mirror of
https://github.com/opencv/opencv.git
synced 2025-01-07 11:41:48 +08:00
a371bdac9d
G-API: Refine Semantic Segmentation Demo #23766 ### Overview * Supported demo working with camera id (e.g `--input=0`) * Supported 3d output segmentation models (e.g `deeplabv3`) * Supported `desync` execution * Supported higher camera resolution * Changed the color map to pascal voc (https://cloud.githubusercontent.com/assets/4503207/17803328/1006ca80-65f6-11e6-9ff6-36b7ef5b9ac6.png) ### Pull Request Readiness Checklist See details at https://github.com/opencv/opencv/wiki/How_to_contribute#making-a-good-pull-request - [ ] I agree to contribute to the project under Apache 2 License. - [ ] To the best of my knowledge, the proposed patch is not based on a code under GPL or another license that is incompatible with OpenCV - [ ] The PR is proposed to the proper branch - [ ] There is a reference to the original bug report and related work - [ ] There is accuracy test, performance test and test data in opencv_extra repository, if applicable Patch to opencv_extra has the same branch name. - [ ] The feature is well documented and sample code can be built with the project CMake
285 lines
9.2 KiB
C++
285 lines
9.2 KiB
C++
#include <opencv2/imgproc.hpp>
|
|
#include <opencv2/gapi/infer/ie.hpp>
|
|
#include <opencv2/gapi/cpu/gcpukernel.hpp>
|
|
#include <opencv2/gapi/streaming/cap.hpp>
|
|
#include <opencv2/gapi/operators.hpp>
|
|
#include <opencv2/highgui.hpp>
|
|
|
|
#include <opencv2/gapi/streaming/desync.hpp>
|
|
#include <opencv2/gapi/streaming/format.hpp>
|
|
|
|
#include <iomanip>
|
|
|
|
const std::string keys =
|
|
"{ h help | | Print this help message }"
|
|
"{ desync | false | Desynchronize inference }"
|
|
"{ input | | Path to the input video file }"
|
|
"{ output | | Path to the output video file }"
|
|
"{ ssm | semantic-segmentation-adas-0001.xml | Path to OpenVINO IE semantic segmentation model (.xml) }";
|
|
|
|
// 20 colors for 20 classes of semantic-segmentation-adas-0001
|
|
static std::vector<cv::Vec3b> colors = {
|
|
{ 0, 0, 0 },
|
|
{ 0, 0, 128 },
|
|
{ 0, 128, 0 },
|
|
{ 0, 128, 128 },
|
|
{ 128, 0, 0 },
|
|
{ 128, 0, 128 },
|
|
{ 128, 128, 0 },
|
|
{ 128, 128, 128 },
|
|
{ 0, 0, 64 },
|
|
{ 0, 0, 192 },
|
|
{ 0, 128, 64 },
|
|
{ 0, 128, 192 },
|
|
{ 128, 0, 64 },
|
|
{ 128, 0, 192 },
|
|
{ 128, 128, 64 },
|
|
{ 128, 128, 192 },
|
|
{ 0, 64, 0 },
|
|
{ 0, 64, 128 },
|
|
{ 0, 192, 0 },
|
|
{ 0, 192, 128 },
|
|
{ 128, 64, 0 }
|
|
};
|
|
|
|
namespace {
|
|
std::string get_weights_path(const std::string &model_path) {
|
|
const auto EXT_LEN = 4u;
|
|
const auto sz = model_path.size();
|
|
CV_Assert(sz > EXT_LEN);
|
|
|
|
auto ext = model_path.substr(sz - EXT_LEN);
|
|
std::transform(ext.begin(), ext.end(), ext.begin(), [](unsigned char c){
|
|
return static_cast<unsigned char>(std::tolower(c));
|
|
});
|
|
CV_Assert(ext == ".xml");
|
|
return model_path.substr(0u, sz - EXT_LEN) + ".bin";
|
|
}
|
|
|
|
bool isNumber(const std::string &str) {
|
|
