Commit Graph

1101 Commits

Author SHA1 Message Date
alexlyulkov
85cc02f4de
Allowed int64 constants in ONNX parser (#25148)
* Removed automatic int64 to int32 conversion in ONNX parser

* Fixed wrong rebase code

* added tests, minor fixes

* fixed Cast layer

* Fixed Cast layer for fp16 backend

* Fixed Cast layer for fp16 backend

* Fixed Cast layer for fp16 backend

* Allowed uint32, int64, uint64 types in OpenCL

* Fixed Cast layer for fp16 backend

* Use randu in test_int

---------

Co-authored-by: Alexander Lyulkov <alexander.lyulkov@opencv.ai>
2024-03-13 11:48:23 +03:00
alexlyulkov
1d1faaabef
Merge pull request #24411 from alexlyulkov:al/dnn-type-inference
Added int32, int64 support and type inference to dnn #24411

**Added a type inference to dnn similar to the shape inference, added int32 and int64 support.**

- Added getTypes method for layers that calculates layer outputs types and internals types from inputs types (Similar to getMemoryShapes). By default outputs and internals types = input[0] type
- Added type inference pipeline similar to shape inference pipeline. LayersShapes struct (that is used in shape inference pipeline) now contains both shapes and types
- All layers output blobs are now allocated using the calculated types from the type inference.
- Inputs and constants with int32 and int64 types are not automatically converted into float32 now.
- Added int32 and int64 support for all the layers with indexing and for all the layers required in tests.

Added  int32 and int64 support for CUDA:
- Added host<->device data moving for int32 and int64
- Added int32 and int64 support for several layers (just slightly modified CUDA C++ templates)

Passed all the accuracy tests on CPU, OCL, OCL_FP16, CUDA, CUDA_FP16. (except RAFT model)

**CURRENT PROBLEMS**:
-  ONNX parser always converts int64 constants and layers attributes to int32, so some models with int64 constants doesn't work (e.g. RAFT). The solution is to disable int64->int32 conversion and fix attributes reading in a lot of ONNX layers parsers (https://github.com/opencv/opencv/issues/25102)
- I didn't add type inference and int support to VULCAN, so it doesn't work at all now.
- Some layers don't support int yet, so some unknown models may not work.

**CURRENT WORKAROUNDS**:
- CPU arg_layer indides are implemented in int32 followed by a int32->int64 conversion (the master branch has the same workaround with int32->float conversion)
- CPU and OCL pooling_layer indices are implemented in float followed by a float->int64 conversion
- CPU gather_layer indices are implemented in int32, so int64 indices are converted to int32 (the master branch has the same workaround with float->int32 conversion)

**DISABLED TESTS**:
- RAFT model

**REMOVED TESTS**:
- Greater_input_dtype_int64 (because it doesn't fit ONNX rules, the whole test is just comparing float tensor with int constant)

**TODO IN NEXT PULL REQUESTS**:
- Add int64 support for ONNX parser
- Add int support for more layers
- Add int support for OCL (currently int layers just run on CPU)
- Add int tests
- Add int support for other backends
2024-03-01 17:07:38 +03:00
Alexander Smorkalov
010772b492 Extracted 1d test cases to reduce conflicts with 4.x. 2024-02-29 12:02:00 +03:00
Abdurrahheem
161c402f02 seperated working scale layer 1d test. 2024-02-28 13:04:48 +04:00
Abduragim Shtanchaev
093ed08892
Merge pull request #24977 from Abdurrahheem:ash/primitive_1d_tests
Primitive 1D Tests #24977

This PR is designed to add tests for 1D inputs for layer, which is required after introducing 1d support in 5.x. Currently tests are written for following layers: 

- [x] `Add`, `Sub`
- [x]  `Product`, `Div`
- [x]  `Min`, `Max`
- [x] `Argmin`, `Argmax`
- [x] `Gather` 

This list is to be extended for more layer such `gemm`, `conv` etc.

### Pull Request Readiness Checklist

See details at https://github.com/opencv/opencv/wiki/How_to_contribute#making-a-good-pull-request

- [x] I agree to contribute to the project under Apache 2 License.
- [x] To the best of my knowledge, the proposed patch is not based on a code under GPL or another license that is incompatible with OpenCV
- [x] The PR is proposed to the proper branch
- [x] There is a reference to the original bug report and related work
- [x] There is accuracy test, performance test and test data in opencv_extra repository, if applicable
      Patch to opencv_extra has the same branch name.
- [x] The feature is well documented and sample code can be built with the project CMake
2024-02-21 17:37:49 +03:00
Yuantao Feng
d4fd5157fa
Merge pull request #24980 from fengyuentau:on-fly-quantization-removal
dnn cleanup: On-fly-quantization removal #2498

On-fly-quantization is first introduced via https://github.com/opencv/opencv/pull/20228.
We decided to remove it but keep int8 layers implementation because on-fly-quantization
is less practical given the fact that there has been so many dedicated tools for model
quantization.

