Rename remaining float16_t for future proof #25387
Resolves comment: https://github.com/opencv/opencv/pull/25217#discussion_r1547733187.
`std::float16_t` and `std::bfloat16_t` are introduced since c++23: https://en.cppreference.com/w/cpp/types/floating-point.
### Pull Request Readiness Checklist
See details at https://github.com/opencv/opencv/wiki/How_to_contribute#making-a-good-pull-request
- [x] I agree to contribute to the project under Apache 2 License.
- [x] To the best of my knowledge, the proposed patch is not based on a code under GPL or another license that is incompatible with OpenCV
- [x] The PR is proposed to the proper branch
- [x] There is a reference to the original bug report and related work
- [x] There is accuracy test, performance test and test data in opencv_extra repository, if applicable
Patch to opencv_extra has the same branch name.
- [x] The feature is well documented and sample code can be built with the project CMake
core: persistence: output reals as human-friendly expression. #25351Close#25073
Related https://github.com/opencv/opencv/pull/25087
This patch is need to merge same time with https://github.com/opencv/opencv_contrib/pull/3714
### Pull Request Readiness Checklist
See details at https://github.com/opencv/opencv/wiki/How_to_contribute#making-a-good-pull-request
- [x] I agree to contribute to the project under Apache 2 License.
- [x] To the best of my knowledge, the proposed patch is not based on a code under GPL or another license that is incompatible with OpenCV
- [x] The PR is proposed to the proper branch
- [x] There is a reference to the original bug report and related work
- [x] There is accuracy test, performance test and test data in opencv_extra repository, if applicable
Patch to opencv_extra has the same branch name.
- [x] The feature is well documented and sample code can be built with the project CMake
imgproc: fix unaligned memory access in filters and Gaussian blur #25364
* filter/SIMD: removed parts which casted 8u pointers to int causing unaligned memory access on RISC-V platform.
* GaussianBlur/fixed_point: replaced casts from s16 to u32 with union operations
Performance comparison:
- [x] check performance on x86_64 - (4 threads, `-DCPU_BASELINE=AVX2`, GCC 11.4, Ubuntu 22) - [report_imgproc_x86_64.ods](https://github.com/opencv/opencv/files/14904702/report_x86_64.ods)
- [x] check performance on AArch64 - (4 cores of RK3588, GCC 11.4 aarch64, Raspbian) - [report_imgproc_aarch64.ods](https://github.com/opencv/opencv/files/14908437/report_aarch64.ods)
Note: for some reason my performance results are quite unstable, unaffected functions show speedups and slowdowns in many cases. Filter2D and GaussianBlur seem to be OK.
Slightly related PR: https://github.com/opencv/ci-gha-workflow/pull/165
Reworked findContours to reduce C-API usage #25146
What is done:
* rewritten `findContours` and `icvApproximateChainTC89` using C++ data structures
* extracted LINK_RUNS mode to separate new public functions - `findContoursLinkRuns` (it uses completely different algorithm)
* ~added new public `cv::approximateChainTC89`~ - **❌ decided to hide it**
* enabled chain code output (method = 0, no public enum value for this in C++ yet)
* kept old function as `findContours_old` (exported, but not exposed to user)
* added more tests for findContours (`test_contours_new.cpp`), some tests compare results of old function with new one. Following tests have been added:
* contours of random rectangle
* contours of many small (1-2px) blobs
* contours of random noise
* backport of old accuracy test
* separate test for LINK RUNS variant
What is left to be done (can be done now or later):
* improve tests:
* some tests have limited verification (e.g. only verify contour sizes)
* perhaps reference data can be collected and stored
* maybe more test variants can be added (?)
* add enum value for chain code output and a method of returning starting points (e.g. first 8 elements of returned `vector<uchar>` can represent 2 int point coordinates)
* add documentation for new functions - **✔️ DONE**
* check and improve performance (my experiment showed 0.7x-1.1x some time ago)
* remove old functions completely (?)
* change contour return order (BFS) or allow to select it (?)
* return result tree as-is (?) (new data structures should be exposed, bindings should adapt)
core: doc: add note for countNonZero, hasNonZero and findNonZero #25356Close#25345
### Pull Request Readiness Checklist
See details at https://github.com/opencv/opencv/wiki/How_to_contribute#making-a-good-pull-request
- [x] I agree to contribute to the project under Apache 2 License.
- [x] To the best of my knowledge, the proposed patch is not based on a code under GPL or another license that is incompatible with OpenCV
- [x] The PR is proposed to the proper branch
- [x] There is a reference to the original bug report and related work
- [ ] There is accuracy test, performance test and test data in opencv_extra repository, if applicable
Patch to opencv_extra has the same branch name.
- [ ] The feature is well documented and sample code can be built with the project CMake
[BugFix] dnn (ONNX): Foce dropping constant inputs in parseClip if they are shared #25319
Resolves https://github.com/opencv/opencv/issues/25278
Merge with https://github.com/opencv/opencv_extra/pull/1165
In Gold-YOLO ,`Div` has a constant input `B=6` which is then parsed into a `Const` layer in the ONNX importer, but `Clip` also has the shared constant input `max=6` which is already a `Const` layer and then connected to `Elementwise` layer. This should not happen because in the `forward()` of `Elementwise` layer, the legacy code goes through and apply activation to each input. More details on https://github.com/opencv/opencv/issues/25278#issuecomment-2032199630.
