opencv/modules/dnn/src/layers/softmax_layer.cpp
2018-03-28 18:43:27 +03:00

356 lines
13 KiB
C++

/*M///////////////////////////////////////////////////////////////////////////////////////
//
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
// By downloading, copying, installing or using the software you agree to this license.
// If you do not agree to this license, do not download, install,
// copy or use the software.
//
//
// License Agreement
// For Open Source Computer Vision Library
//
// Copyright (C) 2013, OpenCV Foundation, all rights reserved.
// Copyright (C) 2017, Intel Corporation, all rights reserved.
// Third party copyrights are property of their respective owners.
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
// * Redistribution's of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
//
// * Redistribution's in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other materials provided with the distribution.
//
// * The name of the copyright holders may not be used to endorse or promote products
// derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors "as is" and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/
#include "../precomp.hpp"
#include "layers_common.hpp"
#include "../op_halide.hpp"
#include "../op_inf_engine.hpp"
#include <algorithm>
#include <stdlib.h>
using std::max;
#ifdef HAVE_OPENCL
#include "opencl_kernels_dnn.hpp"
using namespace cv::dnn::ocl4dnn;
#endif
namespace cv
{
namespace dnn
{
class SoftMaxLayerImpl CV_FINAL : public SoftmaxLayer
{
public:
SoftMaxLayerImpl(const LayerParams& params)
{
axisRaw = params.get<int>("axis", 1);
logSoftMax = params.get<bool>("log_softmax", false);
setParamsFrom(params);
}
#ifdef HAVE_OPENCL
Ptr<OCL4DNNSoftmax<float> > softmaxOp;
#endif
bool getMemoryShapes(const std::vector<MatShape> &inputs,
const int requiredOutputs,
std::vector<MatShape> &outputs,
std::vector<MatShape> &internals) const CV_OVERRIDE
{
bool inplace = Layer::getMemoryShapes(inputs, requiredOutputs, outputs, internals);
MatShape shape = inputs[0];
int cAxis = clamp(axisRaw, shape.size());
shape[cAxis] = 1;
internals.assign(1, shape);
return inplace;
}
virtual bool supportBackend(int backendId) CV_OVERRIDE
{
return backendId == DNN_BACKEND_DEFAULT ||
backendId == DNN_BACKEND_HALIDE && haveHalide() && axisRaw == 1 ||
backendId == DNN_BACKEND_INFERENCE_ENGINE && haveInfEngine() && !logSoftMax;
}
#ifdef HAVE_OPENCL
virtual void finalize(const std::vector<Mat*> &inputs, std::vector<Mat> &outputs) CV_OVERRIDE
{
softmaxOp.release();
}
bool forward_ocl(InputArrayOfArrays inps, OutputArrayOfArrays outs, OutputArrayOfArrays itns)
{
std::vector<UMat> inputs;
std::vector<UMat> outputs;
std::vector<UMat> internals;
inps.getUMatVector(inputs);
outs.getUMatVector(outputs);
itns.getUMatVector(internals);
if (softmaxOp.empty())
{
OCL4DNNSoftmaxConfig config;
config.in_shape = shape(inputs[0]);
config.axis = axisRaw;
config.channels = inputs[0].size[axisRaw];
config.logsoftmax = logSoftMax;
softmaxOp = Ptr<OCL4DNNSoftmax<float> >(new OCL4DNNSoftmax<float>(config));
}
UMat& src = inputs[0];
UMat& dstMat = outputs[0];
if (softmaxOp->Forward(src, dstMat))
return true;
UMat& bufMat = internals[0];
src.copyTo(dstMat);
int axis = clamp(axisRaw, src.dims);
MatShape s = shape(src);
