Backport to 4.x: patchNaNs() SIMD acceleration #24480
backport from #23098
connected PR in extra: [#1118@extra](https://github.com/opencv/opencv_extra/pull/1118)
### This PR contains:
* new SIMD code for `patchNaNs()`
* CPU perf test
<details>
<summary>Performance comparison</summary>
Geometric mean (ms)
|Name of Test|noopt|sse2|avx2|sse2 vs noopt (x-factor)|avx2 vs noopt (x-factor)|
|---|:-:|:-:|:-:|:-:|:-:|
|PatchNaNs::OCL_PatchNaNsFixture::(640x480, 32FC1)|0.019|0.017|0.018|1.11|1.07|
|PatchNaNs::OCL_PatchNaNsFixture::(640x480, 32FC4)|0.037|0.037|0.033|1.00|1.10|
|PatchNaNs::OCL_PatchNaNsFixture::(1280x720, 32FC1)|0.032|0.032|0.033|0.99|0.98|
|PatchNaNs::OCL_PatchNaNsFixture::(1280x720, 32FC4)|0.072|0.072|0.070|1.00|1.03|
|PatchNaNs::OCL_PatchNaNsFixture::(1920x1080, 32FC1)|0.051|0.051|0.050|1.00|1.01|
|PatchNaNs::OCL_PatchNaNsFixture::(1920x1080, 32FC4)|0.137|0.138|0.128|0.99|1.06|
|PatchNaNs::OCL_PatchNaNsFixture::(3840x2160, 32FC1)|0.137|0.128|0.129|1.07|1.06|
|PatchNaNs::OCL_PatchNaNsFixture::(3840x2160, 32FC4)|0.450|0.450|0.448|1.00|1.01|
|PatchNaNs::PatchNaNsFixture::(640x480, 32FC1)|0.149|0.029|0.020|5.13|7.44|
|PatchNaNs::PatchNaNsFixture::(640x480, 32FC2)|0.304|0.058|0.040|5.25|7.65|
|PatchNaNs::PatchNaNsFixture::(640x480, 32FC3)|0.448|0.086|0.059|5.22|7.55|
|PatchNaNs::PatchNaNsFixture::(640x480, 32FC4)|0.601|0.133|0.083|4.51|7.23|
|PatchNaNs::PatchNaNsFixture::(1280x720, 32FC1)|0.451|0.093|0.060|4.83|7.52|
|PatchNaNs::PatchNaNsFixture::(1280x720, 32FC2)|0.892|0.184|0.126|4.85|7.06|
|PatchNaNs::PatchNaNsFixture::(1280x720, 32FC3)|1.345|0.311|0.230|4.32|5.84|
|PatchNaNs::PatchNaNsFixture::(1280x720, 32FC4)|1.831|0.546|0.436|3.35|4.20|
|PatchNaNs::PatchNaNsFixture::(1920x1080, 32FC1)|1.017|0.250|0.160|4.06|6.35|
|PatchNaNs::PatchNaNsFixture::(1920x1080, 32FC2)|2.077|0.646|0.605|3.21|3.43|
|PatchNaNs::PatchNaNsFixture::(1920x1080, 32FC3)|3.134|1.053|0.961|2.97|3.26|
|PatchNaNs::PatchNaNsFixture::(1920x1080, 32FC4)|4.222|1.436|1.288|2.94|3.28|
|PatchNaNs::PatchNaNsFixture::(3840x2160, 32FC1)|4.225|1.401|1.277|3.01|3.31|
|PatchNaNs::PatchNaNsFixture::(3840x2160, 32FC2)|8.310|2.953|2.635|2.81|3.15|
|PatchNaNs::PatchNaNsFixture::(3840x2160, 32FC3)|12.396|4.455|4.252|2.78|2.92|
|PatchNaNs::PatchNaNsFixture::(3840x2160, 32FC4)|17.174|5.831|5.824|2.95|2.95|
</details>
### Pull Request Readiness Checklist
See details at https://github.com/opencv/opencv/wiki/How_to_contribute#making-a-good-pull-request
- [x] I agree to contribute to the project under Apache 2 License.
- [x] To the best of my knowledge, the proposed patch is not based on a code under GPL or another license that is incompatible with OpenCV
- [x] The PR is proposed to the proper branch
- [x] There is a reference to the original bug report and related work
- [x] There is accuracy test, performance test and test data in opencv_extra repository, if applicable
Patch to opencv_extra has the same branch name.
- [x] The feature is well documented and sample code can be built with the project CMake
dnn: add shared fastNorm kernel for mvn, instance norm and layer norm #24409
Relates https://github.com/opencv/opencv/pull/24378#issuecomment-1756906570
TODO:
- [x] add fastNorm
- [x] refactor layer norm with fastNorm
- [x] refactor mvn with fastNorm
- [ ] add onnx mvn in importer (in a new PR?)
