co-authored-by: Alexander Smorkalov <alexander.smorkalov@xperience.ai>
2023-10-06 13:33:21 +03:00
HAN Liutong
07bf9cb013
Merge pull request #24325 from hanliutong:rewrite
Rewrite Universal Intrinsic code: float related part #24325

The goal of this series of PRs is to modify the SIMD code blocks guarded by CV_SIMD macro: rewrite them by using the new Universal Intrinsic API.

The series of PRs is listed below:
#23885 First patch, an example
#23980 Core module
#24058 ImgProc module, part 1
#24132 ImgProc module, part 2
#24166 ImgProc module, part 3
#24301 Features2d and calib3d module
#24324 Gapi module

This patch (hopefully) is the last one in the series. 

This patch mainly involves 3 parts
1. Add some modifications related to float (CV_SIMD_64F)
2. Use `#if (CV_SIMD || CV_SIMD_SCALABLE)` instead of `#if CV_SIMD || CV_SIMD_SCALABLE`, 
    then we can get the `CV_SIMD` module that is not enabled for `CV_SIMD_SCALABLE` by looking for `if CV_SIMD`
3. Summary of `CV_SIMD` blocks that remains unmodified: Updated comments
    - Some blocks will cause test fail when enable for RVV, marked as `TODO: enable for CV_SIMD_SCALABLE, ....`
    - Some blocks can not be rewrited directly. (Not commented in the source code, just listed here)
      - ./modules/core/src/mathfuncs_core.simd.hpp (Vector type wrapped in class/struct)
      - ./modules/imgproc/src/color_lab.cpp (Array of vector type)
      - ./modules/imgproc/src/color_rgb.simd.hpp (Array of vector type)
      - ./modules/imgproc/src/sumpixels.simd.hpp (fixed length algorithm, strongly ralated with `CV_SIMD_WIDTH`)
      These algorithms will need to be redesigned to accommodate scalable backends.

### Pull Request Readiness Checklist

See details at https://github.com/opencv/opencv/wiki/How_to_contribute#making-a-good-pull-request

- [ ] I agree to contribute to the project under Apache 2 License.
- [ ] To the best of my knowledge, the proposed patch is not based on a code under GPL or another license that is incompatible with OpenCV
- [ ] The PR is proposed to the proper branch
- [ ] There is a reference to the original bug report and related work
- [ ] There is accuracy test, performance test and test data in opencv_extra repository, if applicable
      Patch to opencv_extra has the same branch name.
- [ ] The feature is well documented and sample code can be built with the project CMake
2023-10-05 17:57:25 +03:00
Dmitry Kurtaev
2c92eb3175 Enable more tests for OpenVINO 2023.0 2023-10-05 12:51:55 +03:00
Alexander Smorkalov
33d64d0491 Tuned threshold for FastNeuralStyle_eccv16 test for systems without AVX2. 2023-10-04 16:19:13 +03:00
Wanli
62b5470b78
Merge pull request #24298 from WanliZhong:extend_perf_net_test
Extend performance test models #24298

**Merged With https://github.com/opencv/opencv_extra/pull/1095**

This PR aims to extend the performance tests. 

- **YOLOv5** for object detection
- **YOLOv8** for object detection
- **EfficientNet** for classification

Models from OpenCV Zoo:

- **YOLOX** for object detection
- **YuNet** for face detection
- **SFace** for face recognization
- **MPPalm** for palm detection
- **MPHand** for hand landmark
- **MPPose** for pose estimation
- **ViTTrack** for object tracking
- **PPOCRv3** for text detection
- **CRNN** for text recognization
- **PPHumanSeg** for human segmentation

If other models should be added, **please leave some comments**. Thanks!