### Pull Request Readiness Checklist

See details at https://github.com/opencv/opencv/wiki/How_to_contribute#making-a-good-pull-request

- [x] I agree to contribute to the project under Apache 2 License.
- [x] To the best of my knowledge, the proposed patch is not based on a code under GPL or another license that is incompatible with OpenCV
- [x] The PR is proposed to the proper branch
- [x] There is a reference to the original bug report and related work
- [x] There is accuracy test, performance test and test data in opencv_extra repository, if applicable
      Patch to opencv_extra has the same branch name.
- [x] The feature is well documented and sample code can be built with the project CMake
2024-02-16 18:21:45 +03:00
Alexander Smorkalov
fa3f1822ae
Merge pull request #24993 from asmorkalov:as/FastNeuralStyle_eccv16_CUDA
Relax test requirements for CUDA in DNNTestNetwork.FastNeuraStyle_eccv16
2024-02-12 16:37:57 +03:00
Alexander Smorkalov
5ce0acce40 Relax test requirements for CUDA in DNNTestNetwork.FastNeuraStyle_eccv16 2024-02-12 14:47:37 +03:00
Alexander Smorkalov
3a55f50133 Merge branch 4.x 2024-02-12 14:20:35 +03:00
Alexander Alekhin
efc9837df1
Merge pull request #24892 from opencv-pushbot:gitee/alalek/dnn_avoid_16s_usage
DNN: avoid CV_16S usage for FP16 #24892

**Merge after**: #24918

TODO:
- [x] measure performance changes
- [x] optimize convertTo for OpenCL: #24918

12700K iGPU:

|Name of Test|0|1|1 vs 0 (x-factor)|
|---|:-:|:-:|:-:|
|AlexNet::DNNTestNetwork::OCV/OCL_FP16|7.441|7.480|0.99|
|CRNN::DNNTestNetwork::OCV/OCL_FP16|10.776|10.736|1.00|
|DenseNet_121::DNNTestNetwork::OCV/OCL_FP16|52.762|52.833|1.00|
|EAST_text_detection::DNNTestNetwork::OCV/OCL_FP16|60.694|60.721|1.00|
|EfficientNet::DNNTestNetwork::OCV/OCL_FP16|33.373|33.173|1.01|
|FastNeuralStyle_eccv16::DNNTestNetwork::OCV/OCL_FP16|81.840|81.724|1.00|
|GoogLeNet::DNNTestNetwork::OCV/OCL_FP16|20.965|20.927|1.00|
|Inception_5h::DNNTestNetwork::OCV/OCL_FP16|22.204|22.173|1.00|
|Inception_v2_SSD_TensorFlow::DNNTestNetwork::OCV/OCL_FP16|47.115|47.460|0.99|
|MPHand::DNNTestNetwork::OCV/OCL_FP16|6.760|6.670|1.01|
|MPPalm::DNNTestNetwork::OCV/OCL_FP16|10.188|10.171|1.00|
|MPPose::DNNTestNetwork::OCV/OCL_FP16|12.510|12.561|1.00|
|MobileNet_SSD_Caffe::DNNTestNetwork::OCV/OCL_FP16|17.290|17.072|1.01|
|MobileNet_SSD_v1_TensorFlow::DNNTestNetwork::OCV/OCL_FP16|19.473|19.306|1.01|
|MobileNet_SSD_v2_TensorFlow::DNNTestNetwork::OCV/OCL_FP16|22.874|23.404|0.98|
|OpenFace::DNNTestNetwork::OCV/OCL_FP16|9.568|9.517|1.01|
|OpenPose_pose_mpi_faster_4_stages::DNNTestNetwork::OCV/OCL_FP16|539.899|539.845|1.00|
|PPHumanSeg::DNNTestNetwork::OCV/OCL_FP16|18.015|18.769|0.96|
|PPOCRv3::DNNTestNetwork::OCV/OCL_FP16|63.122|63.540|0.99|
|ResNet_50::DNNTestNetwork::OCV/OCL_FP16|34.947|34.925|1.00|
|SFace::DNNTestNetwork::OCV/OCL_FP16|10.249|10.206|1.00|
|SSD::DNNTestNetwork::OCV/OCL_FP16|213.068|213.108|1.00|
|SqueezeNet_v1_1::DNNTestNetwork::OCV/OCL_FP16|4.867|4.878|1.00|
|VIT_B_32::DNNTestNetwork::OCV/OCL_FP16|200.563|190.788|1.05|
|VitTrack::DNNTestNetwork::OCV/OCL_FP16|7.528|7.173|1.05|
|YOLOX::DNNTestNetwork::OCV/OCL_FP16|132.858|132.701|1.00|
|YOLOv3::DNNTestNetwork::OCV/OCL_FP16|209.559|208.809|1.00|
|YOLOv4::DNNTestNetwork::OCV/OCL_FP16|221.357|220.924|1.00|
|YOLOv4_tiny::DNNTestNetwork::OCV/OCL_FP16|24.446|24.382|1.00|
|YOLOv5::DNNTestNetwork::OCV/OCL_FP16|43.922|44.080|1.00|
|YOLOv8::DNNTestNetwork::OCV/OCL_FP16|64.159|63.842|1.00|
|YuNet::DNNTestNetwork::OCV/OCL_FP16|10.177|10.231|0.99|
|opencv_face_detector::DNNTestNetwork::OCV/OCL_FP16|15.121|15.445|0.98|