return !str.empty() && std::all_of(str.begin(), str.end(),
|
|
[](unsigned char ch) { return std::isdigit(ch); });
|
|
}
|
|
|
|
std::string toStr(double value) {
|
|
std::stringstream ss;
|
|
ss << std::fixed << std::setprecision(1) << value;
|
|
return ss.str();
|
|
}
|
|
|
|
void classesToColors(const cv::Mat &out_blob,
|
|
cv::Mat &mask_img) {
|
|
const int H = out_blob.size[0];
|
|
const int W = out_blob.size[1];
|
|
|
|
mask_img.create(H, W, CV_8UC3);
|
|
GAPI_Assert(out_blob.type() == CV_8UC1);
|
|
const uint8_t* const classes = out_blob.ptr<uint8_t>();
|
|
|
|
for (int rowId = 0; rowId < H; ++rowId) {
|
|
for (int colId = 0; colId < W; ++colId) {
|
|
uint8_t class_id = classes[rowId * W + colId];
|
|
mask_img.at<cv::Vec3b>(rowId, colId) =
|
|
class_id < colors.size()
|
|
? colors[class_id]
|
|
: cv::Vec3b{0, 0, 0}; // NB: sample supports 20 classes
|
|
}
|
|
}
|
|
}
|
|
|
|
void probsToClasses(const cv::Mat& probs, cv::Mat& classes) {
|
|
const int C = probs.size[1];
|
|
const int H = probs.size[2];
|
|
const int W = probs.size[3];
|
|
|
|
classes.create(H, W, CV_8UC1);
|
|
GAPI_Assert(probs.depth() == CV_32F);
|
|
float* out_p = reinterpret_cast<float*>(probs.data);
|
|
uint8_t* classes_p = reinterpret_cast<uint8_t*>(classes.data);
|
|
|
|
for (int h = 0; h < H; ++h) {
|
|
for (int w = 0; w < W; ++w) {
|
|
double max = 0;
|
|
int class_id = 0;
|
|
for (int c = 0; c < C; ++c) {
|
|
int idx = c * H * W + h * W + w;
|
|
if (out_p[idx] > max) {
|
|
max = out_p[idx];
|
|
class_id = c;
|
|
}
|
|
}
|
|
classes_p[h * W + w] = static_cast<uint8_t>(class_id);
|
|
}
|
|
}
|
|
}
|
|
|
|
} // anonymous namespace
|
|
|
|
namespace vis {
|
|
|
|
static void putText(cv::Mat& mat, const cv::Point &position, const std::string &message) {
|
|
auto fontFace = cv::FONT_HERSHEY_COMPLEX;
|
|
int thickness = 2;
|
|
cv::Scalar color = {200, 10, 10};
|
|
double fontScale = 0.65;
|
|
|
|
cv::putText(mat, message, position, fontFace,
|
|
fontScale, cv::Scalar(255, 255, 255), thickness + 1);
|
|
cv::putText(mat, message, position, fontFace, fontScale, color, thickness);
|
|
}
|
|
|
|
static void drawResults(cv::Mat &img, const cv::Mat &color_mask) {
|
|
img = img / 2 + color_mask / 2;
|
|
}
|
|
|
|
} // namespace vis
|
|
|
|
namespace custom {
|
|
G_API_OP(PostProcessing, <cv::GMat(cv::GMat, cv::GMat)>, "sample.custom.post_processing") {
|
|
static cv::GMatDesc outMeta(const cv::GMatDesc &in, const cv::GMatDesc &) {
|
|
return in;
|
|
}
|
|
};
|
|
|
|
GAPI_OCV_KERNEL(OCVPostProcessing, PostProcessing) {
|
|
static void run(const cv::Mat &in, const cv::Mat &out_blob, cv::Mat &out) {
|
|
int C = -1, H = -1, W = -1;
|
|
if (out_blob.size.dims() == 4u) {
|
|
C = 1; H = 2, W = 3;
|
|
} else if (out_blob.size.dims() == 3u) {
|
|
C = 0; H = 1, W = 2;
|
|
} else {
|
|
throw std::logic_error(
|
|
"Number of dimmensions for model output must be 3 or 4!");
|
|
}
|
|
cv::Mat classes;
|
|
// NB: If output has more than single plane, it contains probabilities
|
|
// otherwise class id.