Build opencv with script:
```shell
-DBUILD_opencv_python2=OFF
-DBUILD_opencv_python3=OFF
-DBUILD_opencv_gapi=OFF
-DINSTALL_PYTHON_EXAMPLES=OFF
-DINSTALL_C_EXAMPLES=OFF
-DBUILD_DOCS=OFF
-DBUILD_EXAMPLES=OFF
-DBUILD_ZLIB=OFF
-DWITH_FFMPEG=OFF
```



Performance Test on **Apple M2 CPU**
```shell
MacOS 14.0
8 threads
```

**1 thread:**
| Name of Test | 4.5.5-1th | 4.6.0-1th | 4.7.0-1th | 4.8.0-1th | 4.8.1-1th |
|--------------|:---------:|:---------:|:---------:|:---------:|:---------:|
| CRNN         |  76.244   |  76.611   |  62.534   |  57.678   |  57.238   |
| EfficientNet |    ---    |    ---    |  109.224  |  130.753  |  109.076  |
| MPHand       |    ---    |    ---    |  19.289   |  22.727   |  27.593   |
| MPPalm       |  47.150   |  47.061   |  41.064   |  65.598   |  40.109   |
| MPPose       |    ---    |    ---    |  26.592   |  32.022   |  26.956   |
| PPHumanSeg   |  41.672   |  41.790   |  27.819   |  27.212   |  30.461   |
| PPOCRv3      |    ---    |    ---    |  140.371  |  187.922  |  170.026  |
| SFace        |  43.830   |  43.834   |  27.575   |  30.653   |  26.387   |
| ViTTrack     |    ---    |    ---    |    ---    |  14.617   |  15.028   |
| YOLOX        | 1060.507  | 1061.361  |  495.816  |  533.309  |  549.713  |
| YOLOv5       |    ---    |    ---    |    ---    |  191.350  |  193.261  |
| YOLOv8       |    ---    |    ---    |  198.893  |  218.733  |  223.142  |
| YuNet        |  27.084   |  27.095   |  26.238   |  30.512   |  34.439   |
| MobileNet_SSD_Caffe         |  44.742   |  44.565   |  33.005   |  29.421   |  29.286   |
| MobileNet_SSD_v1_TensorFlow |  49.352   |  49.274   |  35.163   |  32.134   |  31.904   |
| MobileNet_SSD_v2_TensorFlow |  83.537   |  83.379   |  56.403   |  42.947   |  42.148   |
| ResNet_50                   |  148.872  |  148.817  |  77.331   |  67.682   |  67.760   |


**n threads:**
| Name of Test | 4.5.5-nth | 4.6.0-nth | 4.7.0-nth | 4.8.0-nth | 4.8.1-nth |
|--------------|:---------:|:---------:|:---------:|:---------:|:---------:|
| CRNN         |  44.262   |  44.408   |  41.540   |  40.731   |  41.151   |
| EfficientNet |    ---    |    ---    |  28.683   |  42.676   |  38.204   |
| MPHand       |    ---    |    ---    |   6.738   |  13.126   |   8.155   |
| MPPalm       |  16.613   |  16.588   |  12.477   |  31.370   |  17.048   |
| MPPose       |    ---    |    ---    |  12.985   |  19.700   |  16.537   |
| PPHumanSeg   |  14.993   |  15.133   |  13.438   |  15.269   |  15.252   |
| PPOCRv3      |    ---    |    ---    |  63.752   |  85.469   |  76.190   |
| SFace        |  10.685   |  10.822   |   8.127   |   8.318   |   7.934   |
| ViTTrack     |    ---    |    ---    |    ---    |  10.079   |   9.579   |
| YOLOX        |  417.358  |  422.977  |  230.036  |  234.662  |  228.555  |
| YOLOv5       |    ---    |    ---    |    ---    |  74.249   |  75.480   |
| YOLOv8       |    ---    |    ---    |  63.762   |  88.770   |  70.927   |
| YuNet        |   8.589   |   8.731   |  11.269   |  16.466   |  14.513   |
| MobileNet_SSD_Caffe         |  12.575   |  12.636   |  11.529   |  12.114   |  12.236   |
| MobileNet_SSD_v1_TensorFlow |  13.922   |  14.160   |  13.078   |  12.124   |  13.298   |
| MobileNet_SSD_v2_TensorFlow |  25.096   |  24.836   |  22.823   |  20.238   |  20.319   |
| ResNet_50                   |  41.561   |  41.296   |  29.092   |  30.412   |  29.339   |