### Pull Request Readiness Checklist
See details at https://github.com/opencv/opencv/wiki/How_to_contribute#making-a-good-pull-request
- [x] I agree to contribute to the project under Apache 2 License.
- [x] To the best of my knowledge, the proposed patch is not based on a code under GPL or another license that is incompatible with OpenCV
- [x] The PR is proposed to the proper branch
- [x] There is a reference to the original bug report and related work
- [x] There is accuracy test, performance test and test data in opencv_extra repository, if applicable
Patch to opencv_extra has the same branch name.
- [x] The feature is well documented and sample code can be built with the project CMake
Ownership check in TFLite importer #25312
### Pull Request Readiness Checklist
resolves https://github.com/opencv/opencv/issues/25310
See details at https://github.com/opencv/opencv/wiki/How_to_contribute#making-a-good-pull-request
- [x] I agree to contribute to the project under Apache 2 License.
- [x] To the best of my knowledge, the proposed patch is not based on a code under GPL or another license that is incompatible with OpenCV
- [x] The PR is proposed to the proper branch
- [x] There is a reference to the original bug report and related work
- [x] There is accuracy test, performance test and test data in opencv_extra repository, if applicable
Patch to opencv_extra has the same branch name.
- [x] The feature is well documented and sample code can be built with the project CMake
Optimize int8 layers in DNN modules by using RISC-V Vector intrinsic. #25230
This patch optimize 3 functions in the int8 layer by using RVV Native Intrinsic.
This patch was tested on QEMU using VLEN=128 and VLEN=256 on `./bin/opencv_test_dnn --gtest_filter="*Int8*"`;
On the real device (k230, VLEN=128), `EfficientDet_int8` in `opencv_perf_dnn` showed a performance improvement of 1.46x.
| Name of Test | Original | optimized | Speed-up |
| ------------------------------------------ | -------- | ---------- | -------- |
| EfficientDet_int8::DNNTestNetwork::OCV/CPU | 2843.467 | 1947.013 | 1.46 |
### Pull Request Readiness Checklist
See details at https://github.com/opencv/opencv/wiki/How_to_contribute#making-a-good-pull-request
- [ ] I agree to contribute to the project under Apache 2 License.
- [ ] To the best of my knowledge, the proposed patch is not based on a code under GPL or another license that is incompatible with OpenCV
- [ ] The PR is proposed to the proper branch
- [ ] There is a reference to the original bug report and related work
- [ ] There is accuracy test, performance test and test data in opencv_extra repository, if applicable
Patch to opencv_extra has the same branch name.
- [ ] The feature is well documented and sample code can be built with the project CMake
imgcodecs: jpeg: re-support to read CMYK Jpeg #25280Close#25274
OpenCV Extra: https://github.com/opencv/opencv_extra/pull/1163
### Pull Request Readiness Checklist
See details at https://github.com/opencv/opencv/wiki/How_to_contribute#making-a-good-pull-request
- [x] I agree to contribute to the project under Apache 2 License.
- [x] To the best of my knowledge, the proposed patch is not based on a code under GPL or another license that is incompatible with OpenCV
- [x] The PR is proposed to the proper branch
- [x] There is a reference to the original bug report and related work
- [x] There is accuracy test, performance test and test data in opencv_extra repository, if applicable
Patch to opencv_extra has the same branch name.
- [x] The feature is well documented and sample code can be built with the project CMake
Merge with https://github.com/opencv/opencv_extra/pull/1158
Todo:
- [x] Fix Attention pattern recognition.
- [x] Handle other backends.
Benchmark:
"VIT_B_32 OCV/CPU", M1, results in milliseconds.
| Model | 4.x | This PR |
| - | - | - |
| VIT_B_32 OCV/CPU | 87.66 | **83.83** |
### Pull Request Readiness Checklist
See details at https://github.com/opencv/opencv/wiki/How_to_contribute#making-a-good-pull-request
- [x] I agree to contribute to the project under Apache 2 License.
- [x] To the best of my knowledge, the proposed patch is not based on a code under GPL or another license that is incompatible with OpenCV
- [x] The PR is proposed to the proper branch
- [x] There is a reference to the original bug report and related work
- [x] There is accuracy test, performance test and test data in opencv_extra repository, if applicable
Patch to opencv_extra has the same branch name.
- [x] The feature is well documented and sample code can be built with the project CMake
Orbbec Camera supports MacOS,Gemini2 and Gemini2L support Y16 format #24877
note:
1.Gemini2 and Gemini2L must use the latest firmware -- https://github.com/orbbec/OrbbecFirmware;
2.Administrator privileges are necessary to run on MacOS.
Add imread #24415
### Pull Request Readiness Checklist
See details at https://github.com/opencv/opencv/wiki/How_to_contribute#making-a-good-pull-request
- [X] I agree to contribute to the project under Apache 2 License.
