mirror of
https://github.com/opencv/opencv.git
synced 2025-06-13 13:13:26 +08:00

* Added mcc to opencv modules * Removed color correction module * Updated parameters return type * Added python sample for macbeth_chart_detection * Added models.yml support to samples * Removed unnecessary headers and classes * fixed datatype conversion * fixed datatype conversion * Cleaned headers and added reference/actual colors to samples * Added mcc tutorial * fixed datatype and header * replaced unsigned with int * Aligned actual and reference color function, added imread * Fixed shadow variable * Updated samples * Added last frame colors prints * updated detector class * Added getter functions and useNet function * Refactoring * Fixes in test * fixed infinite divison issue
156 lines
6.4 KiB
Python
156 lines
6.4 KiB
Python
import cv2 as cv
|
|
import numpy as np
|
|
import argparse
|
|
import sys
|
|
import os
|
|
sys.path.append(os.path.join(os.path.dirname(__file__), ".."))
|
|
from dnn.common import *
|
|
|
|
def get_args_parser(func_args):
|
|
backends = ("default", "openvino", "opencv", "vkcom", "cuda")
|
|
targets = ("cpu", "opencl", "opencl_fp16", "ncs2_vpu", "hddl_vpu", "vulkan", "cuda", "cuda_fp16")
|
|
|
|
parser = argparse.ArgumentParser(add_help=False)
|
|
parser.add_argument('--zoo', default=os.path.join(os.path.dirname(os.path.abspath(__file__)), '../dnn', 'models.yml'),
|
|
help='An optional path to file with preprocessing parameters.')
|
|
parser.add_argument('--input', help='Path to input image or video file. Skip this argument to capture frames from a camera.', default=0, required=False)
|
|
parser.add_argument('--method', help='choose method: dexined or canny', default='canny', required=False)
|
|
parser.add_argument('--chart_type', type=int, default=0,
|
|
help='chartType: 0-Standard, 1-DigitalSG, 2-Vinyl, default:0')
|
|
parser.add_argument('--num_charts', type=int, default=1,
|
|
help='Maximum number of charts in the image')
|
|
parser.add_argument('--backend', default="default", type=str, choices=backends,
|
|
help="Choose one of computation backends: "
|
|
"default: automatically (by default), "
|
|
"openvino: Intel's Deep Learning Inference Engine (https://software.intel.com/openvino-toolkit), "
|
|
"opencv: OpenCV implementation, "
|
|
"vkcom: VKCOM, "
|
|
"cuda: CUDA, "
|
|
"webnn: WebNN")
|
|
parser.add_argument('--target', default="cpu", type=str, choices=targets,
|
|
help="Choose one of target computation devices: "
|
|
"cpu: CPU target (by default), "
|
|
"opencl: OpenCL, "
|
|
"opencl_fp16: OpenCL fp16 (half-float precision), "
|
|
"ncs2_vpu: NCS2 VPU, "
|
|
"hddl_vpu: HDDL VPU, "
|
|
"vulkan: Vulkan, "
|
|
"cuda: CUDA, "
|
|
"cuda_fp16: CUDA fp16 (half-float preprocess)")
|
|
|
|
args, _ = parser.parse_known_args()
|
|
add_preproc_args(args.zoo, parser, 'mcc', 'mcc')
|
|
parser = argparse.ArgumentParser(parents=[parser],
|
|
description='''
|
|
To run:
|
|
Default:
|
|
python macbeth_chart_detection.py --input=path/to/your/input/image/or/video (don't give --input flag if want to use device camera)
|
|
DNN model:
|
|
python macbeth_chart_detection.py mcc --input=path/to/your/input/image/or/video
|
|
|
|
Model path can also be specified using --model argument. And config path can be specified using --config.