Performance Test on [Intel Core i7-12700K](https://www.intel.com/content/www/us/en/products/sku/134594/intel-core-i712700k-processor-25m-cache-up-to-5-00-ghz/specifications.html)
```shell
Ubuntu 22.04.2 LTS
8 Performance-cores (3.60 GHz, turbo up to 4.90 GHz)
4 Efficient-cores (2.70 GHz, turbo up to 3.80 GHz)
20 threads
```


**1 thread:**
| Name of Test | 4.5.5-1th | 4.6.0-1th | 4.7.0-1th | 4.8.0-1th | 4.8.1-1th |
|--------------|:---------:|:---------:|:---------:|:---------:|:---------:|
| CRNN         |  16.752   |  16.851   |  16.840   |  16.625   |  16.663   |
| EfficientNet |    ---    |    ---    |  61.107   |  76.037   |  53.890   |
| MPHand       |    ---    |    ---    |   8.906   |   9.969   |   8.403   |
| MPPalm       |  24.243   |  24.638   |  18.104   |  35.140   |  18.387   |
| MPPose       |    ---    |    ---    |  12.322   |  16.515   |  12.355   |
| PPHumanSeg   |  15.249   |  15.303   |  10.203   |  10.298   |  10.353   |
| PPOCRv3      |    ---    |    ---    |  87.788   |  144.253  |  90.648   |
| SFace        |  15.583   |  15.884   |  13.957   |  13.298   |  13.284   |
| ViTTrack     |    ---    |    ---    |    ---    |  11.760   |  11.710   |
| YOLOX        |  324.927  |  325.173  |  235.986  |  253.653  |  254.472  |
| YOLOv5       |    ---    |    ---    |    ---    |  102.163  |  102.621  |
| YOLOv8       |    ---    |    ---    |  87.013   |  103.182  |  103.146  |
| YuNet        |  12.806   |  12.645   |  10.515   |  12.647   |  12.711   |
| MobileNet_SSD_Caffe         |  23.556   |  23.768   |  24.304   |  22.569   |  22.602   |
| MobileNet_SSD_v1_TensorFlow |  26.136   |  26.276   |  26.854   |  24.828   |  24.961   |
| MobileNet_SSD_v2_TensorFlow |  43.521   |  43.614   |  46.892   |  44.044   |  44.682   |
| ResNet_50                   |  73.588   |  73.501   |  75.191   |  66.893   |  65.144   |


**n thread:**
| Name of Test | 4.5.5-nth | 4.6.0-nth | 4.7.0-nth | 4.8.0-nth | 4.8.1-nth | 
|--------------|:---------:|:---------:|:---------:|:---------:|:---------:|
| CRNN         |   8.665   |   8.827   |  10.643   |   7.703   |   7.743   | 
| EfficientNet |    ---    |    ---    |  16.591   |  12.715   |   9.022   |   
| MPHand       |    ---    |    ---    |   2.678   |   2.785   |   1.680   |           
| MPPalm       |   5.309   |   5.319   |   3.822   |  10.568   |   4.467   |       
| MPPose       |    ---    |    ---    |   3.644   |   6.088   |   4.608   |        
| PPHumanSeg   |   4.756   |   4.865   |   5.084   |   5.179   |   5.148   |        
| PPOCRv3      |    ---    |    ---    |  32.023   |  50.591   |  32.414   |      
| SFace        |   3.838   |   3.980   |   4.629   |   3.145   |   3.155   |       
| ViTTrack     |    ---    |    ---    |    ---    |  10.335   |  10.357   |   
| YOLOX        |  68.314   |  68.081   |  82.801   |  74.219   |  73.970   |      
| YOLOv5       |    ---    |    ---    |    ---    |  47.150   |  47.523   |    
| YOLOv8       |    ---    |    ---    |  32.195   |  30.359   |  30.267   |    
| YuNet        |   2.604   |   2.644   |   2.622   |   3.278   |   3.349   |    
| MobileNet_SSD_Caffe         |  13.005   |   5.935   |   8.586   |   4.629   |   4.713   |
| MobileNet_SSD_v1_TensorFlow |   7.002   |   7.129   |   9.314   |   5.271   |   5.213   |
| MobileNet_SSD_v2_TensorFlow |  11.939   |  12.111   |  22.688   |  12.038   |  12.086   |
| ResNet_50                   |  18.227   |  18.600   |  26.150   |  15.584   |  15.706   |
2023-10-04 13:05:32 +03:00
alexlyulkov
9bd14d5417
Merge pull request #24353 from alexlyulkov:al/fixed-cumsum-layer
Fixed CumSum dnn layer #24353