Co-authored-by: Alexander Alekhin <alexander.a.alekhin@gmail.com>
2024-01-26 16:34:17 +03:00
Alexander Smorkalov
decf6538a2 Merge branch 4.x 2024-01-23 17:06:52 +03:00
Alexander Smorkalov
d6424233f0
Merge pull request #24906 from Abdurrahheem:ash/fix_einsum_inner
Einsum Layer Inner Product Issue Solution
2024-01-23 09:26:22 +03:00
Abduragim
0e6b7f1656 fix 1D handling issue in inner product 2024-01-22 20:10:34 +04:00
Alexander Smorkalov
775210e701 Relax test requirements for OpenCL in test DNNTestNetwork.FastNeuralStyle_eccv16. 2024-01-22 17:11:41 +03:00
Alexander Smorkalov
c739117a7c Merge branch 4.x 2024-01-19 17:32:22 +03:00
Sean McBride
e64857c561
Merge pull request #23736 from seanm:c++11-simplifications
Removed all pre-C++11 code, workarounds, and branches #23736

This removes a bunch of pre-C++11 workrarounds that are no longer necessary as C++11 is now required.
It is a nice clean up and simplification.

* No longer unconditionally #include <array> in cvdef.h, include explicitly where needed
* Removed deprecated CV_NODISCARD, already unused in the codebase
* Removed some pre-C++11 workarounds, and simplified some backwards compat defines
* Removed CV_CXX_STD_ARRAY
* Removed CV_CXX_MOVE_SEMANTICS and CV_CXX_MOVE
* Removed all tests of CV_CXX11, now assume it's always true. This allowed removing a lot of dead code.
* Updated some documentation consequently.
* Removed all tests of CV_CXX11, now assume it's always true
* Fixed links.

---------

Co-authored-by: Maksim Shabunin <maksim.shabunin@gmail.com>
Co-authored-by: Alexander Smorkalov <alexander.smorkalov@xperience.ai>
2024-01-19 16:53:08 +03:00
Abduragim
d30bf1bc3c added test for yolo nas 2024-01-17 13:01:43 +03:00
Alexander Smorkalov
26cf82a56c Normalize axis parameter in DNN Concat to handle negative values. 2024-01-16 12:22:22 +03:00
jimmylaw21
a7fa1e6f4b
Merge pull request #24610 from jimmylaw21:dnn-onnx-add-group-norm-layer
dnn onnx: add group norm layer #24610

dnn onnx: add group norm layer

Todo:

- [x] speed up by multi-threading
- [x] add perf
- [x] add backend: OpenVINO
- [x] add backend: CUDA
- [x] add backend: OpenCL (no fp16)
- [ ] add backend: CANN

### Pull Request Readiness Checklist

See details at https://github.com/opencv/opencv/wiki/How_to_contribute#making-a-good-pull-request

- [x] I agree to contribute to the project under Apache 2 License.
- [x] To the best of my knowledge, the proposed patch is not based on a code under GPL or another license that is incompatible with OpenCV
- [x] The PR is proposed to the proper branch
- [ ] There is a reference to the original bug report and related work
- [x] There is accuracy test, performance test and test data in opencv_extra repository, if applicable
      Patch to opencv_extra has the same branch name.
- [x] The feature is well documented and sample code can be built with the project CMake

Co-authored-by: fengyuentau <yuantao.feng@opencv.org.cn>
2024-01-12 15:13:26 +03:00
Yuantao Feng
e7ccff9805
Merge pull request #24834 from fengyuentau:cuda_naryeltwise_broadcast
dnn (cuda): support broadcasting if a.rank() != b.rank() #24834

Inspired by https://github.com/opencv/opencv/pull/24786. This PR keeps the fusion of `NaryEltwise` and `Concat` while addressed the data missing problem via supporting broadcasting if a.rank() != b.rank().