|
|
''', formatter_class=argparse.RawTextHelpFormatter)
|
|
return parser.parse_args(func_args)
|
|
|
|
def process_frame(frame, detector, num_charts):
|
|
image_copy = frame.copy()
|
|
if not detector.process(frame, num_charts):
|
|
return None, None
|
|
|
|
checkers = detector.getListColorChecker()
|
|
detector.draw(checkers, frame)
|
|
|
|
src = checkers[0].getChartsRGB(False)
|
|
tgt = detector.getRefColors()
|
|
|
|
cv.imshow("image result | Press ESC to quit", frame)
|
|
cv.imshow("original", image_copy)
|
|
|
|
return src, tgt
|
|
|
|
def main(func_args=None):
|
|
args = get_args_parser(func_args)
|
|
|
|
if not (0 <= args.chart_type <= 2):
|
|
raise ValueError("chartType must be 0, 1, or 2")
|
|
|
|
if os.getenv('OPENCV_SAMPLES_DATA_PATH') is not None:
|
|
try:
|
|
args.model = findModel(args.model, args.sha1)
|
|
args.config = findModel(args.config, args.config_sha1)
|
|
except:
|
|
print("[WARN] Model file not provided, using default detector. Pass model using --model and config using --config to use dnn based detector.\n\n")
|
|
args.model = None
|
|
args.config = None
|
|
else:
|
|
args.model = None
|
|
args.config = None
|
|
print("[WARN] Model file not provided, using default detector. Pass model using --model and config using --config to use dnn based detector. Or, set OPENCV_SAMPLES_DATA_PATH environment variable.\n\n")
|
|
|
|
if args.model and args.config:
|
|
# Load the DNN from TensorFlow model
|
|
engine = cv.dnn.ENGINE_AUTO
|
|
if args.backend != "default" or args.target != "cpu":
|
|
engine = cv.dnn.ENGINE_CLASSIC
|
|
net = cv.dnn.readNetFromTensorflow(args.model, args.config, engine)
|
|
net.setPreferableBackend(get_backend_id(args.backend))
|
|
net.setPreferableTarget(get_target_id(args.target))
|
|
|
|
detector = cv.mcc_CCheckerDetector.create(net)
|
|
print("Detecting checkers using neural network.")
|
|
else:
|
|
detector = cv.mcc_CCheckerDetector.create()
|
|
print("Detecting checkers using default method (no DNN).")
|
|
|
|
detector.setColorChartType(args.chart_type)
|
|
is_video = True
|
|
|
|
if args.input:
|
|
image = cv.imread(findFile(args.input))
|
|
if image is not None:
|
|
is_video = False
|
|
else:
|
|
cap = cv.VideoCapture(findFile(args.input))
|
|
else:
|
|
cap = cv.VideoCapture(0)
|
|
|
|
if is_video:
|
|
print("To print the actual colors and reference colors for current frame press SPACEBAR. To resume press SPACEBAR again")
|
|
|
|
while True:
|
|
ret, frame = cap.read()
|
|
if not ret:
|
|
break
|
|
|
|
src, tgt = process_frame(frame, detector, args.num_charts)
|
|
|
|
key = cv.waitKey(10) & 0xFF
|
|
if key == ord(' '):
|
|
if src is None or tgt is None:
|
|
print("No color chart detected!!")
|
|
else:
|
|
print("Actual colors: ", src)
|
|
print("Reference colors: ", tgt)
|
|
print("Press spacebar to resume.")
|
|
|
|
cv.waitKey(0)
|
|
print("Resumed! Processing continues...")
|
|
elif key == 27:
|
|
exit(0)
|
|
if src is not None or tgt is not None:
|
|
print("Actual colors: ", src)
|
|
print("Reference colors: ", tgt)
|
|
else:
|
|
src, tgt = process_frame(image, detector, args.num_charts)
|
|
if src is None or tgt is None:
|
|
print("No color chart detected!!")
|
|
else:
|
|
print("Actual colors: ", src)
|
|
print("Reference colors: ", tgt)
|
|
cv.waitKey(0)
|
|
|
|
cv.destroyAllWindows()
|
|
|
|
if __name__ == "__main__":
|
|
main()
|