Fixes #20110

The algorithm had several errors, so I rewrote it.
Also the layer didn't work with non constant axis tensor. Fixed it.
Enabled CumSum layer tests from ONNX conformance.
2023-10-03 13:58:25 +03:00
Alexander Smorkalov
5caee5cc64 Fixed OpenCL PF16 fallback in Einsum layer. 2023-09-29 15:52:23 +03:00
Dmitry Kurtaev
c7ec0d599a
Merge pull request #23987 from dkurt:openvino_int8_backend
OpenVINO backend for INT8 models #23987

### Pull Request Readiness Checklist

TODO:
- [x] DetectionOutput layer (https://github.com/opencv/opencv/pull/24069)
- [x] Less FP32 fallbacks (i.e. Sigmoid, eltwise sum)
- [x] Accuracy, performance tests (https://github.com/opencv/opencv/pull/24039)
- [x] Single layer tests (convolution)
- [x] ~~Fixes for OpenVINO 2022.1 (https://pullrequest.opencv.org/buildbot/builders/precommit_custom_linux/builds/100334)~~


Performace results for object detection model `coco_efficientdet_lite0_v1_1.0_quant_2021_09_06.tflite`:
| backend | performance (median time) |
|---|---|
| OpenCV | 77.42ms |
| OpenVINO 2023.0 | 10.90ms |

CPU: `11th Gen Intel(R) Core(TM) i5-1135G7 @ 2.40GHz`

Serialized model per-layer stats (note that Convolution should use `*_I8` primitives if they are quantized correctly): https://gist.github.com/dkurt/7772bbf1907035441bb5454f19f0feef

---

See details at https://github.com/opencv/opencv/wiki/How_to_contribute#making-a-good-pull-request

- [x] I agree to contribute to the project under Apache 2 License.
- [x] To the best of my knowledge, the proposed patch is not based on a code under GPL or another license that is incompatible with OpenCV
- [x] The PR is proposed to the proper branch
- [x] There is a reference to the original bug report and related work
- [x] There is accuracy test, performance test and test data in opencv_extra repository, if applicable
      Patch to opencv_extra has the same branch name.
- [x] The feature is well documented and sample code can be built with the project CMake
2023-09-28 16:24:43 +03:00
Alexander Smorkalov
b8d4ac589d
Merge pull request #24334 from fengyuentau:fix_24319
dnn onnx: fix not-found constant indices for Gather if shared
2023-09-28 13:08:26 +03:00
fengyuentau
7fa0493ca0 init commit 2023-09-28 11:50:21 +08:00
Yuantao Feng
307324f4ac
Merge pull request #24283 from fengyuentau:halide_tests
dnn: merge tests from test_halide_layers to test_backends #24283

Context: https://github.com/opencv/opencv/pull/24231#pullrequestreview-1628649980

### Pull Request Readiness Checklist

See details at https://github.com/opencv/opencv/wiki/How_to_contribute#making-a-good-pull-request

- [x] I agree to contribute to the project under Apache 2 License.
- [x] To the best of my knowledge, the proposed patch is not based on a code under GPL or another license that is incompatible with OpenCV
- [x] The PR is proposed to the proper branch
- [x] There is a reference to the original bug report and related work
- [x] There is accuracy test, performance test and test data in opencv_extra repository, if applicable
      Patch to opencv_extra has the same branch name.
- [x] The feature is well documented and sample code can be built with the project CMake
2023-09-27 14:09:47 +03:00