mirror of
https://github.com/opencv/opencv.git
synced 2024-12-13 16:09:23 +08:00
624 lines
24 KiB
C++
624 lines
24 KiB
C++
#ifndef OPENCV_GAPI_PIPELINE_MODELING_TOOL_PIPELINE_BUILDER_HPP
|
|
#define OPENCV_GAPI_PIPELINE_MODELING_TOOL_PIPELINE_BUILDER_HPP
|
|
|
|
#include <map>
|
|
|
|
#include <opencv2/gapi/infer.hpp> // cv::gapi::GNetPackage
|
|
#include <opencv2/gapi/streaming/cap.hpp> // cv::gapi::wip::IStreamSource
|
|
#include <opencv2/gapi/infer/ie.hpp> // cv::gapi::ie::Params
|
|
#include <opencv2/gapi/gcommon.hpp> // cv::gapi::GCompileArgs
|
|
#include <opencv2/gapi/cpu/gcpukernel.hpp> // GAPI_OCV_KERNEL
|
|
#include <opencv2/gapi/gkernel.hpp> // G_API_OP
|
|
|
|
#include "pipeline.hpp"
|
|
#include "utils.hpp"
|
|
|
|
struct Edge {
|
|
struct P {
|
|
std::string name;
|
|
size_t port;
|
|
};
|
|
|
|
P src;
|
|
P dst;
|
|
};
|
|
|
|
struct CallParams {
|
|
std::string name;
|
|
size_t call_every_nth;
|
|
};
|
|
|
|
struct CallNode {
|
|
using F = std::function<void(const cv::GProtoArgs&, cv::GProtoArgs&)>;
|
|
|
|
CallParams params;
|
|
F run;
|
|
};
|
|
|
|
struct DataNode {
|
|
cv::optional<cv::GProtoArg> arg;
|
|
};
|
|
|
|
struct Node {
|
|
using Ptr = std::shared_ptr<Node>;
|
|
using WPtr = std::weak_ptr<Node>;
|
|
using Kind = cv::util::variant<CallNode, DataNode>;
|
|
|
|
std::vector<Node::WPtr> in_nodes;
|
|
std::vector<Node::Ptr> out_nodes;
|
|
Kind kind;
|
|
};
|
|
|
|
struct SubGraphCall {
|
|
G_API_OP(GSubGraph,
|
|
<cv::GMat(cv::GMat, cv::GComputation, cv::GCompileArgs, size_t)>,
|
|
"custom.subgraph") {
|
|
static cv::GMatDesc outMeta(const cv::GMatDesc& in,
|
|
cv::GComputation comp,
|
|
cv::GCompileArgs compile_args,
|
|
const size_t call_every_nth) {
|
|
GAPI_Assert(call_every_nth > 0);
|
|
auto out_metas =
|
|
comp.compile(in, std::move(compile_args)).outMetas();
|
|
GAPI_Assert(out_metas.size() == 1u);
|
|
GAPI_Assert(cv::util::holds_alternative<cv::GMatDesc>(out_metas[0]));
|
|
return cv::util::get<cv::GMatDesc>(out_metas[0]);
|
|
}
|
|
|
|
};
|
|
|
|
struct SubGraphState {
|
|
cv::Mat last_result;
|
|
cv::GCompiled cc;
|
|
int call_counter = 0;
|
|
};
|
|
|
|
GAPI_OCV_KERNEL_ST(SubGraphImpl, GSubGraph, SubGraphState) {
|
|
static void setup(const cv::GMatDesc& in,
|
|
cv::GComputation comp,
|
|
cv::GCompileArgs compile_args,
|
|
const size_t /*call_every_nth*/,
|
|
std::shared_ptr<SubGraphState>& state,
|
|
const cv::GCompileArgs& /*args*/) {
|
|
state.reset(new SubGraphState{});
|
|
state->cc = comp.compile(in, std::move(compile_args));
|
|
auto out_desc =
|
|
cv::util::get<cv::GMatDesc>(state->cc.outMetas()[0]);
|
|
utils::createNDMat(state->last_result,
|
|
out_desc.dims,
|
|
out_desc.depth);
|
|
}
|
|
|
|
static void run(const cv::Mat& in,
|
|
cv::GComputation /*comp*/,
|
|
cv::GCompileArgs /*compile_args*/,
|
|
const size_t call_every_nth,
|
|
cv::Mat& out,
|
|
SubGraphState& state) {
|
|
// NB: Make a call on the first iteration and skip the furthers.