Resolves https://github.com/opencv/opencv/issues/23977
Resolves https://github.com/opencv/opencv/issues/24606
Resolves https://github.com/opencv/opencv/issues/24635
Resolves https://github.com/opencv/opencv/issues/24721 

### Pull Request Readiness Checklist

See details at https://github.com/opencv/opencv/wiki/How_to_contribute#making-a-good-pull-request

- [x] I agree to contribute to the project under Apache 2 License.
- [x] To the best of my knowledge, the proposed patch is not based on a code under GPL or another license that is incompatible with OpenCV
- [x] The PR is proposed to the proper branch
- [x] There is a reference to the original bug report and related work
- [x] There is accuracy test, performance test and test data in opencv_extra repository, if applicable
      Patch to opencv_extra has the same branch name.
- [x] The feature is well documented and sample code can be built with the project CMake
2024-01-11 10:04:46 +03:00
Yuantao Feng
7fb336322d
Merge pull request #24808 from fengyuentau:fix_layernorm
dnn: no layer norm fusion if axes.back() is not the axis of last dimension #24808

Merge with https://github.com/opencv/opencv_extra/pull/1137

Resolves https://github.com/opencv/opencv/issues/24797

### Pull Request Readiness Checklist

See details at https://github.com/opencv/opencv/wiki/How_to_contribute#making-a-good-pull-request

- [x] I agree to contribute to the project under Apache 2 License.
- [x] To the best of my knowledge, the proposed patch is not based on a code under GPL or another license that is incompatible with OpenCV
- [x] The PR is proposed to the proper branch
- [x] There is a reference to the original bug report and related work
- [x] There is accuracy test, performance test and test data in opencv_extra repository, if applicable
      Patch to opencv_extra has the same branch name.
- [ ] The feature is well documented and sample code can be built with the project CMake
2024-01-10 13:01:00 +03:00
Yuantao Feng
c955564cb3
Merge pull request #24765 from fengyuentau:mod_operator
dnn onnx: add mod #24765

Resolves https://github.com/opencv/opencv/issues/23174

TODO:

- [x] enable some conformance tests
- [x] add backends
    - [x] CANN
    - [x] OpenVINO
    - [x] CUDA

### Pull Request Readiness Checklist

See details at https://github.com/opencv/opencv/wiki/How_to_contribute#making-a-good-pull-request

- [x] I agree to contribute to the project under Apache 2 License.
- [x] To the best of my knowledge, the proposed patch is not based on a code under GPL or another license that is incompatible with OpenCV
- [x] The PR is proposed to the proper branch
- [x] There is a reference to the original bug report and related work
- [x] There is accuracy test, performance test and test data in opencv_extra repository, if applicable
      Patch to opencv_extra has the same branch name.
- [x] The feature is well documented and sample code can be built with the project CMake
2024-01-09 19:00:17 +03:00
Abduragim
6c28d7140a 1d support for einsum 2024-01-08 21:34:47 +03:00
Abduragim Shtanchaev
3b26e183cb changed weights of yolov7 2023-12-28 23:03:47 +03:00
Yuantao Feng
f978c99523
Merge pull request #24753 from fengyuentau:einsum_importer
dnn onnx: support constaint inputs in einsum importer #24753 

Merge with https://github.com/opencv/opencv_extra/pull/1132.

Resolves https://github.com/opencv/opencv/issues/24697

Credits to @LaurentBerger.

---

This is a workaround. I suggest to get input shapes and calculate the output shapes in `getMemoryShapes` so as to keep the best compatibility. It is not always robust getting shapes during the importer stage and we should avoid that as much as possible.

### Pull Request Readiness Checklist

See details at https://github.com/opencv/opencv/wiki/How_to_contribute#making-a-good-pull-request

- [x] I agree to contribute to the project under Apache 2 License.
- [x] To the best of my knowledge, the proposed patch is not based on a code under GPL or another license that is incompatible with OpenCV
- [x] The PR is proposed to the proper branch
- [x] There is a reference to the original bug report and related work
- [x] There is accuracy test, performance test and test data in opencv_extra repository, if applicable
      Patch to opencv_extra has the same branch name.
- [x] The feature is well documented and sample code can be built with the project CMake
2023-12-25 14:42:05 +03:00
Alexander Alekhin
f49b26182b dnn(test): skip very long debug tests, reduce test time 2023-12-25 08:44:06 +00:00
Alexander Alekhin
96b894e0e1 Merge pull request #24761 from opencv-pushbot:gitee/alalek/test_skip_update_win32 2023-12-25 08:27:30 +00:00
Alexander Alekhin
f8502d45f9 dnn(test): skip tests on 32-bit Windows 2023-12-25 07:23:45 +00:00
Alexander Smorkalov
953dddd26b
Merge pull request #24747 from asmorkalov:as/tune_vitb_cuda
Increate Vit_b test threshold a bit for CUDA FP16.
2023-12-22 17:04:46 +03:00
Dhanwanth1803
027aee8ad4
Merge pull request #24384 from Dhanwanth1803:feat-crop
Fixes #22747. Support [crop] configuration for DarkNet #24384

Request for comments. This is my first PR. 

