opencv/samples/python/macbeth_chart_detection.py
Gursimar Singh 69b91cabb4
Adding macbeth chart detector to objdetect module from opencv_contrib (#26906)
* Added mcc to opencv modules

* Removed color correction module

* Updated parameters return type

* Added python sample for macbeth_chart_detection

* Added models.yml support to samples

* Removed unnecessary headers and classes

* fixed datatype conversion

* fixed datatype conversion

* Cleaned headers and added reference/actual colors to samples

* Added mcc tutorial

* fixed datatype and header

* replaced unsigned with int

* Aligned actual and reference color function, added imread

* Fixed shadow variable

* Updated samples

* Added last frame colors prints

* updated detector class

* Added getter functions and useNet function

* Refactoring

* Fixes in test

* fixed infinite divison issue
2025-03-28 11:13:30 +03:00

156 lines
6.4 KiB
Python

import cv2 as cv
import numpy as np
import argparse
import sys
import os
sys.path.append(os.path.join(os.path.dirname(__file__), ".."))
from dnn.common import *
def get_args_parser(func_args):
backends = ("default", "openvino", "opencv", "vkcom", "cuda")
targets = ("cpu", "opencl", "opencl_fp16", "ncs2_vpu", "hddl_vpu", "vulkan", "cuda", "cuda_fp16")
parser = argparse.ArgumentParser(add_help=False)
parser.add_argument('--zoo', default=os.path.join(os.path.dirname(os.path.abspath(__file__)), '../dnn', 'models.yml'),
help='An optional path to file with preprocessing parameters.')
parser.add_argument('--input', help='Path to input image or video file. Skip this argument to capture frames from a camera.', default=0, required=False)
parser.add_argument('--method', help='choose method: dexined or canny', default='canny', required=False)
parser.add_argument('--chart_type', type=int, default=0,
help='chartType: 0-Standard, 1-DigitalSG, 2-Vinyl, default:0')
parser.add_argument('--num_charts', type=int, default=1,
help='Maximum number of charts in the image')
parser.add_argument('--backend', default="default", type=str, choices=backends,
help="Choose one of computation backends: "
"default: automatically (by default), "
"openvino: Intel's Deep Learning Inference Engine (https://software.intel.com/openvino-toolkit), "
"opencv: OpenCV implementation, "
"vkcom: VKCOM, "
"cuda: CUDA, "
"webnn: WebNN")
parser.add_argument('--target', default="cpu", type=str, choices=targets,
help="Choose one of target computation devices: "
"cpu: CPU target (by default), "
"opencl: OpenCL, "
"opencl_fp16: OpenCL fp16 (half-float precision), "
"ncs2_vpu: NCS2 VPU, "
"hddl_vpu: HDDL VPU, "
"vulkan: Vulkan, "
"cuda: CUDA, "
"cuda_fp16: CUDA fp16 (half-float preprocess)")
args, _ = parser.parse_known_args()
add_preproc_args(args.zoo, parser, 'mcc', 'mcc')
parser = argparse.ArgumentParser(parents=[parser],
description='''
To run:
Default:
python macbeth_chart_detection.py --input=path/to/your/input/image/or/video (don't give --input flag if want to use device camera)
DNN model:
python macbeth_chart_detection.py mcc --input=path/to/your/input/image/or/video
Model path can also be specified using --model argument. And config path can be specified using --config.
''', formatter_class=argparse.RawTextHelpFormatter)
return parser.parse_args(func_args)
def process_frame(frame, detector, num_charts):
image_copy = frame.copy()
if not detector.process(frame, num_charts):
return None, None
checkers = detector.getListColorChecker()
detector.draw(checkers, frame)
src = checkers[0].getChartsRGB(False)
tgt = detector.getRefColors()
cv.imshow("image result | Press ESC to quit", frame)
cv.imshow("original", image_copy)
return src, tgt
def main(func_args=None):
args = get_args_parser(func_args)
if not (0 <= args.chart_type <= 2):
raise ValueError("chartType must be 0, 1, or 2")
if os.getenv('OPENCV_SAMPLES_DATA_PATH') is not None:
try:
args.model = findModel(args.model, args.sha1)
args.config = findModel(args.config, args.config_sha1)
except:
print("[WARN] Model file not provided, using default detector. Pass model using --model and config using --config to use dnn based detector.\n\n")
args.model = None
args.config = None
else:
args.model = None
args.config = None
print("[WARN] Model file not provided, using default detector. Pass model using --model and config using --config to use dnn based detector. Or, set OPENCV_SAMPLES_DATA_PATH environment variable.\n\n")
if args.model and args.config:
# Load the DNN from TensorFlow model
engine = cv.dnn.ENGINE_AUTO
if args.backend != "default" or args.target != "cpu":
engine = cv.dnn.ENGINE_CLASSIC
net = cv.dnn.readNetFromTensorflow(args.model, args.config, engine)
net.setPreferableBackend(get_backend_id(args.backend))
net.setPreferableTarget(get_target_id(args.target))
detector = cv.mcc_CCheckerDetector.create(net)
print("Detecting checkers using neural network.")
else:
detector = cv.mcc_CCheckerDetector.create()
print("Detecting checkers using default method (no DNN).")
detector.setColorChartType(args.chart_type)
is_video = True
if args.input:
image = cv.imread(findFile(args.input))
if image is not None:
is_video = False
else:
cap = cv.VideoCapture(findFile(args.input))
else:
cap = cv.VideoCapture(0)
if is_video:
print("To print the actual colors and reference colors for current frame press SPACEBAR. To resume press SPACEBAR again")
while True:
ret, frame = cap.read()
if not ret:
break
src, tgt = process_frame(frame, detector, args.num_charts)
key = cv.waitKey(10) & 0xFF
if key == ord(' '):
if src is None or tgt is None:
print("No color chart detected!!")
else:
print("Actual colors: ", src)
print("Reference colors: ", tgt)
print("Press spacebar to resume.")
cv.waitKey(0)
print("Resumed! Processing continues...")
elif key == 27:
exit(0)
if src is not None or tgt is not None:
print("Actual colors: ", src)
print("Reference colors: ", tgt)
else:
src, tgt = process_frame(image, detector, args.num_charts)
if src is None or tgt is None:
print("No color chart detected!!")
else:
print("Actual colors: ", src)
print("Reference colors: ", tgt)
cv.waitKey(0)
cv.destroyAllWindows()
if __name__ == "__main__":
main()