mirror of
https://github.com/opencv/opencv.git
synced 2025-01-07 11:41:48 +08:00
642 lines
22 KiB
C++
642 lines
22 KiB
C++
/*M///////////////////////////////////////////////////////////////////////////////////////
|
|
//
|
|
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
|
|
//
|
|
// By downloading, copying, installing or using the software you agree to this license.
|
|
// If you do not agree to this license, do not download, install,
|
|
// copy or use the software.
|
|
//
|
|
//
|
|
// Intel License Agreement
|
|
// For Open Source Computer Vision Library
|
|
//
|
|
// Copyright (C) 2000, Intel Corporation, all rights reserved.
|
|
// Third party copyrights are property of their respective owners.
|
|
//
|
|
// Redistribution and use in source and binary forms, with or without modification,
|
|
// are permitted provided that the following conditions are met:
|
|
//
|
|
// * Redistribution's of source code must retain the above copyright notice,
|
|
// this list of conditions and the following disclaimer.
|
|
//
|
|
// * Redistribution's in binary form must reproduce the above copyright notice,
|
|
// this list of conditions and the following disclaimer in the documentation
|
|
// and/or other materials provided with the distribution.
|
|
//
|
|
// * The name of Intel Corporation may not be used to endorse or promote products
|
|
// derived from this software without specific prior written permission.
|
|
//
|
|
// This software is provided by the copyright holders and contributors "as is" and
|
|
// any express or implied warranties, including, but not limited to, the implied
|
|
// warranties of merchantability and fitness for a particular purpose are disclaimed.
|
|
// In no event shall the Intel Corporation or contributors be liable for any direct,
|
|
// indirect, incidental, special, exemplary, or consequential damages
|
|
// (including, but not limited to, procurement of substitute goods or services;
|
|
// loss of use, data, or profits; or business interruption) however caused
|
|
// and on any theory of liability, whether in contract, strict liability,
|
|
// or tort (including negligence or otherwise) arising in any way out of
|
|
// the use of this software, even if advised of the possibility of such damage.
|
|
//
|
|
//M*/
|
|
|
|
#include "precomp.hpp"
|
|
#if defined (HAVE_IPP) && (IPP_VERSION_MAJOR >= 7)
|
|
static IppStatus sts = ippInit();
|
|
#endif
|
|
/****************************************************************************************/
|
|
|
|
/* lightweight convolution with 3x3 kernel */
|
|
void icvSepConvSmall3_32f( float* src, int src_step, float* dst, int dst_step,
|
|
CvSize src_size, const float* kx, const float* ky, float* buffer )
|
|
{
|
|
int dst_width, buffer_step = 0;
|
|
int x, y;
|
|
|