- [X] To the best of my knowledge, the proposed patch is not based on a code under GPL or another license that is incompatible with OpenCV
- [X] The PR is proposed to the proper branch
- [ ] There is a reference to the original bug report and related work
- [ ] There is accuracy test, performance test and test data in opencv_extra repository, if applicable
Patch to opencv_extra has the same branch name.
- [x] The feature is well documented and sample code can be built with the project CMake
Hello everyone,
I created this new version of the imread function and I think it can be very useful in several cases.
It is actually passed to it object on which you want to upload the image.
The advantages can be different like in case one needs to open several large images all the same in sequence.
one can use the same pointer and the system would not allocate memory each time.
libjpeg upgrade to version 9f #25092
Upgrade libjpeg dependency from version 9d to 9f.
- [X] I agree to contribute to the project under Apache 2 License.
- [X] To the best of my knowledge, the proposed patch is not based on a code under GPL or another license that is incompatible with OpenCV
- [X] The PR is proposed to the proper branch
- [ ] There is a reference to the original bug report and related work
- [ ] There is accuracy test, performance test and test data in opencv_extra repository, if applicable
Patch to opencv_extra has the same branch name.
- [ ] The feature is well documented and sample code can be built with the project CMake
The parallel code works out how many CPUs are on the system by checking
the quota it has been assigned in the Linux cgroup. The existing code
works under cgroups v1 but the file structure changed in cgroups v2.
From [1]:
"cpu.cfs_quota_us" and "cpu.cfs_period_us" are replaced by "cpu.max"
which contains both quota and period.
This commit add support to parallel so it will read from the cgroups v2
location. v1 support is still retained.
Resolves#25284
[1] 0d5936344f
Speed up adaptive threshold in findChessboardCorners #25177
### Pull Request Readiness Checklist
If `block_size` hasn't been changed between iterations for same `k`, then all `adaptiveThreshold` arguments will be same and we can reuse result from previous iteration.
I tested this PR with benchmark
```
python3 objdetect_benchmark.py --configuration=generate_run --board_x=7 --path=res_chessboard --synthetic_object=chessboard
```
PR speed up chessboards detection by `7.5/17%` without any changes in detected chessboards number:
```
cell_img_size = 100 (default)
before
category detected chessboard total detected chessboard total chessboard average detected error chessboard
all 0.904167 13020 14400 0.600512
Total detected time: 107.27875600000003 sec
after
category detected chessboard total detected chessboard total chessboard average detected error chessboard
all 0.904167 13020 14400 0.600512
Total detected time: 99.0223499999999 sec
----------------------------------------------------------------------------------------------------------------------------------------------
cell_img_size = 10
before
category detected chessboard total detected chessboard total chessboard average detected error chessboard
all 0.539792 7773 14400 4.209964
Total detected time: 2.989205999999999 sec
after
category detected chessboard total detected chessboard total chessboard average detected error chessboard
all 0.539792 7773 14400 4.209964
Total detected time: 2.4802350000000013 sec
```
See details at https://github.com/opencv/opencv/wiki/How_to_contribute#making-a-good-pull-request
- [x] I agree to contribute to the project under Apache 2 License.
- [x] To the best of my knowledge, the proposed patch is not based on a code under GPL or another license that is incompatible with OpenCV
- [x] The PR is proposed to the proper branch
- [ ] There is a reference to the original bug report and related work
- [ ] There is accuracy test, performance test and test data in opencv_extra repository, if applicable
Patch to opencv_extra has the same branch name.
- [ ] The feature is well documented and sample code can be built with the project CMake
Added in-place support for cartToPolar and polarToCart #24893
- a fused hal::cartToPolar[32|64]f() is used instead of sequential hal::magnitude[32|64]f/hal::fastAtan[32|64]f
- ipp_polarToCart is skipped for in-place processing (it seems not to support it correctly)
relates to #24891
### Pull Request Readiness Checklist
See details at https://github.com/opencv/opencv/wiki/How_to_contribute#making-a-good-pull-request
- [X] I agree to contribute to the project under Apache 2 License.
- [X] To the best of my knowledge, the proposed patch is not based on a code under GPL or another license that is incompatible with OpenCV
- [X] The PR is proposed to the proper branch
- [X] There is a reference to the original bug report and related work
- [X] There is accuracy test, performance test and test data in opencv_extra repository, if applicable
Patch to opencv_extra has the same branch name.
- [ ] The feature is well documented and sample code can be built with the project CMake
dnn: avoid const layer forwarding in layer norm layer and attention layer #25238
While profiling ViTs with dnn, I found `ConstLayer` can take a proportion of the inference time, which is weird. This comes from the data copy during the inference of `ConstLayer`. There is a chance that we can improve the efficiency of data copying but the easiest and most convenient way is to avoid `ConstLayer`. This PR change the way how we handle constants in layer normalization layer and attention layer, which is storing in the layer blobs instead of making constant layers for them.
Checklists:
- [x] Backend compatibility in layer normalization layer.
### Pull Request Readiness Checklist
See details at https://github.com/opencv/opencv/wiki/How_to_contribute#making-a-good-pull-request
- [x] I agree to contribute to the project under Apache 2 License.