|
|
if (state.call_counter == 0) {
|
|
state.cc(in, state.last_result);
|
|
}
|
|
state.last_result.copyTo(out);
|
|
state.call_counter = (state.call_counter + 1) % call_every_nth;
|
|
}
|
|
};
|
|
|
|
void operator()(const cv::GProtoArgs& inputs, cv::GProtoArgs& outputs);
|
|
|
|
size_t numInputs() const { return 1; }
|
|
size_t numOutputs() const { return 1; }
|
|
|
|
cv::GComputation comp;
|
|
cv::GCompileArgs compile_args;
|
|
size_t call_every_nth;
|
|
};
|
|
|
|
void SubGraphCall::operator()(const cv::GProtoArgs& inputs,
|
|
cv::GProtoArgs& outputs) {
|
|
GAPI_Assert(inputs.size() == 1u);
|
|
GAPI_Assert(cv::util::holds_alternative<cv::GMat>(inputs[0]));
|
|
GAPI_Assert(outputs.empty());
|
|
auto in = cv::util::get<cv::GMat>(inputs[0]);
|
|
outputs.emplace_back(GSubGraph::on(in, comp, compile_args, call_every_nth));
|
|
}
|
|
|
|
struct DummyCall {
|
|
G_API_OP(GDummy,
|
|
<cv::GMat(cv::GMat, double, OutputDescr)>,
|
|
"custom.dummy") {
|
|
static cv::GMatDesc outMeta(const cv::GMatDesc& /* in */,
|
|
double /* time */,
|
|
const OutputDescr& output) {
|
|
if (output.dims.size() == 2) {
|
|
return cv::GMatDesc(output.precision,
|
|
1,
|
|
// NB: Dims[H, W] -> Size(W, H)
|
|
cv::Size(output.dims[1], output.dims[0]));
|
|
}
|
|
return cv::GMatDesc(output.precision, output.dims);
|
|
}
|
|
};
|
|
|
|
struct DummyState {
|
|
cv::Mat mat;
|
|
};
|
|
|
|
// NB: Generate random mat once and then
|
|
// copy to dst buffer on every iteration.
|
|
GAPI_OCV_KERNEL_ST(GCPUDummy, GDummy, DummyState) {
|
|
static void setup(const cv::GMatDesc& /*in*/,
|
|
double /*time*/,
|
|
const OutputDescr& output,
|
|
std::shared_ptr<DummyState>& state,
|
|
const cv::GCompileArgs& /*args*/) {
|
|
state.reset(new DummyState{});
|
|
utils::createNDMat(state->mat, output.dims, output.precision);
|
|
utils::generateRandom(state->mat);
|
|
}
|
|
|
|
static void run(const cv::Mat& /*in_mat*/,
|
|
double time,
|
|
const OutputDescr& /*output*/,
|
|
cv::Mat& out_mat,
|
|
DummyState& state) {
|
|
using namespace std::chrono;
|
|
double total = 0;
|
|
auto start = high_resolution_clock::now();
|
|
state.mat.copyTo(out_mat);
|
|
while (total < time) {
|
|
total = duration_cast<duration<double, std::milli>>(
|
|
high_resolution_clock::now() - start).count();
|
|
}
|
|
}
|
|
};
|
|
|
|
void operator()(const cv::GProtoArgs& inputs, cv::GProtoArgs& outputs);
|
|
|
|
size_t numInputs() const { return 1; }
|
|
size_t numOutputs() const { return 1; }
|
|
|
|
double time;
|
|
OutputDescr output;
|
|
};
|
|
|
|
void DummyCall::operator()(const cv::GProtoArgs& inputs,
|
|
cv::GProtoArgs& outputs) {
|
|
GAPI_Assert(inputs.size() == 1u);
|
|
GAPI_Assert(cv::util::holds_alternative<cv::GMat>(inputs[0]));
|
|
GAPI_Assert(outputs.empty());
|
|
auto in = cv::util::get<cv::GMat>(inputs[0]);
|
|
outputs.emplace_back(GDummy::on(in, time, output));
|
|
}
|
|
|
|
struct InferCall {
|
|
void operator()(const cv::GProtoArgs& inputs, cv::GProtoArgs& outputs);