|
assert( src && dst && src_size.width > 2 && src_size.height > 2 &&
|
|
(src_step & 3) == 0 && (dst_step & 3) == 0 &&
|
|
(kx || ky) && (buffer || !kx || !ky));
|
|
|
|
src_step /= sizeof(src[0]);
|
|
dst_step /= sizeof(dst[0]);
|
|
|
|
dst_width = src_size.width - 2;
|
|
|
|
if( !kx )
|
|
{
|
|
/* set vars, so that vertical convolution
|
|
will write results into destination ROI and
|
|
horizontal convolution won't run */
|
|
src_size.width = dst_width;
|
|
buffer_step = dst_step;
|
|
buffer = dst;
|
|
dst_width = 0;
|
|
}
|
|
|
|
assert( src_step >= src_size.width && dst_step >= dst_width );
|
|
|
|
src_size.height -= 3;
|
|
if( !ky )
|
|
{
|
|
/* set vars, so that vertical convolution won't run and
|
|
horizontal convolution will write results into destination ROI */
|
|
src_size.height += 3;
|
|
buffer_step = src_step;
|
|
buffer = src;
|
|
src_size.width = 0;
|
|
}
|
|
|
|
for( y = 0; y <= src_size.height; y++, src += src_step,
|
|
dst += dst_step,
|
|
buffer += buffer_step )
|
|
{
|
|
float* src2 = src + src_step;
|
|
float* src3 = src + src_step*2;
|
|
for( x = 0; x < src_size.width; x++ )
|
|
{
|
|
buffer[x] = (float)(ky[0]*src[x] + ky[1]*src2[x] + ky[2]*src3[x]);
|
|
}
|
|
|
|
for( x = 0; x < dst_width; x++ )
|
|
{
|
|
dst[x] = (float)(kx[0]*buffer[x] + kx[1]*buffer[x+1] + kx[2]*buffer[x+2]);
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
/****************************************************************************************\
|
|
Sobel & Scharr Derivative Filters
|
|
\****************************************************************************************/
|
|
|
|
namespace cv
|
|
{
|
|
|
|
static void getScharrKernels( OutputArray _kx, OutputArray _ky,
|
|
int dx, int dy, bool normalize, int ktype )
|
|
{
|
|
const int ksize = 3;
|
|
|
|
CV_Assert( ktype == CV_32F || ktype == CV_64F );
|
|
_kx.create(ksize, 1, ktype, -1, true);
|
|
_ky.create(ksize, 1, ktype, -1, true);
|
|
Mat kx = _kx.getMat();
|
|
Mat ky = _ky.getMat();
|
|
|
|
CV_Assert( dx >= 0 && dy >= 0 && dx+dy == 1 );
|
|
|
|
for( int k = 0; k < 2; k++ )
|
|
{
|
|
Mat* kernel = k == 0 ? &kx : &ky;
|
|
int order = k == 0 ? dx : dy;
|
|
int kerI[3];
|
|
|
|
if( order == 0 )
|
|
kerI[0] = 3, kerI[1] = 10, kerI[2] = 3;
|
|
else if( order == 1 )
|
|
kerI[0] = -1, kerI[1] = 0, kerI[2] = 1;
|
|
|
|
Mat temp(kernel->rows, kernel->cols, CV_32S, &kerI[0]);
|
|
double scale = !normalize || order == 1 ? 1. : 1./32;
|
|
temp.convertTo(*kernel, ktype, scale);
|
|
}
|
|
}
|
|
|
|
|
|
static void getSobelKernels( OutputArray _kx, OutputArray _ky,
|
|
int dx, int dy, int _ksize, bool normalize, int ktype )
|
|
{
|
|
int i, j, ksizeX = _ksize, ksizeY = _ksize;
|
|
if( ksizeX == 1 && dx > 0 )
|
|
ksizeX = 3;
|
|
if( ksizeY == 1 && dy > 0 )
|
|
ksizeY = 3;
|
|
|
|