- [x] To the best of my knowledge, the proposed patch is not based on a code under GPL or another license that is incompatible with OpenCV
- [x] The PR is proposed to the proper branch
- [x] There is a reference to the original bug report and related work
- [x] There is accuracy test, performance test and test data in opencv_extra repository, if applicable
Patch to opencv_extra has the same branch name.
- [x] The feature is well documented and sample code can be built with the project CMake
doc: add note on handling of spaces in CommandLineParser #25237
### Pull Request Readiness Checklist
See details at https://github.com/opencv/opencv/wiki/How_to_contribute#making-a-good-pull-request
- [x] I agree to contribute to the project under Apache 2 License.
- [x] To the best of my knowledge, the proposed patch is not based on a code under GPL or another license that is incompatible with OpenCV
- [x] The PR is proposed to the proper branch
- [x] There is a reference to the original bug report and related work
- [x] There is accuracy test, performance test and test data in opencv_extra repository, if applicable
Patch to opencv_extra has the same branch name.
- [x] The feature is well documented and sample code can be built with the project CMake
Added note that this class will not work properly if tabs and other whitespace characters are included in the key.
The support of whitespace characters by istringstream, etc. is on hold because the future of this class is not clear compared to implementations in Python and other languages.
dnn (CANN): Fix incorrect shape of 1d bias in Gemm #25166
Gemm layer was refactored some time ago. Users found that the mobilenet example in https://github.com/opencv/opencv/wiki/Huawei-CANN-Backend does not work because of incorrect shape set for 1d bias in Gemm. This PR resolves this issue.
### Pull Request Readiness Checklist
See details at https://github.com/opencv/opencv/wiki/How_to_contribute#making-a-good-pull-request
- [x] I agree to contribute to the project under Apache 2 License.
- [x] To the best of my knowledge, the proposed patch is not based on a code under GPL or another license that is incompatible with OpenCV
- [x] The PR is proposed to the proper branch
- [x] There is a reference to the original bug report and related work
- [x] There is accuracy test, performance test and test data in opencv_extra repository, if applicable
Patch to opencv_extra has the same branch name.
- [x] The feature is well documented and sample code can be built with the project CMake
Release convolution weightsMat after usage #25181
### Pull Request Readiness Checklist
related (but not resolved): https://github.com/opencv/opencv/issues/24134
Minor memory footprint improvement. Also, adds a test for VmHWM.
RAM top memory usage (-230MB)
| YOLOv3 (237MB file) | 4.x | PR |
|---------------------|---------|---------|
| no winograd | 808 MB | 581 MB |
| winograd | 1985 MB | 1750 MB |
See details at https://github.com/opencv/opencv/wiki/How_to_contribute#making-a-good-pull-request
- [x] I agree to contribute to the project under Apache 2 License.
- [x] To the best of my knowledge, the proposed patch is not based on a code under GPL or another license that is incompatible with OpenCV
- [x] The PR is proposed to the proper branch
- [x] There is a reference to the original bug report and related work
- [x] There is accuracy test, performance test and test data in opencv_extra repository, if applicable
Patch to opencv_extra has the same branch name.
- [x] The feature is well documented and sample code can be built with the project CMake
Normaly, we sets IMWRITE_* flags for imwrite() params.
But imgcodecs expects to use some TIFFTAG_* directory.
This patch introduce IMWRITE_TIFF_ROWSPERSTRIP and
IMWRITE_TIFF_PREDICTOR instead of TIFFTAG_*.
* libtiff upgrade to version 4.6.0
* fix tiffvers.h cmake generation
* temp: force build 3rd party deps from source
* remove libport.h and spintf.c
* cmake fixes
* don't use tiff_dummy_namespace on windows
* introduce numeric_types namespace alias
* include cstdint
* uint16_t is not a numeric_types type
* fix uint16 and uint32 type defs
* use standard c++ types
* remove unused files
* remove more unused files
* revert build 3rd party code from source
---------
Co-authored-by: Misha Klatis <misha.klatis@autodesk.com>
G-API: A quick value-initialization support GMat #25055
This PR enables `GMat` objects to be value-initialized in the same way as it was done for `GScalar`s (and, possibly, other types).
- Added some helper methods in backends to distinguish if a certain G-type value initialization is supported or not;
- Added tests, including negative.
Where it is needed:
- Further extension of the OVCV backend (#24379 - will be refreshed soon);
- Further experiments with DNN module;
- Further experiments with "G-API behind UMat" sort of aggregation.
In the current form, PR can be reviewed & merged (@TolyaTalamanov please have a look)
### Pull Request Readiness Checklist
See details at https://github.com/opencv/opencv/wiki/How_to_contribute#making-a-good-pull-request
- [x] I agree to contribute to the project under Apache 2 License.
- [x] To the best of my knowledge, the proposed patch is not based on a code under GPL or another license that is incompatible with OpenCV
- [x] The PR is proposed to the proper branch
- [ ] There is a reference to the original bug report and related work
- [x] There is accuracy test, performance test and test data in opencv_extra repository, if applicable
Patch to opencv_extra has the same branch name.
- [x] The feature is well documented and sample code can be built with the project CMake
calib3d: doc: remove C API link (For 4.x) #25141
Related to #25140 (for 4.x)
### Pull Request Readiness Checklist
See details at https://github.com/opencv/opencv/wiki/How_to_contribute#making-a-good-pull-request
- [x] I agree to contribute to the project under Apache 2 License.