|
|
size_t numInputs() const { return input_layers.size(); }
|
|
size_t numOutputs() const { return output_layers.size(); }
|
|
|
|
std::string tag;
|
|
std::vector<std::string> input_layers;
|
|
std::vector<std::string> output_layers;
|
|
};
|
|
|
|
void InferCall::operator()(const cv::GProtoArgs& inputs,
|
|
cv::GProtoArgs& outputs) {
|
|
GAPI_Assert(inputs.size() == input_layers.size());
|
|
GAPI_Assert(outputs.empty());
|
|
|
|
cv::GInferInputs g_inputs;
|
|
// TODO: Add an opportunity not specify input/output layers in case
|
|
// there is only single layer.
|
|
for (size_t i = 0; i < inputs.size(); ++i) {
|
|
// TODO: Support GFrame as well.
|
|
GAPI_Assert(cv::util::holds_alternative<cv::GMat>(inputs[i]));
|
|
auto in = cv::util::get<cv::GMat>(inputs[i]);
|
|
g_inputs[input_layers[i]] = in;
|
|
}
|
|
auto g_outputs = cv::gapi::infer<cv::gapi::Generic>(tag, g_inputs);
|
|
for (size_t i = 0; i < output_layers.size(); ++i) {
|
|
outputs.emplace_back(g_outputs.at(output_layers[i]));
|
|
}
|
|
}
|
|
|
|
struct SourceCall {
|
|
void operator()(const cv::GProtoArgs& inputs, cv::GProtoArgs& outputs);
|
|
size_t numInputs() const { return 0; }
|
|
size_t numOutputs() const { return 1; }
|
|
};
|
|
|
|
void SourceCall::operator()(const cv::GProtoArgs& inputs,
|
|
cv::GProtoArgs& outputs) {
|
|
GAPI_Assert(inputs.empty());
|
|
GAPI_Assert(outputs.empty());
|
|
// NB: Since NV12 isn't exposed source always produce GMat.
|
|
outputs.emplace_back(cv::GMat());
|
|
}
|
|
|
|
struct LoadPath {
|
|
std::string xml;
|
|
std::string bin;
|
|
};
|
|
|
|
struct ImportPath {
|
|
std::string blob;
|
|
};
|
|
|
|
using ModelPath = cv::util::variant<ImportPath, LoadPath>;
|
|
|
|
struct DummyParams {
|
|
double time;
|
|
OutputDescr output;
|
|
};
|
|
|
|
struct InferParams {
|
|
std::string name;
|
|
ModelPath path;
|
|
std::string device;
|
|
std::vector<std::string> input_layers;
|
|
std::vector<std::string> output_layers;
|
|
std::map<std::string, std::string> config;
|
|
cv::gapi::ie::InferMode mode;
|
|
};
|
|
|
|
class PipelineBuilder {
|
|
public:
|
|
PipelineBuilder();
|
|
void addDummy(const CallParams& call_params,
|
|
const DummyParams& dummy_params);
|
|
|
|
void addInfer(const CallParams& call_params,
|
|
const InferParams& infer_params);
|
|
|
|
void setSource(const std::string& name,
|
|
std::shared_ptr<DummySource> src);
|
|
|
|
void addEdge(const Edge& edge);
|
|
void setMode(PLMode mode);
|
|
void setDumpFilePath(const std::string& dump);
|
|
void setQueueCapacity(const size_t qc);
|
|
void setName(const std::string& name);
|
|
|
|
Pipeline::Ptr build();
|
|
|
|
private:
|
|
template <typename CallT>
|
|
void addCall(const CallParams& call_params,
|
|
CallT&& call);
|
|
|
|
Pipeline::Ptr construct();
|
|
|
|
template <typename K, typename V>
|
|
using M = std::unordered_map<K, V>;
|
|
struct State {
|
|
struct NodeEdges {
|
|
std::vector<Edge> input_edges;