size_t outerSize = total(s, 0, axis);
size_t channels = src.size[axis];
size_t innerSize = total(s, axis + 1);
String buildOpts = String("-DT=") + ocl::typeToStr(src.type());
ocl::Kernel kmax, ksub, ksum, kdiv;
if (!kmax.create("kernel_channel_max", ocl::dnn::softmax_oclsrc, buildOpts))
return false;
if (!ksub.create("kernel_channel_subtract", ocl::dnn::softmax_oclsrc, buildOpts))
return false;
if (!ksum.create("kernel_channel_sum", ocl::dnn::softmax_oclsrc, buildOpts))
return false;
if (logSoftMax) buildOpts += " -DLOG_SOFTMAX ";
if (!kdiv.create("kernel_channel_div", ocl::dnn::softmax_oclsrc, buildOpts))
return false;
size_t wgSize = ocl::Device::getDefault().maxWorkGroupSize();
size_t bufSize = internals[0].total();
size_t totalSize = src.total();
// adjust local/global size
size_t internal_localSize[1] = { (bufSize == 1) ? 1 : wgSize };
size_t internal_globalSize[1] = { divUp(bufSize, (unsigned int)internal_localSize[0]) * internal_localSize[0] };
// adjust local/global size (total)
size_t total_localSize[1] = { (totalSize == 1) ? 1 : wgSize };
size_t total_globalSize[1] = { divUp(totalSize, (unsigned int)total_localSize[0]) * total_localSize[0] };
kmax.args((int)outerSize, (int)channels, (int)innerSize,
ocl::KernelArg::PtrReadOnly(dstMat), ocl::KernelArg::PtrReadWrite(bufMat));
if (!kmax.run(1, internal_globalSize, internal_localSize, false))
return false;
ksub.args((int)totalSize, (int)outerSize, (int)channels, (int)innerSize,
ocl::KernelArg::PtrReadOnly(bufMat), ocl::KernelArg::PtrReadWrite(dstMat));
if (!ksub.run(1, total_globalSize, total_localSize, false))
return false;
cv::exp(dstMat, dstMat);
ksum.args((int)outerSize, (int)channels, (int)innerSize,
ocl::KernelArg::PtrReadOnly(dstMat), ocl::KernelArg::PtrReadWrite(bufMat));
if (!ksum.run(1, internal_globalSize, internal_localSize, false))
return false;
kdiv.args((int)totalSize, (int)outerSize, (int)channels, (int)innerSize,
ocl::KernelArg::PtrReadOnly(bufMat), ocl::KernelArg::PtrReadWrite(dstMat));
if (!kdiv.run(1, total_globalSize, total_localSize, false))
return false;
return true;
}
#endif
void forward(InputArrayOfArrays inputs_arr, OutputArrayOfArrays outputs_arr, OutputArrayOfArrays internals_arr) CV_OVERRIDE
{
CV_TRACE_FUNCTION();
CV_TRACE_ARG_VALUE(name, "name", name.c_str());
CV_OCL_RUN((preferableTarget == DNN_TARGET_OPENCL) &&
OCL_PERFORMANCE_CHECK(ocl::Device::getDefault().isIntel()),
forward_ocl(inputs_arr, outputs_arr, internals_arr))
Layer::forward_fallback(inputs_arr, outputs_arr, internals_arr);
}
void forward(std::vector<Mat*> &inputs, std::vector<Mat> &outputs, std::vector<Mat> &internals) CV_OVERRIDE
{
CV_TRACE_FUNCTION();
CV_TRACE_ARG_VALUE(name, "name", name.c_str());
const Mat &src = *inputs[0];
Mat &dst = outputs[0];
int axis = clamp(axisRaw, src.dims);
size_t outerSize = src.total(0, axis), channels = src.size[axis],
innerSize = src.total(axis + 1);
CV_Assert(src.type() == CV_32F);
CV_Assert(src.isContinuous() && dst.isContinuous());
const float *srcPtr = src.ptr<float>();
float *dstPtr = dst.ptr<float>();
float *bufPtr = internals[0].ptr<float>();
size_t outerStep = src.total(axis);
size_t cnStep = src.total(axis + 1);
//compute max along axis
for (size_t outerDim = 0; outerDim < outerSize; outerDim++)
{
size_t srcOffset = outerDim * outerStep;