- [x] To the best of my knowledge, the proposed patch is not based on a code under GPL or another license that is incompatible with OpenCV
- [x] The PR is proposed to the proper branch
- [x] There is a reference to the original bug report and related work
- [ ] There is accuracy test, performance test and test data in opencv_extra repository, if applicable
Patch to opencv_extra has the same branch name.
- [ ] The feature is well documented and sample code can be built with the project CMake
Documentation transition to fresh Doxygen #25042
* current Doxygen version is 1.10, but we will use 1.9.8 for now due to issue with snippets (https://github.com/doxygen/doxygen/pull/10584)
* Doxyfile adapted to new version
* MathJax updated to 3.x
* `@relates` instructions removed temporarily due to issue in Doxygen (to avoid warnings)
* refactored matx.hpp - extracted matx.inl.hpp
* opencv_contrib - https://github.com/opencv/opencv_contrib/pull/3638
Fixed ReduceMean layer behaviour #25120
### Pull Request Readiness Checklist
See details at https://github.com/opencv/opencv/wiki/How_to_contribute#making-a-good-pull-request
- [x] I agree to contribute to the project under Apache 2 License.
- [x] To the best of my knowledge, the proposed patch is not based on a code under GPL or another license that is incompatible with OpenCV
- [x] The PR is proposed to the proper branch
- [x] There is a reference to the original bug report and related work
- [] There is accuracy test, performance test and test data in opencv_extra repository, if applicable
Patch to opencv_extra has the same branch name.
- [ ] The feature is well documented and sample code can be built with the project CMake
a93c31e3c9/onnxruntime/core/providers/cpu/reduction/reduction_ops.cc (L433-L443)
Use std::priority_queue in inpaint function for performance improvement #25122
In `cv::inpaint` implementation, it uses a priority queue with O(n) time linear search. For large images it is very slow.
I replaced it with C++'s standard library `std::priority_queue`, that uses O(log(n)) algorithm.
In my use case, it is x10 faster than the original.
### Pull Request Readiness Checklist
See details at https://github.com/opencv/opencv/wiki/How_to_contribute#making-a-good-pull-request
- [x] I agree to contribute to the project under Apache 2 License.
- [x] To the best of my knowledge, the proposed patch is not based on a code under GPL or another license that is incompatible with OpenCV
- [x] The PR is proposed to the proper branch
- [ ] There is a reference to the original bug report and related work
- [x] There is accuracy test, performance test and test data in opencv_extra repository, if applicable
Patch to opencv_extra has the same branch name.
- [ ] The feature is well documented and sample code can be built with the project CMake
First proposal of cv::remap with relative displacement field (#24603) #24621
Implements #24603
Currently, `remap()` is applied as `dst(x, y) <- src(mapX(x, y), mapY(x, y))` It means that the maps must be filled with absolute coordinates.
However, if one wants to remap something according to a displacement field ("warp"), the operation should be `dst(x, y) <- src(x+displacementX(x, y), y+displacementY(x, y))`
It is trivial to build a mapping from a displacement field, but it is an undesirable overhead for CPU and memory.
This PR implements the feature as an experimental option, through the optional flag WARP_RELATIVE_MAP than can be ORed to the interpolation mode.
Since the xy maps might be const, there is no attempt to add the coordinate offset to those maps, and everything is postponed on-the-fly to the very last coordinate computation before fetching `src`. Interestingly, this let `cv::convertMaps()` unchanged since the fractional part of interpolation does not care of the integer coordinate offset.
### Pull Request Readiness Checklist
See details at https://github.com/opencv/opencv/wiki/How_to_contribute#making-a-good-pull-request
- [X] I agree to contribute to the project under Apache 2 License.
- [X] To the best of my knowledge, the proposed patch is not based on a code under GPL or another license that is incompatible with OpenCV
- [X] The PR is proposed to the proper branch
- [X] There is a reference to the original bug report and related work
- [X] There is accuracy test, performance test and test data in opencv_extra repository, if applicable
Patch to opencv_extra has the same branch name.
- [ ] The feature is well documented and sample code can be built with the project CMake
dnn: try improving performance of Attention layer #25076
Checklist:
- [x] Use `Mat` over `Mat::zeros` for temporary buffer in forward
- [x] Use layer internal buffer over temporary Mat buffer
- [x] Try a single fastGemmBatch on the Q/K/V calculation
Performance:
Performance test case is `Layer_Attention.VisionTransformer/0`, which has input of shape {1, 197, 768}, weight of shape {768, 2304} and bias {2304}.
Data is in millisecond.
| | macOS 14.2.1, Apple M1 | Ubuntu 22.04.2, Intel i7 12700K |
| - | - | - |
| Current | 10.96 | 1.58 |
| w/ Mat | 6.27 | 1.41 |
| w/ Internals | 5.87 | 1.38 |
| w/ fastGemmBatch | 6.12 | 2.14 |
### Pull Request Readiness Checklist
See details at https://github.com/opencv/opencv/wiki/How_to_contribute#making-a-good-pull-request
- [x] I agree to contribute to the project under Apache 2 License.