|
|
std::vector<Edge> output_edges;
|
|
};
|
|
|
|
M<std::string, Node::Ptr> calls_map;
|
|
std::vector<Node::Ptr> all_calls;
|
|
|
|
cv::gapi::GNetPackage networks;
|
|
cv::gapi::GKernelPackage kernels;
|
|
cv::GCompileArgs compile_args;
|
|
cv::gapi::wip::IStreamSource::Ptr src;
|
|
PLMode mode = PLMode::STREAMING;
|
|
std::string name;
|
|
};
|
|
|
|
std::unique_ptr<State> m_state;
|
|
};
|
|
|
|
PipelineBuilder::PipelineBuilder() : m_state(new State{}) { };
|
|
|
|
void PipelineBuilder::addDummy(const CallParams& call_params,
|
|
const DummyParams& dummy_params) {
|
|
m_state->kernels.include<DummyCall::GCPUDummy>();
|
|
addCall(call_params,
|
|
DummyCall{dummy_params.time, dummy_params.output});
|
|
}
|
|
|
|
template <typename CallT>
|
|
void PipelineBuilder::addCall(const CallParams& call_params,
|
|
CallT&& call) {
|
|
|
|
size_t num_inputs = call.numInputs();
|
|
size_t num_outputs = call.numOutputs();
|
|
Node::Ptr call_node(new Node{{},{},Node::Kind{CallNode{call_params,
|
|
std::move(call)}}});
|
|
// NB: Create placeholders for inputs.
|
|
call_node->in_nodes.resize(num_inputs);
|
|
// NB: Create outputs with empty data.
|
|
for (size_t i = 0; i < num_outputs; ++i) {
|
|
call_node->out_nodes.emplace_back(new Node{{call_node},
|
|
{},
|
|
Node::Kind{DataNode{}}});
|
|
}
|
|
|
|
auto it = m_state->calls_map.find(call_params.name);
|
|
if (it != m_state->calls_map.end()) {
|
|
throw std::logic_error("Node: " + call_params.name + " already exists!");
|
|
}
|
|
m_state->calls_map.emplace(call_params.name, call_node);
|
|
m_state->all_calls.emplace_back(call_node);
|
|
}
|
|
|
|
void PipelineBuilder::addInfer(const CallParams& call_params,
|
|
const InferParams& infer_params) {
|
|
// NB: No default ctor for Params.
|
|
std::unique_ptr<cv::gapi::ie::Params<cv::gapi::Generic>> pp;
|
|
if (cv::util::holds_alternative<LoadPath>(infer_params.path)) {
|
|
auto load_path = cv::util::get<LoadPath>(infer_params.path);
|
|
pp.reset(new cv::gapi::ie::Params<cv::gapi::Generic>(call_params.name,
|
|
load_path.xml,
|
|
load_path.bin,
|
|
infer_params.device));
|
|
} else {
|
|
GAPI_Assert(cv::util::holds_alternative<ImportPath>(infer_params.path));
|
|
auto import_path = cv::util::get<ImportPath>(infer_params.path);
|
|
pp.reset(new cv::gapi::ie::Params<cv::gapi::Generic>(call_params.name,
|
|
import_path.blob,
|
|
infer_params.device));
|
|
}
|
|
|
|
pp->pluginConfig(infer_params.config);
|
|
pp->cfgInferMode(infer_params.mode);
|
|
m_state->networks += cv::gapi::networks(*pp);
|
|
|
|
addCall(call_params,
|
|
InferCall{call_params.name,
|
|
infer_params.input_layers,
|
|
infer_params.output_layers});
|
|
}
|
|
|
|
void PipelineBuilder::addEdge(const Edge& edge) {
|
|
const auto& src_it = m_state->calls_map.find(edge.src.name);
|
|
if (src_it == m_state->calls_map.end()) {
|
|
throw std::logic_error("Failed to find node: " + edge.src.name);
|
|
}
|
|
auto src_node = src_it->second;