size_t bufOffset = outerDim * cnStep;
memcpy(bufPtr + bufOffset, srcPtr + srcOffset, innerSize * sizeof(float));
for (size_t cnDim = 1; cnDim < channels; cnDim++)
{
for (size_t i = 0; i < innerSize; i++)
bufPtr[bufOffset + i] = std::max(bufPtr[bufOffset + i], srcPtr[srcOffset + cnDim * cnStep + i]);
}
}
//subtract max
for (size_t outerDim = 0; outerDim < outerSize; outerDim++)
{
size_t srcOffset = outerDim * outerStep;
size_t bufOffset = outerDim * cnStep;
for (size_t cnDim = 0; cnDim < channels; cnDim++)
{
const int offset = srcOffset + cnDim * cnStep;
for (size_t i = 0; i < innerSize; i++)
dstPtr[offset + i] = srcPtr[offset + i] - bufPtr[bufOffset + i];
}
}
cv::exp(dst, dst);
for (size_t outerDim = 0; outerDim < outerSize; outerDim++)
{
size_t srcOffset = outerDim * outerStep;
size_t bufOffset = outerDim * cnStep;
//sum exp along axis
for (size_t i = 0; i < innerSize; i++)
bufPtr[bufOffset + i] = 0.f;
for (size_t cnDim = 0; cnDim < channels; cnDim++)
{
const int offset = srcOffset + cnDim * cnStep;
for (size_t i = 0; i < innerSize; i++)
bufPtr[bufOffset + i] += dstPtr[offset + i];
}
//divide by computed sum
for (size_t cnDim = 0; cnDim < channels; cnDim++)
{
const int offset = srcOffset + cnDim * cnStep;
for (size_t i = 0; i < innerSize; i++)
dstPtr[offset + i] /= bufPtr[bufOffset + i];
}
if (logSoftMax)
{
for (size_t cnDim = 0; cnDim < channels; cnDim++)
{
const int offset = srcOffset + cnDim * cnStep;
for (size_t i = 0; i < innerSize; i++)
dstPtr[offset + i] = log(dstPtr[offset + i]);
}
}
}
}
virtual Ptr<BackendNode> initHalide(const std::vector<Ptr<BackendWrapper> > &inputs) CV_OVERRIDE
{
#ifdef HAVE_HALIDE
Halide::Buffer<float> inputBuffer = halideBuffer(inputs[0]);
int inW, inH, inC, inN;
getCanonicalSize(inputBuffer, &inW, &inH, &inC, &inN);
if (inW != 1 || inH != 1)
CV_Error(cv::Error::StsNotImplemented,
"Halide backend for SoftMax with spatial size "
"more than 1x1 is not implemented");
Halide::Var x("x"), y("y"), c("c"), n("n");
Halide::Func top = (name.empty() ? Halide::Func() : Halide::Func(name));
Halide::Func expInput("expInput");
Halide::RDom r(0, inW, 0, inH, 0, inC);
expInput(x, y, c, n) = exp(inputBuffer(x, y, c, n));
Halide::Expr globalSum = sum(expInput(r.x, r.y, r.z, n));
top(x, y, c, n) = expInput(x, y, c, n) / globalSum;
return Ptr<BackendNode>(new HalideBackendNode(top));
#endif // HAVE_HALIDE
return Ptr<BackendNode>();
}
virtual Ptr<BackendNode> initInfEngine(const std::vector<Ptr<BackendWrapper> >&) CV_OVERRIDE
{
#ifdef HAVE_INF_ENGINE
InferenceEngine::LayerParams lp;
lp.name = name;
lp.type = "SoftMax";
lp.precision = InferenceEngine::Precision::FP32;
std::shared_ptr<InferenceEngine::SoftMaxLayer> ieLayer(new InferenceEngine::SoftMaxLayer(lp));
ieLayer->axis = axisRaw;
return Ptr<BackendNode>(new InfEngineBackendNode(ieLayer));
#endif // HAVE_INF_ENGINE
return Ptr<BackendNode>();
}
int64 getFLOPS(const std::vector<MatShape> &inputs,
const std::vector<MatShape> &outputs) const CV_OVERRIDE
{
(void)outputs; // suppress unused variable warning
int64 flops = 0;
for (int i = 0; i < inputs.size(); i++)
{
flops += 4*total(inputs[i]);
}
return flops;
}
int axisRaw;
};
Ptr<SoftmaxLayer> SoftmaxLayer::create(const LayerParams& params)
{
return Ptr<SoftmaxLayer>(new SoftMaxLayerImpl(params));
}
}
}