**Merge with extra**: https://github.com/opencv/opencv_extra/pull/1112

resolves https://github.com/opencv/opencv/issues/22747

- [x] I agree to contribute to the project under Apache 2 License.
- [x] To the best of my knowledge, the proposed patch is not based on a code under GPL or another license that is incompatible with OpenCV
- [x] The PR is proposed to the proper branch
- [x] There is a reference to the original bug report and related work
- [ ] There is accuracy test, performance test and test data in opencv_extra repository, if applicable
      Patch to opencv_extra has the same branch name.
- [ ] The feature is well documented and sample code can be built with the project CMake
2023-12-22 14:55:01 +03:00
Alexander Smorkalov
53cd921ab4 Increate Vit_b test threshold a bit for CUDA FP16. 2023-12-22 13:37:44 +03:00
Alexander Alekhin
c9bb92d58b dnn(test): tune FP16 test tolerance 2023-12-21 13:39:05 +00:00
Yuantao Feng
0521a3a384
Merge pull request #24476 from fengyuentau:attention_layer
dnn: add attention layer #24476

Resolves #24609

Merge with: https://github.com/opencv/opencv_extra/pull/1128.

Attention operator spec from onnxruntime: https://github.com/microsoft/onnxruntime/blob/v1.16.1/docs/ContribOperators.md#com.microsoft.Attention.

TODO:
- [x] benchmark (before this PR vs. with this PR vs. ORT).
- [x] Layer fusion: Take care Slice with end=INT64_MAX.
- [x] Layer fusion: match more potential attention (VIT) patterns.
    - [x] Single-head attention is supported.
- [x] Test AttentionSubgraph fusion.
- [x] Add acc tests for VIT_B_32 and VitTrack
- [x] Add perf tests for VIT_B_32 and VitTrack

## Benchmarks

Platform: Macbook Air M1.

### Attention Subgraph

Input scale: [1, 197, 768].

|                        | mean (ms) | median (ms) | min (ms) |
| ---------------------- | --------- | ----------- | -------- |
| w/ Attention (this PR) | 3.75      | 3.68        | 3.22     |
| w/o Attention          | 9.06      | 9.01        | 8.24     |
| ORT (python)           | 4.32      | 2.63        | 2.50     |

### ViTs

All data in millisecond (ms).

| ViTs     | With Attention | Without Attention | ORT    |
| -------- | -------------- | ----------------- | ------ |
| vit_b_16 | 302.77         | 365.35            | 109.70 |
| vit_b_32 | 89.92          | 116.22            | 30.36  |
| vit_l_16 | 1593.32        | 1730.74           | 419.92 |
| vit_l_32 | 468.11         | 577.41            | 134.12 |
| VitTrack | 3.80           | 3.87              | 2.25   |

### Pull Request Readiness Checklist

See details at https://github.com/opencv/opencv/wiki/How_to_contribute#making-a-good-pull-request

- [x] I agree to contribute to the project under Apache 2 License.
- [x] To the best of my knowledge, the proposed patch is not based on a code under GPL or another license that is incompatible with OpenCV
- [x] The PR is proposed to the proper branch
- [x] There is a reference to the original bug report and related work
- [x] There is accuracy test, performance test and test data in opencv_extra repository, if applicable
      Patch to opencv_extra has the same branch name.
- [x] The feature is well documented and sample code can be built with the project CMake
2023-12-20 19:35:07 +03:00
Laurent Berger
3e6dcdc0a4
Merge pull request #24539 from LaurentBerger:blobrecttoimage
Add blobrecttoimage #24539

### Pull Request Readiness Checklist

resolves https://github.com/opencv/opencv/issues/14659

See details at https://github.com/opencv/opencv/wiki/How_to_contribute#making-a-good-pull-request

- [x] I agree to contribute to the project under Apache 2 License.
- [x] To the best of my knowledge, the proposed patch is not based on a code under GPL or another license that is incompatible with OpenCV
- [x] The PR is proposed to the proper branch
- [x] There is a reference to the original bug report and related work #14659
- [x] There is accuracy test, performance test and test data in opencv_extra repository, if applicable
      Patch to opencv_extra has the same branch name.
- [x] The feature is well documented and sample code can be built with the project CMake
2023-12-19 20:00:04 +03:00
Wanli
6ae1709c6a
Merge pull request #24613 from WanliZhong:softmax_default_axis
Make default axis of softmax in onnx "-1" without opset option #24613

Try to solve problem: https://github.com/opencv/opencv/pull/24476#discussion_r1404821158

**ONNX**
`opset <= 11` use 1
`else` use -1

**TensorFlow**
`TF version = 2.x` use -1
`else` use 1

**Darknet, Caffe, Torch**
use 1 by definition
2023-12-15 10:41:42 +03:00
Abduragim Shtanchaev
d3dd2e463c
Merge pull request #24611 from Abdurrahheem:ash/add_yolov6_test
Add test for YoloX Yolo v6 and Yolo v8 #24611

This PR adds test for YOLOv6 model (which was absent before)
The onnx weights for the test are located in this PR [ #1126](https://github.com/opencv/opencv_extra/pull/1126)

### Pull Request Readiness Checklist

See details at https://github.com/opencv/opencv/wiki/How_to_contribute#making-a-good-pull-request