|
|
if (src_node->out_nodes.size() <= edge.src.port) {
|
|
throw std::logic_error("Failed to access node: " + edge.src.name +
|
|
" by out port: " + std::to_string(edge.src.port));
|
|
}
|
|
|
|
auto dst_it = m_state->calls_map.find(edge.dst.name);
|
|
if (dst_it == m_state->calls_map.end()) {
|
|
throw std::logic_error("Failed to find node: " + edge.dst.name);
|
|
}
|
|
auto dst_node = dst_it->second;
|
|
if (dst_node->in_nodes.size() <= edge.dst.port) {
|
|
throw std::logic_error("Failed to access node: " + edge.dst.name +
|
|
" by in port: " + std::to_string(edge.dst.port));
|
|
}
|
|
|
|
auto out_data = src_node->out_nodes[edge.src.port];
|
|
auto& in_data = dst_node->in_nodes[edge.dst.port];
|
|
// NB: in_data != nullptr.
|
|
if (!in_data.expired()) {
|
|
throw std::logic_error("Node: " + edge.dst.name +
|
|
" already connected by in port: " +
|
|
std::to_string(edge.dst.port));
|
|
}
|
|
dst_node->in_nodes[edge.dst.port] = out_data;
|
|
out_data->out_nodes.push_back(dst_node);
|
|
}
|
|
|
|
void PipelineBuilder::setSource(const std::string& name,
|
|
std::shared_ptr<DummySource> src) {
|
|
GAPI_Assert(!m_state->src && "Only single source pipelines are supported!");
|
|
m_state->src = src;
|
|
addCall(CallParams{name, 1u/*call_every_nth*/}, SourceCall{});
|
|
}
|
|
|
|
void PipelineBuilder::setMode(PLMode mode) {
|
|
m_state->mode = mode;
|
|
}
|
|
|
|
void PipelineBuilder::setDumpFilePath(const std::string& dump) {
|
|
m_state->compile_args.emplace_back(cv::graph_dump_path{dump});
|
|
}
|
|
|
|
void PipelineBuilder::setQueueCapacity(const size_t qc) {
|
|
m_state->compile_args.emplace_back(cv::gapi::streaming::queue_capacity{qc});
|
|
}
|
|
|
|
void PipelineBuilder::setName(const std::string& name) {
|
|
m_state->name = name;
|
|
}
|
|
|
|
static bool visit(Node::Ptr node,
|
|
std::vector<Node::Ptr>& sorted,
|
|
std::unordered_map<Node::Ptr, int>& visited) {
|
|
if (!node) {
|
|
throw std::logic_error("Found null node");
|
|
}
|
|
|
|
visited[node] = 1;
|
|
for (auto in : node->in_nodes) {
|
|
auto in_node = in.lock();
|
|
if (visited[in_node] == 0) {
|
|
if (visit(in_node, sorted, visited)) {
|
|
return true;
|
|
}
|
|
} else if (visited[in_node] == 1) {
|
|
return true;
|
|
}
|
|
}
|
|
visited[node] = 2;
|
|
sorted.push_back(node);
|
|
return false;
|
|
}
|
|
|
|
static cv::optional<std::vector<Node::Ptr>>
|
|
toposort(const std::vector<Node::Ptr> nodes) {
|
|
std::vector<Node::Ptr> sorted;
|
|
std::unordered_map<Node::Ptr, int> visited;
|
|
for (auto n : nodes) {
|
|
if (visit(n, sorted, visited)) {
|
|
return cv::optional<std::vector<Node::Ptr>>{};
|
|
}
|
|
}
|
|
return cv::util::make_optional(sorted);
|
|
}
|
|
|
|
Pipeline::Ptr PipelineBuilder::construct() {
|
|
// NB: Unlike G-API, pipeline_builder_tool graph always starts with CALL node
|
|
// (not data) that produce datas, so the call node which doesn't have
|
|
// inputs is considered as "producer" node.