- [x] To the best of my knowledge, the proposed patch is not based on a code under GPL or another license that is incompatible with OpenCV
- [x] The PR is proposed to the proper branch
- [x] There is a reference to the original bug report and related work
- [x] There is accuracy test, performance test and test data in opencv_extra repository, if applicable
Patch to opencv_extra has the same branch name.
- [x] The feature is well documented and sample code can be built with the project CMake
Fix issue #25077#25100
Fixes https://github.com/opencv/opencv/issues/25077
### Pull Request Readiness Checklist
See details at https://github.com/opencv/opencv/wiki/How_to_contribute#making-a-good-pull-request
- [x] I agree to contribute to the project under Apache 2 License.
- [x] To the best of my knowledge, the proposed patch is not based on a code under GPL or another license that is incompatible with OpenCV
- [x] The PR is proposed to the proper branch
- [x] There is a reference to the original bug report and related work
- [x] There is accuracy test, performance test and test data in opencv_extra repository, if applicable
Patch to opencv_extra has the same branch name.
- [x] The feature is well documented and sample code can be built with the project CMake
Fixes#25056 : Optimising postProcess(const std::vector<Mat>& output_blobs) #25091
Like mentioned in the issue #25056 , I think checking the condition with `scoreThreshold` and then assigning the bounding boxes can optimize the function pretty well. By doing this, we prevent allocating boxes to faces with scores below the threshold. It also reduces the amount of data that needs to be processed during the subsequent NMS step. Builds and passed locally.
- [X] I agree to contribute to the project under Apache 2 License.
- [X] To the best of my knowledge, the proposed patch is not based on a code under GPL or another license that is incompatible with OpenCV
- [X] The PR is proposed to the proper branch
- [X] There is a reference to the original bug report and related work
- [ ] There is accuracy test, performance test and test data in opencv_extra repository, if applicable
Patch to opencv_extra has the same branch name.
- [ ] The feature is well documented and sample code can be built with the project CMake
Co-authored-by: Dhanwanth1803 <dhanwanthvarala@gmail,com>
Handle degenerate cases in RQDecomp3x3 #25050
The point of the Givens rotations here is to iteratively set the lower left matrix entries to zero. If an element is zero already, we don't need to do anything. This resolves#24330.
### Pull Request Readiness Checklist
See details at https://github.com/opencv/opencv/wiki/How_to_contribute#making-a-good-pull-request
- [x] I agree to contribute to the project under Apache 2 License.
- [x] To the best of my knowledge, the proposed patch is not based on a code under GPL or another license that is incompatible with OpenCV
- [x] The PR is proposed to the proper branch
- [x] There is a reference to the original bug report and related work
- [x] There is accuracy test, performance test and test data in opencv_extra repository, if applicable
Patch to opencv_extra has the same branch name.
- [ ] The feature is well documented and sample code can be built with the project CMake
Move Aruco tutorials and samples to main repo #23018
merge with https://github.com/opencv/opencv_contrib/pull/3401
merge with https://github.com/opencv/opencv_extra/pull/1143
### Pull Request Readiness Checklist
See details at https://github.com/opencv/opencv/wiki/How_to_contribute#making-a-good-pull-request
- [x] I agree to contribute to the project under Apache 2 License.
- [x] To the best of my knowledge, the proposed patch is not based on a code under GPL or another license that is incompatible with OpenCV
- [x] The PR is proposed to the proper branch
- [ ] There is a reference to the original bug report and related work
- [ ] There is accuracy test, performance test and test data in opencv_extra repository, if applicable
Patch to opencv_extra has the same branch name.
- [ ] The feature is well documented and sample code can be built with the project CMake
---------
Co-authored-by: AleksandrPanov <alexander.panov@xperience.ai>
Co-authored-by: Alexander Smorkalov <alexander.smorkalov@xperience.ai>
Compensate edge length in ChessBoardDetector::generateQuads (attempt 2) #25090
### Pull Request Readiness Checklist
New attempt for #24833, which was reverted as #25036.
Locally I fixed `Calib3d_StereoCalibrate_CPP.regression` test by corners refinement using `cornerSubPix` function
See details at https://github.com/opencv/opencv/wiki/How_to_contribute#making-a-good-pull-request
- [x] I agree to contribute to the project under Apache 2 License.
- [x] To the best of my knowledge, the proposed patch is not based on a code under GPL or another license that is incompatible with OpenCV
- [x] The PR is proposed to the proper branch
- [x] There is a reference to the original bug report and related work
- [ ] There is accuracy test, performance test and test data in opencv_extra repository, if applicable
Patch to opencv_extra has the same branch name.
- [ ] The feature is well documented and sample code can be built with the project CMake
Add compatibility with latest (3.1.54) emsdk version #25084
### Pull Request Readiness Checklist
See details at https://github.com/opencv/opencv/wiki/How_to_contribute#making-a-good-pull-request
- [x] I agree to contribute to the project under Apache 2 License.
