SamFC10
fa90e14b06
int8 layers and 8-bit quantization support
2021-08-19 09:56:47 +05:30
Alexander Alekhin
6b474c4051
Merge remote-tracking branch 'upstream/3.4' into merge-3.4
2021-02-06 00:44:11 +00:00
Alexander Alekhin
83aa711346
dnn: rename clamp() => normalize_axis()
2021-02-04 08:13:55 +00:00
Alexander Alekhin
619180dffd
Merge remote-tracking branch 'upstream/3.4' into merge-3.4
2020-03-06 20:41:30 +00:00
Alexander Alekhin
124bf8339f
dnn(IE): use HAVE_DNN_IE_NN_BUILDER_2019 for NN Builder API code
...
- CMake option: OPENCV_DNN_IE_NN_BUILDER_2019
2020-03-03 08:07:54 +00:00
Alexander Alekhin
29d214474f
dnn(IE): use HAVE_DNN_IE_NN_BUILDER_2019 for NN Builder API code
...
- CMake option: OPENCV_DNN_IE_NN_BUILDER_2019
2020-03-03 07:45:09 +00:00
Alexander Alekhin
4b0132ed7a
Merge remote-tracking branch 'upstream/3.4' into merge-3.4
2019-12-02 16:26:52 +03:00
Lubov Batanina
7523c777c5
Merge pull request #15537 from l-bat:ngraph
...
* Support nGraph
* Fix resize
2019-12-02 16:16:06 +03:00
Yashas Samaga B L
613c12e590
Merge pull request #14827 from YashasSamaga:cuda4dnn-csl-low
...
CUDA backend for the DNN module
* stub cuda4dnn design
* minor fixes for tests and doxygen
* add csl public api directory to module headers
* add low-level CSL components
* add high-level CSL components
* integrate csl::Tensor into backbone code
* switch to CPU iff unsupported; otherwise, fail on error
* add fully connected layer
* add softmax layer
* add activation layers
* support arbitary rank TensorDescriptor
* pass input wrappers to `initCUDA()`
* add 1d/2d/3d-convolution
* add pooling layer
* reorganize and refactor code
* fixes for gcc, clang and doxygen; remove cxx14/17 code
* add blank_layer
* add LRN layer
* add rounding modes for pooling layer
* split tensor.hpp into tensor.hpp and tensor_ops.hpp
* add concat layer
* add scale layer
* add batch normalization layer
* split math.cu into activations.cu and math.hpp
* add eltwise layer
* add flatten layer
* add tensor transform api
* add asymmetric padding support for convolution layer
* add reshape layer
* fix rebase issues
* add permute layer
* add padding support for concat layer
* refactor and reorganize code
* add normalize layer
* optimize bias addition in scale layer
* add prior box layer
* fix and optimize normalize layer
* add asymmetric padding support for pooling layer
* add event API
* improve pooling performance for some padding scenarios
* avoid over-allocation of compute resources to kernels
* improve prior box performance
* enable layer fusion
* add const layer
* add resize layer
* add slice layer
* add padding layer
* add deconvolution layer
* fix channelwise ReLU initialization
* add vector traits
* add vectorized versions of relu, clipped_relu, power
* add vectorized concat kernels
* improve concat_with_offsets performance
* vectorize scale and bias kernels
* add support for multi-billion element tensors
* vectorize prior box kernels
* fix address alignment check
* improve bias addition performance of conv/deconv/fc layers
* restructure code for supporting multiple targets
* add DNN_TARGET_CUDA_FP64
* add DNN_TARGET_FP16
* improve vectorization
* add region layer
* improve tensor API, add dynamic ranks
1. use ManagedPtr instead of a Tensor in backend wrapper
2. add new methods to tensor classes
- size_range: computes the combined size of for a given axis range
- tensor span/view can be constructed from a raw pointer and shape
3. the tensor classes can change their rank at runtime (previously rank was fixed at compile-time)
4. remove device code from tensor classes (as they are unused)
5. enforce strict conditions on tensor class APIs to improve debugging ability
* fix parametric relu activation
* add squeeze/unsqueeze tensor API
* add reorg layer
* optimize permute and enable 2d permute
* enable 1d and 2d slice
* add split layer
* add shuffle channel layer
* allow tensors of different ranks in reshape primitive
* patch SliceOp to allow Crop Layer
* allow extra shape inputs in reshape layer
* use `std::move_backward` instead of `std::move` for insert in resizable_static_array
* improve workspace management
* add spatial LRN
* add nms (cpu) to region layer
* add max pooling with argmax ( and a fix to limits.hpp)
* add max unpooling layer
* rename DNN_TARGET_CUDA_FP32 to DNN_TARGET_CUDA
* update supportBackend to be more rigorous
* remove stray include from preventing non-cuda build
* include op_cuda.hpp outside condition #if
* refactoring, fixes and many optimizations
* drop DNN_TARGET_CUDA_FP64
* fix gcc errors
* increase max. tensor rank limit to six
* add Interp layer
* drop custom layers; use BackendNode
* vectorize activation kernels
* fixes for gcc
* remove wrong assertion
* fix broken assertion in unpooling primitive
* fix build errors in non-CUDA build
* completely remove workspace from public API
* fix permute layer
* enable accuracy and perf. tests for DNN_TARGET_CUDA
* add asynchronous forward
* vectorize eltwise ops
* vectorize fill kernel
* fixes for gcc
* remove CSL headers from public API
* remove csl header source group from cmake
* update min. cudnn version in cmake
* add numerically stable FP32 log1pexp
* refactor code
* add FP16 specialization to cudnn based tensor addition
* vectorize scale1 and bias1 + minor refactoring
* fix doxygen build
* fix invalid alignment assertion
* clear backend wrappers before allocateLayers
* ignore memory lock failures
* do not allocate internal blobs
* integrate NVTX
* add numerically stable half precision log1pexp
* fix indentation, following coding style, improve docs
* remove accidental modification of IE code
* Revert "add asynchronous forward"
This reverts commit 1154b9da9da07e9b52f8a81bdcea48cf31c56f70.