|
|
//
|
|
// Graph always starts with CALL node and ends with DATA node.
|
|
// Graph example: [source] -> (source:0) -> [PP] -> (PP:0)
|
|
//
|
|
// The algorithm is quite simple:
|
|
// 0. Verify that every call input node exists (connected).
|
|
// 1. Sort all nodes by visiting only call nodes,
|
|
// since there is no data nodes that's not connected with any call node,
|
|
// it's guarantee that every node will be visited.
|
|
// 2. Fillter call nodes.
|
|
// 3. Go through every call node.
|
|
// FIXME: Add toposort in case user passed nodes
|
|
// in arbitrary order which is unlikely happened.
|
|
// 4. Extract proto input from every input node
|
|
// 5. Run call and get outputs
|
|
// 6. If call node doesn't have inputs it means that it's "producer" node,
|
|
// so collect all outputs to graph_inputs vector.
|
|
// 7. Assign proto outputs to output data nodes,
|
|
// so the next calls can use them as inputs.
|
|
cv::GProtoArgs graph_inputs;
|
|
cv::GProtoArgs graph_outputs;
|
|
// 0. Verify that every call input node exists (connected).
|
|
for (auto call_node : m_state->all_calls) {
|
|
for (size_t i = 0; i < call_node->in_nodes.size(); ++i) {
|
|
const auto& in_data_node = call_node->in_nodes[i];
|
|
// NB: in_data_node == nullptr.
|
|
if (in_data_node.expired()) {
|
|
const auto& call = cv::util::get<CallNode>(call_node->kind);
|
|
throw std::logic_error(
|
|
"Node: " + call.params.name + " in Pipeline: " + m_state->name +
|
|
" has dangling input by in port: " + std::to_string(i));
|
|
}
|
|
}
|
|
}
|
|
// (0) Sort all nodes;
|
|
auto has_sorted = toposort(m_state->all_calls);
|
|
if (!has_sorted) {
|
|
throw std::logic_error(
|
|
"Pipeline: " + m_state->name + " has cyclic dependencies") ;
|
|
}
|
|
auto& sorted = has_sorted.value();
|
|
// (1). Fillter call nodes.
|
|
std::vector<Node::Ptr> sorted_calls;
|
|
for (auto n : sorted) {
|
|
if (cv::util::holds_alternative<CallNode>(n->kind)) {
|
|
sorted_calls.push_back(n);
|
|
}
|
|
}
|
|
|
|
m_state->kernels.include<SubGraphCall::SubGraphImpl>();
|
|
m_state->compile_args.emplace_back(m_state->networks);
|
|
m_state->compile_args.emplace_back(m_state->kernels);
|
|
|
|
// (2). Go through every call node.
|
|
for (auto call_node : sorted_calls) {
|
|
auto& call = cv::util::get<CallNode>(call_node->kind);
|
|
cv::GProtoArgs outputs;
|
|
cv::GProtoArgs inputs;
|
|
for (size_t i = 0; i < call_node->in_nodes.size(); ++i) {
|
|
auto in_node = call_node->in_nodes.at(i);
|
|
auto in_data = cv::util::get<DataNode>(in_node.lock()->kind);
|
|
if (!in_data.arg.has_value()) {
|
|
throw std::logic_error("data hasn't been provided");
|
|
}
|
|
// (3). Extract proto input from every input node.
|
|
inputs.push_back(in_data.arg.value());
|
|
}
|
|
// NB: If node shouldn't be called on each iterations,
|
|
// it should be wrapped into subgraph which is able to skip calling.
|
|
if (call.params.call_every_nth != 1u) {
|
|
// FIXME: Limitation of the subgraph operation (<GMat(GMat)>).
|
|
// G-API doesn't support dynamic number of inputs/outputs.