CV_Assert( ktype == CV_32F || ktype == CV_64F );
|
|
|
|
_kx.create(ksizeX, 1, ktype, -1, true);
|
|
_ky.create(ksizeY, 1, ktype, -1, true);
|
|
Mat kx = _kx.getMat();
|
|
Mat ky = _ky.getMat();
|
|
|
|
if( _ksize % 2 == 0 || _ksize > 31 )
|
|
CV_Error( CV_StsOutOfRange, "The kernel size must be odd and not larger than 31" );
|
|
vector<int> kerI(std::max(ksizeX, ksizeY) + 1);
|
|
|
|
CV_Assert( dx >= 0 && dy >= 0 && dx+dy > 0 );
|
|
|
|
for( int k = 0; k < 2; k++ )
|
|
{
|
|
Mat* kernel = k == 0 ? &kx : &ky;
|
|
int order = k == 0 ? dx : dy;
|
|
int ksize = k == 0 ? ksizeX : ksizeY;
|
|
|
|
CV_Assert( ksize > order );
|
|
|
|
if( ksize == 1 )
|
|
kerI[0] = 1;
|
|
else if( ksize == 3 )
|
|
{
|
|
if( order == 0 )
|
|
kerI[0] = 1, kerI[1] = 2, kerI[2] = 1;
|
|
else if( order == 1 )
|
|
kerI[0] = -1, kerI[1] = 0, kerI[2] = 1;
|
|
else
|
|
kerI[0] = 1, kerI[1] = -2, kerI[2] = 1;
|
|
}
|
|
else
|
|
{
|
|
int oldval, newval;
|
|
kerI[0] = 1;
|
|
for( i = 0; i < ksize; i++ )
|
|
kerI[i+1] = 0;
|
|
|
|
for( i = 0; i < ksize - order - 1; i++ )
|
|
{
|
|
oldval = kerI[0];
|
|
for( j = 1; j <= ksize; j++ )
|
|
{
|
|
newval = kerI[j]+kerI[j-1];
|
|
kerI[j-1] = oldval;
|
|
oldval = newval;
|
|
}
|
|
}
|
|
|
|
for( i = 0; i < order; i++ )
|
|
{
|
|
oldval = -kerI[0];
|
|
for( j = 1; j <= ksize; j++ )
|
|
{
|
|
newval = kerI[j-1] - kerI[j];
|
|
kerI[j-1] = oldval;
|
|
oldval = newval;
|
|
}
|
|
}
|
|
}
|
|
|
|
Mat temp(kernel->rows, kernel->cols, CV_32S, &kerI[0]);
|
|
double scale = !normalize ? 1. : 1./(1 << (ksize-order-1));
|
|
temp.convertTo(*kernel, ktype, scale);
|
|
}
|
|
}
|
|
|
|
}
|
|
|
|
void cv::getDerivKernels( OutputArray kx, OutputArray ky, int dx, int dy,
|
|
int ksize, bool normalize, int ktype )
|
|
{
|
|
if( ksize <= 0 )
|
|
getScharrKernels( kx, ky, dx, dy, normalize, ktype );
|
|
else
|
|
getSobelKernels( kx, ky, dx, dy, ksize, normalize, ktype );
|
|
}
|
|
|
|
|
|
cv::Ptr<cv::FilterEngine> cv::createDerivFilter(int srcType, int dstType,
|
|
int dx, int dy, int ksize, int borderType )
|
|
{
|
|
Mat kx, ky;
|
|
getDerivKernels( kx, ky, dx, dy, ksize, false, CV_32F );
|
|
return createSeparableLinearFilter(srcType, dstType,
|
|
kx, ky, Point(-1,-1), 0, borderType );
|
|
}
|
|
|
|
#if defined (HAVE_IPP) && (IPP_VERSION_MAJOR >= 7)
|
|
|
|
namespace cv
|
|
{
|
|
|
|
static bool IPPDerivScharr(const Mat& src, Mat& dst, int ddepth, int dx, int dy, double scale)
|
|
{
|
|
int bufSize = 0;
|
|
cv::AutoBuffer<char> buffer;
|
|
IppiSize roi = ippiSize(src.cols, src.rows);
|
|
|
|
if( ddepth < 0 )
|
|
ddepth = src.depth();
|
|
|
|
dst.create( src.size(), CV_MAKETYPE(ddepth, src.channels()) );
|
|
|
|
switch(src.type())
|
|
{
|
|
case CV_8U:
|
|
{
|
|
if(scale != 1)
|
|
return false;
|
|
|
|
switch(dst.type())
|
|
{
|
|
case CV_16S:
|
|
{
|
|