- [x] I agree to contribute to the project under Apache 2 License.
- [x] To the best of my knowledge, the proposed patch is not based on a code under GPL or another license that is incompatible with OpenCV
- [x] The PR is proposed to the proper branch
- [ ] There is a reference to the original bug report and related work
- [x] There is accuracy test, performance test and test data in opencv_extra repository, if applicable
      Patch to opencv_extra has the same branch name.
- [x] The feature is well documented and sample code can be built with the project CMake
2023-12-11 16:42:51 +03:00
Abduragim Shtanchaev
5278560252
Merge pull request #24569 from Abdurrahheem:ash/padding_value_fix
Add support for custom padding in DNN preprocessing #24569

This PR add functionality for specifying value in padding.
It is required in many preprocessing pipelines in DNNs such as Yolox object detection model

### Pull Request Readiness Checklist

See details at https://github.com/opencv/opencv/wiki/How_to_contribute#making-a-good-pull-request

- [x] I agree to contribute to the project under Apache 2 License.
- [x] To the best of my knowledge, the proposed patch is not based on a code under GPL or another license that is incompatible with OpenCV
- [x] The PR is proposed to the proper branch
- [ ] There is a reference to the original bug report and related work
- [x] There is accuracy test, performance test and test data in opencv_extra repository, if applicable
      Patch to opencv_extra has the same branch name.
- [x] The feature is well documented and sample code can be built with the project CMake
2023-11-28 11:54:09 +03:00
Dmitry Kurtaev
332748dd55
Merge pull request #24577 from dkurt:dnn_graph_match_stack
Fix graph fusion with commutative ops #24577

### Pull Request Readiness Checklist

resolves https://github.com/opencv/opencv/issues/24568

**Merge with extra**: https://github.com/opencv/opencv_extra/pull/1125

TODO:
- [x]  replace recursive function to sequential

See details at https://github.com/opencv/opencv/wiki/How_to_contribute#making-a-good-pull-request

- [x] I agree to contribute to the project under Apache 2 License.
- [x] To the best of my knowledge, the proposed patch is not based on a code under GPL or another license that is incompatible with OpenCV
- [x] The PR is proposed to the proper branch
- [x] There is a reference to the original bug report and related work
- [x] There is accuracy test, performance test and test data in opencv_extra repository, if applicable
      Patch to opencv_extra has the same branch name.
- [x] The feature is well documented and sample code can be built with the project CMake
2023-11-24 10:40:32 +03:00
skycat8
848dd12a1f
Merge pull request #24553 from skycat8:yolov5
Add yolov5n to tests #24553

### Pull Request Readiness Checklist

See details at https://github.com/opencv/opencv/wiki/How_to_contribute#making-a-good-pull-request

- [ X] I agree to contribute to the project under Apache 2 License.
- [ X] To the best of my knowledge, the proposed patch is not based on a code under GPL or another license that is incompatible with OpenCV
- [ X] The PR is proposed to the proper branch
- [ X] There is a reference to the original bug report and related work
- [ X] There is accuracy test, performance test and test data in opencv_extra repository, if applicable
      Patch to opencv_extra has the same branch name.
- [ X] The feature is well documented and sample code can be built with the project CMake
2023-11-24 10:36:06 +03:00
Yuantao Feng
d05fb709f9
Merge pull request #24552 from fengyuentau:layernorm_backends
dnn: add openvino, opencl and cuda backends for layer normalization layer #24552

Merge after https://github.com/opencv/opencv/pull/24544.

Todo:

- [x] openvino
- [x] opencl
- [x] cuda

### Pull Request Readiness Checklist

See details at https://github.com/opencv/opencv/wiki/How_to_contribute#making-a-good-pull-request

- [x] I agree to contribute to the project under Apache 2 License.
- [x] To the best of my knowledge, the proposed patch is not based on a code under GPL or another license that is incompatible with OpenCV
- [x] The PR is proposed to the proper branch
- [x] There is a reference to the original bug report and related work
- [x] There is accuracy test, performance test and test data in opencv_extra repository, if applicable
      Patch to opencv_extra has the same branch name.
- [x] The feature is well documented and sample code can be built with the project CMake
2023-11-21 15:33:01 +03:00
zihaomu
b913e73d04
DNN: add the Winograd fp16 support (#23654)
* add Winograd FP16 implementation

* fixed dispatching of FP16 code paths in dnn; use dynamic dispatcher only when NEON_FP16 is enabled in the build and the feature is present in the host CPU at runtime

* fixed some warnings

* hopefully fixed winograd on x64 (and maybe other platforms)

---------

Co-authored-by: Vadim Pisarevsky <vadim.pisarevsky@gmail.com>
2023-11-20 13:45:37 +03:00
Yuantao Feng
a478757483
Merge pull request #24544 from fengyuentau:layernorm_conformance
dnn test: move layer norm tests into conformance tests #24544

Merge with https://github.com/opencv/opencv_extra/pull/1122

## Motivation

Some ONNX operators, such as `LayerNormalization`, `BatchNormalization` and so on, produce outputs for training (mean, stdev). So they have reference outputs of conformance tests for those training outputs as well. However, when it comes to inference, we do not need and produce those outputs for training here in dnn. Hence, output size does not match if we use dnn to infer those conformance models. This has become the barrier if we want to test these operators using their conformance tests.