- [ ] refactor instance norm with fastNorm (in another PR https://github.com/opencv/opencv/pull/24378, need to merge this one first though)
### Pull Request Readiness Checklist
See details at https://github.com/opencv/opencv/wiki/How_to_contribute#making-a-good-pull-request
- [x] I agree to contribute to the project under Apache 2 License.
- [x] To the best of my knowledge, the proposed patch is not based on a code under GPL or another license that is incompatible with OpenCV
- [x] The PR is proposed to the proper branch
- [x] There is a reference to the original bug report and related work
- [x] There is accuracy test, performance test and test data in opencv_extra repository, if applicable
Patch to opencv_extra has the same branch name.
- [x] The feature is well documented and sample code can be built with the project CMake
Extend the signature of imdecodemulti() #24405
(Edited after addressing Reviewers' comments.)
Add an argument to `imdecodemulti()` to enable optional selection of pages of multi-page images.
Be default, all pages are decoded. If used, the additional argument may specify a continuous selection of pages to decode.
### Pull Request Readiness Checklist
See details at https://github.com/opencv/opencv/wiki/How_to_contribute#making-a-good-pull-request
- [x] To the best of my knowledge, the proposed patch is not based on a code under GPL or another license that is incompatible with OpenCV
- [X] I agree to contribute to the project under Apache 2 License.
- [X] The PR is proposed to the proper branch
- [ ] There is a reference to the original bug report and related work
- [x] There is accuracy test, performance test and test data in opencv_extra repository, if applicable
Patch to opencv_extra has the same branch name.
- [ ] The feature is well documented and sample code can be built with the project CMake
Refactor ObjectiveC Range class #24454
### Pull Request Readiness Checklist
- [x] I agree to contribute to the project under Apache 2 License.
- [x] To the best of my knowledge, the proposed patch is not based on a code under GPL or another license that is incompatible with OpenCV
- [x] The PR is proposed to the proper branch
Fix for build issue in #24405
Video tracking (dnn): set backend and target for TrackerVit #24461Resolves#24460
### Pull Request Readiness Checklist
See details at https://github.com/opencv/opencv/wiki/How_to_contribute#making-a-good-pull-request
- [x] I agree to contribute to the project under Apache 2 License.
- [x] To the best of my knowledge, the proposed patch is not based on a code under GPL or another license that is incompatible with OpenCV
- [x] The PR is proposed to the proper branch
- [x] There is a reference to the original bug report and related work
- [x] There is accuracy test, performance test and test data in opencv_extra repository, if applicable
Patch to opencv_extra has the same branch name.
- [x] The feature is well documented and sample code can be built with the project CMake
Remove torch (old torch7) from dnn in 5.x #24294
Merge with https://github.com/opencv/opencv_extra/pull/1097
Completely removed torch (old torch7) from dnn:
- removed modules/dnn/src/torch directory that contained torch7 model parser
- removed readNetFromTorch() and readTorchBlob() public functions
- removed torch7 references from comments and help texts
- replaced links to t7 models by links to similar onnx models in js_style_transfer turtorial (similar to https://github.com/opencv/opencv/pull/24245/files)
videoio: Add raw encoded video stream muxing to cv::VideoWriter with CAP_FFMPEG #24363
Allow raw encoded video streams (e.g. h264[5]) to be encapsulated by `cv::VideoWriter` to video containers (e.g. mp4/mkv).
Operates in a similar way to https://github.com/opencv/opencv/pull/15290 where encapsulation is enabled by setting the `VideoWriterProperties::VIDEOWRITER_PROP_RAW_VIDEO` flag when constructing `cv::VideoWriter` e.g.
```
VideoWriter container(fileNameOut, api, fourcc, fps, { width, height }, { VideoWriterProperties::VIDEOWRITER_PROP_RAW_VIDEO, 1 });
```
and each raw encoded frame is passed as single row of a `CV_8U` `cv::Mat`.
The main reason for this PR is to allow `cudacodec::VideoWriter` to output its encoded streams to a suitable container, see https://github.com/opencv/opencv_contrib/pull/3569.
### Pull Request Readiness Checklist
See details at https://github.com/opencv/opencv/wiki/How_to_contribute#making-a-good-pull-request
- [x] I agree to contribute to the project under Apache 2 License.
- [x] To the best of my knowledge, the proposed patch is not based on a code under GPL or another license that is incompatible with OpenCV
- [x] The PR is proposed to the proper branch
- [x] There is a reference to the original bug report and related work
- [x] There is accuracy test, performance test and test data in opencv_extra repository, if applicable
Patch to opencv_extra has the same branch name.