- [x] To the best of my knowledge, the proposed patch is not based on a code under GPL or another license that is incompatible with OpenCV
- [ ] The PR is proposed to the proper branch
- [ ] There is a reference to the original bug report and related work
- [ ] There is accuracy test, performance test and test data in opencv_extra repository, if applicable
Patch to opencv_extra has the same branch name.
- [ ] The feature is well documented and sample code can be built with the project CMake
### Details
I was following [this tutorial](https://docs.opencv.org/4.9.0/d4/da1/tutorial_js_setup.html) for building opencv with wasm target. The tutorial mentions that the last verified version of emscripten that is tested with opencv is 2.0.10, but I was curious if I could get it to work with more recent versions. I've run into a few issues with the latest version, for which fixes are included in this PR. I've found a few issues that have the same problems I encountered:
- https://github.com/opencv/opencv/issues/24620
- https://github.com/opencv/opencv/issues/20313
- https://stackoverflow.com/questions/77469603/custom-opencv-js-wasm-using-cv-matfromarray-results-in-cv-mat-is-not-a-co
- https://github.com/emscripten-core/emscripten/issues/14803
- https://github.com/opencv/opencv/issues/24572
- https://github.com/opencv/opencv/issues/19493#issuecomment-857167996
I used the docker image for building and comparing results with different emsdk versions. I tested by building with `--build_wasm` and `--build-test` flags and ran the tests in the browser. I addressed the following issues with newer versions of emscripten:
- In newer versions `EMSCRIPTEN` environemnt variable was stopped being set. I added support for deriving location based on the `EMSDK` environment variable, as suggested [here](https://github.com/emscripten-core/emscripten/issues/14803)
- In newer versions emcmake started passing `-DCMAKE...` arguments, however the opencv python script didn't know how to handle them. I added processing to the args that will forward all arguments to `cmake` that start with `-D`. I opted for this in hopes of being more futureproof, but another approach could be just ignoreing them, or explicitly forwarding them instead of matching anything starting with `-D`. These approches were suggested [here](https://github.com/opencv/opencv/issues/19493#issuecomment-855529448)
- With [version 3.1.31](https://github.com/emscripten-core/emscripten/blob/main/ChangeLog.md#3131---012623) some previously exported functions stopped being automatically exported. Because of this, `_free` and `_malloc` were no longer available and had to be explicitly exported because of breaking tests.
- With [version 3.1.42](https://github.com/emscripten-core/emscripten/compare/3.1.41...3.1.42#diff-e505aa80b2764c0197acfc9afd8179b3600f0ab5dd00ff77db01879a84515cdbL3875) the `post-js` code doesn't receive the module named as `EXPORT_NAME` anymore, but only as `moduleArg`/`Module`. This broke existing code in `helpers.js`, which was referencing exported functions through `cv.Mat`, etc. I changed all of these references to use `Module.Mat`, etc. If it is preferred, alternatively the `cv` variable could be reintroduced in `helper.js` as suggested [here](https://github.com/opencv/opencv/issues/24620)
With the above changes in place, I can successfully build and run tests with the latest emscripten/emsdk docker image (also with 2.0.10 and most of the other older tags, except for a few that contain transient issues like [this](https://github.com/emscripten-core/emscripten/issues/17700)).
This is my first time contributing to opencv, so I hope I got everything correct in this PR, but please let me know if I should change anything!
G-API: Make test execution lighter (first attempt) #25060
### Background
G-API tests look running longer than tests for the rest of modules (e.g., 5m), and the analysis show that there's several outliers in G-API test suite which take a lot of time but don't improve the testing quality much:
![image](https://github.com/opencv/opencv/assets/144187/e6df013f-e548-47ac-a418-285b3f78c9f8)
In this PR I will cut the execution time to something reasonable.
### Contents
- Marked some outliers as `verylong`:
- OneVPL barrier test - pure brute force
- Stateful test in stream - in fact BG Sub accuracy test clone
- Restructured parameters instantiation in Streaming tests to generate less test configurations (54 -> 36)
### Pull Request Readiness Checklist
See details at https://github.com/opencv/opencv/wiki/How_to_contribute#making-a-good-pull-request
- [x] I agree to contribute to the project under Apache 2 License.
- [x] To the best of my knowledge, the proposed patch is not based on a code under GPL or another license that is incompatible with OpenCV
- [x] The PR is proposed to the proper branch
- [x] There is a reference to the original bug report and related work
- [x] There is accuracy test, performance test and test data in opencv_extra repository, if applicable
Patch to opencv_extra has the same branch name.
- [x] The feature is well documented and sample code can be built with the project CMake
Fix very slow compilation of five-point algorithm on some platforms (e.g. Qualcomm) #25064
Thanks to our big friend and long-term contributor for the patch!
### Pull Request Readiness Checklist
See details at https://github.com/opencv/opencv/wiki/How_to_contribute#making-a-good-pull-request
- [x] I agree to contribute to the project under Apache 2 License.
- [x] To the best of my knowledge, the proposed patch is not based on a code under GPL or another license that is incompatible with OpenCV
- [x] The PR is proposed to the proper branch
- [ ] There is a reference to the original bug report and related work
- [ ] There is accuracy test, performance test and test data in opencv_extra repository, if applicable
Patch to opencv_extra has the same branch name.