* [cmake] throw error for unsupported CC versions
* fix rebase issues
* add more docs, refactor code, fix bugs
* minor refactoring and fixes
* resolve warnings/errors from clang
* remove haveCUDA() checks from supportBackend()
* remove NVTX integration
* changes based on review comments
* avoid exception when no CUDA device is present
* add color code for CUDA in Net::dump
2019-10-21 14:28:00 +03:00
Dmitry Kurtaev
eba696a41e
Merge pull request #14792 from dkurt:dnn_ie_min_version_r5
...
* Remove Inference Engine 2018R3 and 2018R4
* Fix 2018R5
2019-06-14 18:17:02 +03:00
Alexander Alekhin
4f764b812e
Merge pull request #14315 from dkurt:tf_squeeze_and_slim_softmax_v2
2019-04-18 16:01:24 +00:00
Dmitry Kurtaev
0cfd95c097
Fix TensorFlow's Squeeze and a new fusion for SoftMax from slim backend
2019-04-13 17:04:31 +03:00
Dmitry Kurtaev
a2bbfa1db5
Enable some tests for Inference Engine 2019R1
2019-04-12 15:21:42 +03:00
Dmitry Kurtaev
f0ddf302b2
Move Inference Engine to new API
2019-01-17 14:28:48 +03:00
Alexander Alekhin
96c71dd3d2
dnn: reduce set of ignored warnings
2018-11-15 13:15:59 +03:00
Dmitry Kurtaev
24ab751547
Merge pull request #12565 from dkurt:dnn_non_intel_gpu
...
* Remove isIntel check from deep learning layers
* Remove fp16->fp32 fallbacks where it's not necessary
* Fix Kernel::run to prevent localsize > globalsize
2018-09-26 16:27:00 +03:00
Dmitry Kurtaev
d486204a0d
Merge pull request #12264 from dkurt:dnn_remove_forward_method
...
* Remove a forward method in dnn::Layer
* Add a test
* Fix tests
* Mark multiple dnn::Layer::finalize methods as deprecated
* Replace back dnn's inputBlobs to vector of pointers
* Remove Layer::forward_fallback from CV_OCL_RUN scopes
2018-09-06 13:26:47 +03:00
Wu Zhiwen
a11d944f51
dnn: Remove a duplicated code snippet for flatten layer
...
Signed-off-by: Wu Zhiwen <zhiwen.wu@intel.com>
2018-09-03 10:57:33 +08:00
Dmitry Kurtaev
b781ac7346
Make Intel's Inference Engine backend is default if no preferable backend is specified.
2018-06-04 18:31:46 +03:00
Li Peng
3dd916882a
fp16 ocl support for googlenet
...
Signed-off-by: Li Peng <peng.li@intel.com>
2018-05-16 22:45:02 +08:00
Alexander Alekhin
1060c0f439
dnn: apply CV_OVERRIDE/CV_FINAL
2018-03-28 18:43:27 +03:00
Alexander Alekhin
6c051a55e5
cmake: don't add include <module>/src directory to avoid conflicts
...
during opencv_world builds
2018-03-19 11:14:15 +03:00
Dmitry Kurtaev
10e1de74d2
Intel Inference Engine deep learning backend ( #10608 )
...
* Intel Inference Engine deep learning backend.
* OpenFace network using Inference Engine backend
2018-02-06 11:57:35 +03:00
Li Peng
8f99083726
Add new layer forward interface
...
Add layer forward interface with InputArrayOfArrays and
OutputArrayOfArrays parameters, it allows UMat buffer to be
processed and transferred in the layers.
Signed-off-by: Li Peng <peng.li@intel.com>
2017-11-09 15:59:39 +08:00
Alexander Alekhin
ed10383359
dnn: added trace macros
2017-06-28 14:57:26 +03:00
Vadim Pisarevsky
8b3d6603d5
another round of dnn optimization ( #9011 )
...
* another round of dnn optimization:
* increased malloc alignment across OpenCV from 16 to 64 bytes to make it AVX2 and even AVX-512 friendly
* improved SIMD optimization of pooling layer, optimized average pooling
* cleaned up convolution layer implementation
* made activation layer "attacheable" to all other layers, including fully connected and addition layer.
* fixed bug in the fusion algorithm: "LayerData::consumers" should not be cleared, because it desctibes the topology.
* greatly optimized permutation layer, which improved SSD performance
* parallelized element-wise binary/ternary/... ops (sum, prod, max)
* also, added missing copyrights to many of the layer implementation files
* temporarily disabled (again) the check for intermediate blobs consistency; fixed warnings from various builders
2017-06-28 11:15:22 +03:00
Alexander Alekhin
93729784bb
dnn: move module from opencv_contrib
...
e6f63c7a38/modules/dnn
2017-06-26 13:41:51 +03:00