- [x] The feature is well documented and sample code can be built with the project CMake
Ellipses supported added for Einsum Layer #24322
This PR added addresses issues not covered in #24037. Namely these are:
Test case for this patch is in this PR [#1106](https://github.com/opencv/opencv_extra/pull/1106) in opencv extra
Added:
- [x] Broadcasting reduction "...ii ->...I"
- [x] Add lazy shape deduction. "...ij, ...jk->...ik"
Features to add:
- [ ] Add implicit output computation support. "bij,bjk ->" (output subscripts should be "bik")
- [ ] Add support for CUDA backend
- [ ] BatchWiseMultiply optimize
- [ ] Performance test
### Pull Request Readiness Checklist
See details at https://github.com/opencv/opencv/wiki/How_to_contribute#making-a-good-pull-request
- [x] I agree to contribute to the project under Apache 2 License.
- [x] To the best of my knowledge, the proposed patch is not based on a code under GPL or another license that is incompatible with OpenCV
- [x] The PR is proposed to the proper branch
- [x] There is a reference to the original bug report and related work
- [ ] There is accuracy test, performance test and test data in opencv_extra repository, if applicable
Patch to opencv_extra has the same branch name.
- [x] The feature is well documented and sample code can be built with the project CMake
Pertaining Issue: https://github.com/opencv/opencv/issues/5697
### Pull Request Readiness Checklist
See details at https://github.com/opencv/opencv/wiki/How_to_contribute#making-a-good-pull-request
- [x] I agree to contribute to the project under Apache 2 License.
- [x] To the best of my knowledge, the proposed patch is not based on a code under GPL or another license that is incompatible with OpenCV
- [x] The PR is proposed to the proper branch
- [x] There is a reference to the original bug report and related work
- [x] There is accuracy test, performance test and test data in opencv_extra repository, if applicable
Patch to opencv_extra has the same branch name.
- [x] The feature is well documented and sample code can be built with the project CMake
* Optimize some function with lasx.
Optimize some function with lasx. #23929
This patch optimizes some lasx functions and reduces the runtime of opencv_test_core from 662,238ms to 633603ms on the 3A5000 platform.
### Pull Request Readiness Checklist
See details at https://github.com/opencv/opencv/wiki/How_to_contribute#making-a-good-pull-request
- [x] I agree to contribute to the project under Apache 2 License.
- [x] To the best of my knowledge, the proposed patch is not based on a code under GPL or another license that is incompatible with OpenCV
- [x] The PR is proposed to the proper branch
- [x] There is a reference to the original bug report and related work
- [x] There is accuracy test, performance test and test data in opencv_extra repository, if applicable
Patch to opencv_extra has the same branch name.
- [x] The feature is well documented and sample code can be built with the project CMake
dnn: fix HAVE_TIMVX macro definition in dnn test #24425
### Pull Request Readiness Checklist
See details at https://github.com/opencv/opencv/wiki/How_to_contribute#making-a-good-pull-request
- [x] I agree to contribute to the project under Apache 2 License.
- [x] To the best of my knowledge, the proposed patch is not based on a code under GPL or another license that is incompatible with OpenCV
- [x] The PR is proposed to the proper branch
- [x] There is a reference to the original bug report and related work
- [x] There is accuracy test, performance test and test data in opencv_extra repository, if applicable
Patch to opencv_extra has the same branch name.
- [x] The feature is well documented and sample code can be built with the project CMake
Native ONNX to Inference Engine backend #21066Resolves#21052
### Pull Request Readiness Checklist
See details at https://github.com/opencv/opencv/wiki/How_to_contribute#making-a-good-pull-request
- [x] I agree to contribute to the project under Apache 2 License.
- [x] To the best of my knowledge, the proposed patch is not based on a code under GPL or other license that is incompatible with OpenCV
- [x] The PR is proposed to proper branch
- [x] There is reference to original bug report and related work
- [ ] There is accuracy test, performance test and test data in opencv_extra repository, if applicable
- [ ] The feature is well documented and sample code can be built with the project CMake
This pointer is called unconditionally in BarcodeImpl::initDecode
assuming the size of the image is outside the specified bounds. This
seems to not cause problems on optimized builds, I assume because the
optimizer sees through the processImageScale call to see that it can be
reduced to a resize call. Leaving it as is relies on undefined
behavior.
This was the least invasive change I could make, however, it might be
worthwhile to pull up the logic for a resize so that a SuperScale does
not need to be allocated, which seems to be the most common case.
Speed up line merging in INTER_AREA #24412
This provides a 10 to 20% speed-up.
Related perf test fix: https://github.com/opencv/opencv/pull/24417
This is a split of https://github.com/opencv/opencv/pull/23525 that will be updated to only deal with column merging.