if((dx == 1) && (dy == 0))
|
|
{
|
|
ippiFilterScharrVertGetBufferSize_8u16s_C1R(roi,&bufSize);
|
|
buffer.allocate(bufSize);
|
|
|
|
ippiFilterScharrVertBorder_8u16s_C1R((const Ipp8u*)src.data, src.step,
|
|
(Ipp16s*)dst.data, dst.step, roi, ippBorderRepl, 0, (Ipp8u*)(char*)buffer);
|
|
|
|
return true;
|
|
}
|
|
|
|
if((dx == 0) && (dy == 1))
|
|
{
|
|
ippiFilterScharrHorizGetBufferSize_8u16s_C1R(roi,&bufSize);
|
|
buffer.allocate(bufSize);
|
|
|
|
ippiFilterScharrHorizBorder_8u16s_C1R((const Ipp8u*)src.data, src.step,
|
|
(Ipp16s*)dst.data, dst.step, roi, ippBorderRepl, 0, (Ipp8u*)(char*)buffer);
|
|
|
|
return true;
|
|
}
|
|
}
|
|
|
|
default:
|
|
return false;
|
|
}
|
|
}
|
|
|
|
case CV_32F:
|
|
{
|
|
switch(dst.type())
|
|
{
|
|
case CV_32F:
|
|
if((dx == 1) && (dy == 0))
|
|
{
|
|
ippiFilterScharrVertGetBufferSize_32f_C1R(ippiSize(src.cols, src.rows),&bufSize);
|
|
buffer.allocate(bufSize);
|
|
|
|
ippiFilterScharrVertBorder_32f_C1R((const Ipp32f*)src.data, src.step,
|
|
(Ipp32f*)dst.data, dst.step, ippiSize(src.cols, src.rows),
|
|
ippBorderRepl, 0, (Ipp8u*)(char*)buffer);
|
|
if(scale != 1)
|
|
/* IPP is fast, so MulC produce very little perf degradation */
|
|
ippiMulC_32f_C1IR((Ipp32f)scale,(Ipp32f*)dst.data,dst.step,ippiSize(dst.cols*dst.channels(),dst.rows));
|
|
|
|
return true;
|
|
}
|
|
|
|
if((dx == 0) && (dy == 1))
|
|
{
|
|
ippiFilterScharrHorizGetBufferSize_32f_C1R(ippiSize(src.cols, src.rows),&bufSize);
|
|
buffer.allocate(bufSize);
|
|
|
|
ippiFilterScharrHorizBorder_32f_C1R((const Ipp32f*)src.data, src.step,
|
|
(Ipp32f*)dst.data, dst.step, ippiSize(src.cols, src.rows),
|
|
ippBorderRepl, 0, (Ipp8u*)(char*)buffer);
|
|
if(scale != 1)
|
|
ippiMulC_32f_C1IR((Ipp32f)scale,(Ipp32f *)dst.data,dst.step,ippiSize(dst.cols*dst.channels(),dst.rows));
|
|
|
|
return true;
|
|
}
|
|
|
|
default:
|
|
return false;
|
|
}
|
|
}
|
|
|
|
default:
|
|
return false;
|
|
}
|
|
}
|
|
|
|
|
|
static bool IPPDeriv(const Mat& src, Mat& dst, int ddepth, int dx, int dy, int ksize, double scale)
|
|
{
|
|
int bufSize = 0;
|
|
cv::AutoBuffer<char> buffer;
|
|
|
|
if(ksize == 3 || ksize == 5)
|
|
{
|
|
if( ddepth < 0 )
|
|
ddepth = src.depth();
|
|
|
|
if(src.type() == CV_8U && dst.type() == CV_16S && scale == 1)
|
|
{
|
|
if((dx == 1) && (dy == 0))
|
|
{
|
|
ippiFilterSobelNegVertGetBufferSize_8u16s_C1R(ippiSize(src.cols, src.rows), (IppiMaskSize)(ksize*10+ksize),&bufSize);
|
|
buffer.allocate(bufSize);
|
|
|
|
ippiFilterSobelNegVertBorder_8u16s_C1R((const Ipp8u*)src.data, src.step,
|
|
(Ipp16s*)dst.data, dst.step, ippiSize(src.cols, src.rows), (IppiMaskSize)(ksize*10+ksize),
|
|
ippBorderRepl, 0, (Ipp8u*)(char*)buffer);
|
|
return true;
|
|
}
|
|
|
|
if((dx == 0) && (dy == 1))
|
|
{
|
|
ippiFilterSobelHorizGetBufferSize_8u16s_C1R(ippiSize(src.cols, src.rows), (IppiMaskSize)(ksize*10+ksize),&bufSize);