<!--
| Operator                | Inference needed                    | Outputs (required - total) | Optional outputs for training? |
| ----------------------- | ----------------------------------- | -------------------------- | ------------------------------ |
| BatchNormalization      | Yes                                 | 1 - 3                      | Yes                            |
| Dropout                 | Maybe, can be eliminated via fusion | 1 - 2                      | Yes                            |
| GRU                     | Yes                                 | 0 - 2                      | No                             |
| LSTM                    | Yes                                 | 0 - 3                      | No                             |
| LayerNormalization      | Yes                                 | 1 - 3                      | Yes                            |
| MaxPool                 | Yes                                 | 1 - 2                      | Yes                            |
| RNN                     | Yes                                 | 0 - 2                      | No                             |
| SoftmaxCrossEntropyLoss | No                                  | 1 - 2                      | --                             |
-->

**I checked all ONNX operators with optional outputs. Turns out there are only `BatchNormalization`, `Dropout`, `LayerNormalization` and `MaxPool` has optional outputs for training. All except `LayerNormalization` have models set for training mode and eval mode. Blame ONNX for that.**

## Solution

In this pull request, we remove graph outputs if the graph looks like the following:

```
    [X]   [Scale]  [Bias]                      [X]   [Scale]  [Bias]
      \      |      /         this patch         \      |      /
     LayerNormalization      ----------->       LayerNormalization
      /      |      \                                   |
    [Y]    [Mean]  [Stdev]                             [Y]
```

We can update conformance tests and turn on some cases as well if extending to more layers.

Notes:
1. This workaround does not solve expanded function operators if they are fused into a single operator, such as `$onnx/onnx/backend/test/data/node/test_layer_normalization_2d_axis1_expanded`, but they can be run without fusion. Note that either dnn or onnxruntime does not fuse those expanded function operators.

### Pull Request Readiness Checklist

See details at https://github.com/opencv/opencv/wiki/How_to_contribute#making-a-good-pull-request

- [x] I agree to contribute to the project under Apache 2 License.
- [x] To the best of my knowledge, the proposed patch is not based on a code under GPL or another license that is incompatible with OpenCV
- [x] The PR is proposed to the proper branch
- [x] There is a reference to the original bug report and related work
- [x] There is accuracy test, performance test and test data in opencv_extra repository, if applicable
      Patch to opencv_extra has the same branch name.
- [x] The feature is well documented and sample code can be built with the project CMake
2023-11-20 11:19:24 +03:00
fengyuentau
031846f2e1 remove filter 2023-11-13 14:47:40 +08:00
Alexander Smorkalov
34f34f6227 Merge branch 4.x 2023-11-08 14:39:48 +03:00
Yuantao Feng
6079e22523
Merge pull request #24500 from fengyuentau:test_layer_fusion
dnn (onnx): add subgraph fusion tests #24500

### Pull Request Readiness Checklist

See details at https://github.com/opencv/opencv/wiki/How_to_contribute#making-a-good-pull-request

- [x] I agree to contribute to the project under Apache 2 License.
- [x] To the best of my knowledge, the proposed patch is not based on a code under GPL or another license that is incompatible with OpenCV
- [x] The PR is proposed to the proper branch
- [x] There is a reference to the original bug report and related work
- [x] There is accuracy test, performance test and test data in opencv_extra repository, if applicable
      Patch to opencv_extra has the same branch name.
- [x] The feature is well documented and sample code can be built with the project CMake
2023-11-07 17:40:31 +03:00
Yuantao Feng
ee0822dc4d
Merge pull request #24378 from fengyuentau:instance_norm
dnn onnx: add instance norm layer #24378

Resolves https://github.com/opencv/opencv/issues/24377
Relates https://github.com/opencv/opencv/pull/24092#discussion_r1349841644

| Perf | multi-thread | single-thread |
| - | - | - |
| x: [2, 64, 180, 240] | 3.95ms | 11.12ms |

Todo:

- [x] speed up by multi-threading
- [x] add perf
- [x] add backend: OpenVINO
- [x] add backend: CUDA
- [x] add backend: OpenCL (no fp16)
- [ ] add backend: CANN (will be done via https://github.com/opencv/opencv/pull/24462)


### Pull Request Readiness Checklist

See details at https://github.com/opencv/opencv/wiki/How_to_contribute#making-a-good-pull-request

- [x] I agree to contribute to the project under Apache 2 License.
- [x] To the best of my knowledge, the proposed patch is not based on a code under GPL or another license that is incompatible with OpenCV
- [x] The PR is proposed to the proper branch
- [x] There is a reference to the original bug report and related work
- [x] There is accuracy test, performance test and test data in opencv_extra repository, if applicable
      Patch to opencv_extra has the same branch name.
- [x] The feature is well documented and sample code can be built with the project CMake

```
force_builders=Linux OpenCL,Win64 OpenCL,Custom
buildworker:Custom=linux-4
build_image:Custom=ubuntu:18.04
modules_filter:Custom=none
disable_ipp:Custom=ON
```
2023-11-07 12:59:10 +03:00
Dmitry Kurtaev
fa56623458
Merge pull request #24463 from dkurt:dnn_shared_nodes_fusion
DNN graph fusion with shared nodes #24463