### Pull Request Readiness Checklist
See details at https://github.com/opencv/opencv/wiki/How_to_contribute#making-a-good-pull-request
- [x] I agree to contribute to the project under Apache 2 License.
- [x] To the best of my knowledge, the proposed patch is not based on a code under GPL or another license that is incompatible with OpenCV
- [x] The PR is proposed to the proper branch
- [x] There is a reference to the original bug report and related work
- [x] There is accuracy test, performance test and test data in opencv_extra repository, if applicable
Patch to opencv_extra has the same branch name.
- [x] The feature is well documented and sample code can be built with the project CMake
Enable multicore CUDA compilation #24382
CUDA source files are compiled single threaded. The option `--threads` was introduced in NVCC 11.2. The option specifies the number of threads to be used for compilation (see [NVIDIA NVCC Documentation](https://docs.nvidia.com/cuda/cuda-compiler-driver-nvcc/index.html#threads-number-t)).
With CMake 3.12 the environment variable `CMAKE_BUILD_PARALLEL_LEVEL` was introduced (see [CMake Documentation](https://cmake.org/cmake/help/latest/envvar/CMAKE_BUILD_PARALLEL_LEVEL.html)). This variable is used to set the NVCC `--threads` option.
### Pull Request Readiness Checklist
See details at https://github.com/opencv/opencv/wiki/How_to_contribute#making-a-good-pull-request
- [x] I agree to contribute to the project under Apache 2 License.
- [x] To the best of my knowledge, the proposed patch is not based on a code under GPL or another license that is incompatible with OpenCV
- [x] The PR is proposed to the proper branch
- [ ] There is a reference to the original bug report and related work
- [ ] There is accuracy test, performance test and test data in opencv_extra repository, if applicable
Patch to opencv_extra has the same branch name.
- [ ] The feature is well documented and sample code can be built with the project CMake
Supporting protobuf v22 and later(with abseil-cpp/C++17) #24372
fix https://github.com/opencv/opencv/issues/24369
related https://github.com/opencv/opencv/issues/23791
1. This patch supports external protobuf v22 and later, it required abseil-cpp and c++17.
Even if the built-in protobuf is upgraded to v22 or later,
the dependency on abseil-cpp and the requirement for C++17 will continue.
2. Some test for caffe required patched protobuf, so this patch disable them.
This patch is tested by following libraries.
- Protobuf: /usr/local/lib/libprotobuf.so (4.24.4)
- abseil-cpp: YES (20230125)
### Pull Request Readiness Checklist
See details at https://github.com/opencv/opencv/wiki/How_to_contribute#making-a-good-pull-request
- [x] I agree to contribute to the project under Apache 2 License.
- [x] To the best of my knowledge, the proposed patch is not based on a code under GPL or another license that is incompatible with OpenCV
- [x] The PR is proposed to the proper branch
- [x] There is a reference to the original bug report and related work
- [x] There is accuracy test, performance test and test data in opencv_extra repository, if applicable
Patch to opencv_extra has the same branch name.
- [x] The feature is well documented and sample code can be built with the project CMake
* added more or less cross-platform (based on POSIX signal() semantics) method to detect various NEON extensions, such as FP16 SIMD arithmetics, BF16 SIMD arithmetics, SIMD dotprod etc. It could be propagated to other instruction sets if necessary.
* hopefully fixed compile errors
* continue to fix CI
* another attempt to fix build on Linux aarch64
* * reverted to the original method to detect special arm neon instructions without signal()
* renamed FP16_SIMD & BF16_SIMD to NEON_FP16 and NEON_BF16, respectively
* removed extra whitespaces
GSoC Add ONNX Support for GatherElements #24092
Merge with: https://github.com/opencv/opencv_extra/pull/1082
Adds support to the ONNX operator GatherElements [operator docs](https://github.com/onnx/onnx/blob/main/docs/Operators.md#GatherElements)
Added tests to opencv_extra at pull request https://github.com/opencv/opencv_extra/pull/1082
### Pull Request Readiness Checklist
See details at https://github.com/opencv/opencv/wiki/How_to_contribute#making-a-good-pull-request
- [x] I agree to contribute to the project under Apache 2 License.
- [x] To the best of my knowledge, the proposed patch is not based on a code under GPL or another license that is incompatible with OpenCV
- [x] The PR is proposed to the proper branch
- [x] There is a reference to the original bug report and related work
- [x] There is accuracy test, performance test and test data in opencv_extra repository, if applicable
Patch to opencv_extra has the same branch name.
- [x] The feature is well documented and sample code can be built with the project CMake
Fixed CumSum layer inplace flag #24367
When exclusive is false:
dst[i] = dst[i-1] + src[i]
When exclusive is true:
dst[i] = dst[i-1] + src[i-1]
So CumSum layer can be inplace only when exclusive flag is false.