|
|
if (out_blob.size[C] > 1) {
|
|
probsToClasses(out_blob, classes);
|
|
} else {
|
|
if (out_blob.depth() != CV_32S) {
|
|
throw std::logic_error(
|
|
"Single channel output must have integer precision!");
|
|
}
|
|
cv::Mat view(out_blob.size[H], // cols
|
|
out_blob.size[W], // rows
|
|
CV_32SC1,
|
|
out_blob.data);
|
|
view.convertTo(classes, CV_8UC1);
|
|
}
|
|
cv::Mat mask_img;
|
|
classesToColors(classes, mask_img);
|
|
cv::resize(mask_img, out, in.size(), 0, 0, cv::INTER_NEAREST);
|
|
}
|
|
};
|
|
} // namespace custom
|
|
|
|
int main(int argc, char *argv[]) {
|
|
cv::CommandLineParser cmd(argc, argv, keys);
|
|
if (cmd.has("help")) {
|
|
cmd.printMessage();
|
|
return 0;
|
|
}
|
|
|
|
// Prepare parameters first
|
|
const std::string input = cmd.get<std::string>("input");
|
|
const std::string output = cmd.get<std::string>("output");
|
|
const auto model_path = cmd.get<std::string>("ssm");
|
|
const bool desync = cmd.get<bool>("desync");
|
|
const auto weights_path = get_weights_path(model_path);
|
|
const auto device = "CPU";
|
|
G_API_NET(SemSegmNet, <cv::GMat(cv::GMat)>, "semantic-segmentation");
|
|
const auto net = cv::gapi::ie::Params<SemSegmNet> {
|
|
model_path, weights_path, device
|
|
};
|
|
const auto kernels = cv::gapi::kernels<custom::OCVPostProcessing>();
|
|
const auto networks = cv::gapi::networks(net);
|
|
|
|
// Now build the graph
|
|
cv::GMat in;
|
|
cv::GMat bgr = cv::gapi::copy(in);
|
|
cv::GMat frame = desync ? cv::gapi::streaming::desync(bgr) : bgr;
|
|
cv::GMat out_blob = cv::gapi::infer<SemSegmNet>(frame);
|
|
cv::GMat out = custom::PostProcessing::on(frame, out_blob);
|
|
|
|
cv::GStreamingCompiled pipeline = cv::GComputation(cv::GIn(in), cv::GOut(bgr, out))
|
|
.compileStreaming(cv::compile_args(kernels, networks,
|
|
cv::gapi::streaming::queue_capacity{1}));
|
|
|
|
std::shared_ptr<cv::gapi::wip::GCaptureSource> source;
|
|
if (isNumber(input)) {
|
|
source = std::make_shared<cv::gapi::wip::GCaptureSource>(
|
|
std::stoi(input),
|
|
std::map<int, double> {
|
|
{cv::CAP_PROP_FRAME_WIDTH, 1280},
|
|
{cv::CAP_PROP_FRAME_HEIGHT, 720},
|
|
{cv::CAP_PROP_BUFFERSIZE, 1},
|
|
{cv::CAP_PROP_AUTOFOCUS, true}
|
|
}
|
|
);
|
|
} else {
|
|
source = std::make_shared<cv::gapi::wip::GCaptureSource>(input);
|
|
}
|
|
auto inputs = cv::gin(
|
|
static_cast<cv::gapi::wip::IStreamSource::Ptr>(source));
|
|
|
|
// The execution part
|
|
pipeline.setSource(std::move(inputs));
|
|
|
|
cv::TickMeter tm;
|
|
cv::VideoWriter writer;
|
|
|
|
cv::util::optional<cv::Mat> color_mask;
|
|
cv::util::optional<cv::Mat> image;
|
|
cv::Mat last_image;
|
|
cv::Mat last_color_mask;
|
|
|
|
pipeline.start();
|
|
tm.start();
|
|
|
|
std::size_t frames = 0u;
|
|
std::size_t masks = 0u;
|
|
while (pipeline.pull(cv::gout(image, color_mask))) {
|
|
if (image.has_value()) {
|
|
++frames;
|
|
last_image = std::move(*image);
|
|
}
|
|
|
|
if (color_mask.has_value()) {
|
|
++masks;
|
|
last_color_mask = std::move(*color_mask);
|
|
}
|
|
|
|
if (!last_image.empty() && !last_color_mask.empty()) {
|
|
tm.stop();
|
|
|
|
std::string stream_fps = "Stream FPS: " + toStr(frames / tm.getTimeSec());
|
|
std::string inference_fps = "Inference FPS: " + toStr(masks / tm.getTimeSec());
|
|
|
|
cv::Mat tmp = last_image.clone();
|
|
|
|
vis::drawResults(tmp, last_color_mask);
|
|
vis::putText(tmp, {10, 22}, stream_fps);
|
|
vis::putText(tmp, {10, 22 + 30}, inference_fps);
|
|
|
|
cv::imshow("Out", tmp);
|
|
cv::waitKey(1);
|
|
if (!output.empty()) {
|
|
if (!writer.isOpened()) {
|
|
const auto sz = cv::Size{tmp.cols, tmp.rows};
|
|
writer.open(output, cv::VideoWriter::fourcc('M','J','P','G'), 25.0, sz);
|
|
CV_Assert(writer.isOpened());
|
|
}
|
|
writer << tmp;
|
|
}
|
|
|
|
tm.start();
|
|
}
|
|
}
|
|
tm.stop();
|
|
std::cout << "Processed " << frames << " frames" << " ("
|
|
<< frames / tm.getTimeSec()<< " FPS)" << std::endl;
|
|
return 0;
|
|
}
|