- [ ] The feature is well documented and sample code can be built with the project CMake
G-API: Lower supported IE backend version #25054
Related to https://github.com/opencv/opencv/issues/25053
### Pull Request Readiness Checklist
See details at https://github.com/opencv/opencv/wiki/How_to_contribute#making-a-good-pull-request
- [x] I agree to contribute to the project under Apache 2 License.
- [x] To the best of my knowledge, the proposed patch is not based on a code under GPL or another license that is incompatible with OpenCV
- [x] The PR is proposed to the proper branch
- [ ] There is a reference to the original bug report and related work
- [x] There is accuracy test, performance test and test data in opencv_extra repository, if applicable
Patch to opencv_extra has the same branch name.
- [x] The feature is well documented and sample code can be built with the project CMake
Replace legacy __ARM_NEON__ by __ARM_NEON #25024
Even ACLE 1.1 referes to __ARM_NEON
https://developer.arm.com/documentation/ihi0053/b/?lang=en
### Pull Request Readiness Checklist
See details at https://github.com/opencv/opencv/wiki/How_to_contribute#making-a-good-pull-request
- [x] I agree to contribute to the project under Apache 2 License.
- [x] To the best of my knowledge, the proposed patch is not based on a code under GPL or another license that is incompatible with OpenCV
- [x] The PR is proposed to the proper branch
- [x] There is a reference to the original bug report and related work
- [ ] There is accuracy test, performance test and test data in opencv_extra repository, if applicable
Patch to opencv_extra has the same branch name.
- [ ] The feature is well documented and sample code can be built with the project CMake
Fixes#24974 support HardSwishInt8 #24985
As given very clearly in the issue #24974 I made the required 2 changes to implement HardSwish Layer in INT8. Requesting comments.
resolves https://github.com/opencv/opencv/issues/24974
- [X] I agree to contribute to the project under Apache 2 License.
- [X] To the best of my knowledge, the proposed patch is not based on a code under GPL or another license that is incompatible with OpenCV
- [X] The PR is proposed to the proper branch
- [X] There is a reference to the original bug report and related work
- [ ] There is accuracy test, performance test and test data in opencv_extra repository, if applicable
Patch to opencv_extra has the same branch name.
- [ ] The feature is well documented and sample code can be built with the project CMake
Co-authored-by: Dhanwanth1803 <dhanwanthvarala@gmail,com>
solvePnP implementation for Fisheye camera model #25028
Credits to Linfei Pan
Extracted from https://github.com/opencv/opencv/pull/24052
**Warning:** The patch changes Obj-C generator behaviour and adds "fisheye_" prefix for all ObjC functions from namespace.
### Pull Request Readiness Checklist
See details at https://github.com/opencv/opencv/wiki/How_to_contribute#making-a-good-pull-request
- [x] I agree to contribute to the project under Apache 2 License.
- [x] To the best of my knowledge, the proposed patch is not based on a code under GPL or another license that is incompatible with OpenCV
- [x] The PR is proposed to the proper branch
- [x] There is a reference to the original bug report and related work
- [ ] There is accuracy test, performance test and test data in opencv_extra repository, if applicable
Patch to opencv_extra has the same branch name.
- [ ] The feature is well documented and sample code can be built with the project CMake
Co-authored-by: lpanaf <linpan@student.ethz.ch>
Co-authored-by: Vadim Levin <vadim.levin@xperience.ai>
Fix barcode detectAndDecode #25035
The method `detectAndDecode()` in the `BarcodeDetector` class doesn't return the barcode corners.
This PR fixes the and add test for `detectAndDecode`.
### Pull Request Readiness Checklist
See details at https://github.com/opencv/opencv/wiki/How_to_contribute#making-a-good-pull-request
- [x] I agree to contribute to the project under Apache 2 License.
- [x] To the best of my knowledge, the proposed patch is not based on a code under GPL or another license that is incompatible with OpenCV
- [x] The PR is proposed to the proper branch
- [x] There is a reference to the original bug report and related work
- [x] There is accuracy test, performance test and test data in opencv_extra repository, if applicable
Patch to opencv_extra has the same branch name.
- [ ] The feature is well documented and sample code can be built with the project CMake
Fix qrcode bugs #25026
This PR fixes#22892, #24011 and #24450 and adds regression tests using the images provided. I've also verified with the [benchmark](https://github.com/opencv/opencv_benchmarks/tree/develop/python_benchmarks/qr_codes) that this doesn't break anything there.
resolves#22892resolves#24011resolves#24450
Replaces #23802
Requires extra: https://github.com/opencv/opencv_extra/pull/1148
### Pull Request Readiness Checklist
See details at https://github.com/opencv/opencv/wiki/How_to_contribute#making-a-good-pull-request
- [x] I agree to contribute to the project under Apache 2 License.
- [x] To the best of my knowledge, the proposed patch is not based on a code under GPL or another license that is incompatible with OpenCV
- [x] The PR is proposed to the proper branch
- [x] There is a reference to the original bug report and related work
- [x] There is accuracy test, performance test and test data in opencv_extra repository, if applicable
Patch to opencv_extra has the same branch name.
- [ ] The feature is well documented and sample code can be built with the project CMake