### Pull Request Readiness Checklist

For now, nodes from matched pattern are removed during the matching process so if nodes are used in similar subgraph, they cannot be found.

required for https://github.com/opencv/opencv/pull/24397

**Merge with extra**: https://github.com/opencv/opencv_extra/pull/1115

A part from [model_name ](https://github.com/onnx/models/blob/main/vision/object_detection_segmentation/fcn/model/fcn-resnet101-11.onnx) with two Resize subgraphs with shared nodes:
![image](https://github.com/opencv/opencv/assets/25801568/611d89d9-12fb-4add-9218-13b10d2c086a)

See details at https://github.com/opencv/opencv/wiki/How_to_contribute#making-a-good-pull-request

- [x] I agree to contribute to the project under Apache 2 License.
- [x] To the best of my knowledge, the proposed patch is not based on a code under GPL or another license that is incompatible with OpenCV
- [x] The PR is proposed to the proper branch
- [x] There is a reference to the original bug report and related work
- [x] There is accuracy test, performance test and test data in opencv_extra repository, if applicable
      Patch to opencv_extra has the same branch name.
- [x] The feature is well documented and sample code can be built with the project CMake
2023-11-03 12:34:09 +03:00
Yuantao Feng
c91af16fa7
Merge pull request #24409 from fengyuentau:norm_kernel
dnn: add shared fastNorm kernel for mvn, instance norm and layer norm #24409

Relates https://github.com/opencv/opencv/pull/24378#issuecomment-1756906570

TODO:

- [x] add fastNorm
- [x] refactor layer norm with fastNorm
- [x] refactor mvn with fastNorm
- [ ] add onnx mvn in importer (in a new PR?)
- [ ] refactor instance norm with fastNorm (in another PR https://github.com/opencv/opencv/pull/24378, need to merge this one first though)

### Pull Request Readiness Checklist

See details at https://github.com/opencv/opencv/wiki/How_to_contribute#making-a-good-pull-request

- [x] I agree to contribute to the project under Apache 2 License.
- [x] To the best of my knowledge, the proposed patch is not based on a code under GPL or another license that is incompatible with OpenCV
- [x] The PR is proposed to the proper branch
- [x] There is a reference to the original bug report and related work
- [x] There is accuracy test, performance test and test data in opencv_extra repository, if applicable
      Patch to opencv_extra has the same branch name.
- [x] The feature is well documented and sample code can be built with the project CMake
2023-11-01 14:33:57 +03:00
alexlyulkov
b71be65f57
Merge pull request #24294 from alexlyulkov:al/remove-torch7-from-dnn
Remove torch (old torch7) from dnn in 5.x #24294

Merge with https://github.com/opencv/opencv_extra/pull/1097

Completely removed torch (old torch7) from dnn:
- removed modules/dnn/src/torch directory that contained torch7 model parser
- removed readNetFromTorch() and readTorchBlob() public functions
- removed torch7 references from comments and help texts
- replaced links to t7 models by links to similar onnx models in js_style_transfer turtorial (similar to https://github.com/opencv/opencv/pull/24245/files)
2023-10-26 11:27:56 +03:00
Abduragim Shtanchaev
a3b3a589f9
Merge pull request #24322 from Abdurrahheem:ash/dev_einsum_ellips
Ellipses supported added for Einsum Layer #24322

This PR added addresses issues not covered in #24037. Namely these are: 
Test case for this patch is in this PR [#1106](https://github.com/opencv/opencv_extra/pull/1106) in opencv extra

Added: 
 - [x] Broadcasting reduction "...ii ->...I"
 - [x] Add lazy shape deduction. "...ij, ...jk->...ik"
 
 Features to add: 
- [ ] Add implicit output computation support. "bij,bjk ->" (output subscripts should be "bik")
- [ ] Add support for CUDA backend 
- [ ] BatchWiseMultiply optimize
- [ ] Performance test

### Pull Request Readiness Checklist

See details at https://github.com/opencv/opencv/wiki/How_to_contribute#making-a-good-pull-request

- [x] I agree to contribute to the project under Apache 2 License.
- [x] To the best of my knowledge, the proposed patch is not based on a code under GPL or another license that is incompatible with OpenCV
- [x] The PR is proposed to the proper branch
- [x] There is a reference to the original bug report and related work
- [ ] There is accuracy test, performance test and test data in opencv_extra repository, if applicable
      Patch to opencv_extra has the same branch name.
- [x] The feature is well documented and sample code can be built with the project CMake
2023-10-24 16:47:00 +03:00