|
|
if (inputs.size() > 1u) {
|
|
throw std::logic_error(
|
|
"skip_frame_nth is supported only for single input subgraphs\n"
|
|
"Current subgraph has " + std::to_string(inputs.size()) + " inputs");
|
|
}
|
|
|
|
if (outputs.size() > 1u) {
|
|
throw std::logic_error(
|
|
"skip_frame_nth is supported only for single output subgraphs\n"
|
|
"Current subgraph has " + std::to_string(inputs.size()) + " outputs");
|
|
}
|
|
// FIXME: Should be generalized.
|
|
// Now every subgraph contains only single node
|
|
// which has single input/output.
|
|
GAPI_Assert(cv::util::holds_alternative<cv::GMat>(inputs[0]));
|
|
cv::GProtoArgs subgr_inputs{cv::GProtoArg{cv::GMat()}};
|
|
cv::GProtoArgs subgr_outputs;
|
|
call.run(subgr_inputs, subgr_outputs);
|
|
auto comp = cv::GComputation(cv::GProtoInputArgs{subgr_inputs},
|
|
cv::GProtoOutputArgs{subgr_outputs});
|
|
call = CallNode{CallParams{call.params.name, 1u/*call_every_nth*/},
|
|
SubGraphCall{std::move(comp),
|
|
m_state->compile_args,
|
|
call.params.call_every_nth}};
|
|
}
|
|
// (4). Run call and get outputs.
|
|
call.run(inputs, outputs);
|
|
// (5) If call node doesn't have inputs
|
|
// it means that it's input producer node (Source).
|
|
if (call_node->in_nodes.empty()) {
|
|
for (auto out : outputs) {
|
|
graph_inputs.push_back(out);
|
|
}
|
|
}
|
|
// (6). Assign proto outputs to output data nodes,
|
|
// so the next calls can use them as inputs.
|
|
GAPI_Assert(outputs.size() == call_node->out_nodes.size());
|
|
for (size_t i = 0; i < outputs.size(); ++i) {
|
|
auto out_node = call_node->out_nodes[i];
|
|
auto& out_data = cv::util::get<DataNode>(out_node->kind);
|
|
out_data.arg = cv::util::make_optional(outputs[i]);
|
|
if (out_node->out_nodes.empty()) {
|
|
graph_outputs.push_back(out_data.arg.value());
|
|
}
|
|
}
|
|
}
|
|
|
|
if (m_state->mode == PLMode::STREAMING) {
|
|
GAPI_Assert(graph_inputs.size() == 1);
|
|
GAPI_Assert(cv::util::holds_alternative<cv::GMat>(graph_inputs[0]));
|
|
// FIXME: Handle GFrame when NV12 comes.
|
|
const auto& graph_input = cv::util::get<cv::GMat>(graph_inputs[0]);
|
|
// NB: In case streaming mode need to expose timestamp in order to
|
|
// calculate performance metrics.
|
|
graph_outputs.emplace_back(
|
|
cv::gapi::streaming::timestamp(graph_input).strip());
|
|
|
|
return std::make_shared<StreamingPipeline>(std::move(m_state->name),
|
|
cv::GComputation(
|
|
cv::GProtoInputArgs{graph_inputs},
|
|
cv::GProtoOutputArgs{graph_outputs}),
|
|
std::move(m_state->src),
|
|
std::move(m_state->compile_args),
|
|
graph_outputs.size());
|
|
}
|
|
GAPI_Assert(m_state->mode == PLMode::REGULAR);
|
|
return std::make_shared<RegularPipeline>(std::move(m_state->name),
|
|
cv::GComputation(
|
|
cv::GProtoInputArgs{graph_inputs},
|
|
cv::GProtoOutputArgs{graph_outputs}),
|
|
std::move(m_state->src),
|
|
std::move(m_state->compile_args),
|
|
graph_outputs.size());
|
|
}
|
|
|
|
Pipeline::Ptr PipelineBuilder::build() {
|
|
auto pipeline = construct();
|
|
m_state.reset(new State{});
|
|
return pipeline;
|
|
}
|
|
|
|
#endif // OPENCV_GAPI_PIPELINE_MODELING_TOOL_PIPELINE_BUILDER_HPP
|