|
|
buffer.allocate(bufSize);
|
|
|
|
ippiFilterSobelHorizBorder_8u16s_C1R((const Ipp8u*)src.data, src.step,
|
|
(Ipp16s*)dst.data, dst.step, ippiSize(src.cols, src.rows), (IppiMaskSize)(ksize*10+ksize),
|
|
ippBorderRepl, 0, (Ipp8u*)(char*)buffer);
|
|
|
|
return true;
|
|
}
|
|
|
|
if((dx == 2) && (dy == 0))
|
|
{
|
|
ippiFilterSobelVertSecondGetBufferSize_8u16s_C1R(ippiSize(src.cols, src.rows), (IppiMaskSize)(ksize*10+ksize),&bufSize);
|
|
buffer.allocate(bufSize);
|
|
|
|
ippiFilterSobelVertSecondBorder_8u16s_C1R((const Ipp8u*)src.data, src.step,
|
|
(Ipp16s*)dst.data, dst.step, ippiSize(src.cols, src.rows), (IppiMaskSize)(ksize*10+ksize),
|
|
ippBorderRepl, 0, (Ipp8u*)(char*)buffer);
|
|
|
|
return true;
|
|
}
|
|
|
|
if((dx == 0) && (dy == 2))
|
|
{
|
|
ippiFilterSobelHorizSecondGetBufferSize_8u16s_C1R(ippiSize(src.cols, src.rows), (IppiMaskSize)(ksize*10+ksize),&bufSize);
|
|
buffer.allocate(bufSize);
|
|
|
|
ippiFilterSobelHorizSecondBorder_8u16s_C1R((const Ipp8u*)src.data, src.step,
|
|
(Ipp16s*)dst.data, dst.step, ippiSize(src.cols, src.rows), (IppiMaskSize)(ksize*10+ksize),
|
|
ippBorderRepl, 0, (Ipp8u*)(char*)buffer);
|
|
|
|
return true;
|
|
}
|
|
}
|
|
|
|
if(src.type() == CV_32F && dst.type() == CV_32F)
|
|
{
|
|
if((dx == 1) && (dy == 0))
|
|
{
|
|
ippiFilterSobelNegVertGetBufferSize_32f_C1R(ippiSize(src.cols, src.rows), (IppiMaskSize)(ksize*10+ksize),&bufSize);
|
|
buffer.allocate(bufSize);
|
|
|
|
ippiFilterSobelNegVertBorder_32f_C1R((const Ipp32f*)src.data, src.step,
|
|
(Ipp32f*)dst.data, dst.step, ippiSize(src.cols, src.rows), (IppiMaskSize)(ksize*10+ksize),
|
|
ippBorderRepl, 0, (Ipp8u*)(char*)buffer);
|
|
if(scale != 1)
|
|
ippiMulC_32f_C1IR((Ipp32f)scale,(Ipp32f *)dst.data,dst.step,ippiSize(dst.cols*dst.channels(),dst.rows));
|
|
|
|
return true;
|
|
}
|
|
|
|
if((dx == 0) && (dy == 1))
|
|
{
|
|
ippiFilterSobelHorizGetBufferSize_32f_C1R(ippiSize(src.cols, src.rows), (IppiMaskSize)(ksize*10+ksize),&bufSize);
|
|
buffer.allocate(bufSize);
|
|
|
|
ippiFilterSobelHorizBorder_32f_C1R((const Ipp32f*)src.data, src.step,
|
|
(Ipp32f*)dst.data, dst.step, ippiSize(src.cols, src.rows), (IppiMaskSize)(ksize*10+ksize),
|
|
ippBorderRepl, 0, (Ipp8u*)(char*)buffer);
|
|
if(scale != 1)
|
|
ippiMulC_32f_C1IR((Ipp32f)scale,(Ipp32f *)dst.data,dst.step,ippiSize(dst.cols*dst.channels(),dst.rows));
|
|
|
|
return true;
|
|
}
|
|
|
|
if((dx == 2) && (dy == 0))
|
|
{
|
|
ippiFilterSobelVertSecondGetBufferSize_32f_C1R(ippiSize(src.cols, src.rows), (IppiMaskSize)(ksize*10+ksize),&bufSize);
|
|
buffer.allocate(bufSize);
|
|
|
|
ippiFilterSobelVertSecondBorder_32f_C1R((const Ipp32f*)src.data, src.step,
|
|
(Ipp32f*)dst.data, dst.step, ippiSize(src.cols, src.rows), (IppiMaskSize)(ksize*10+ksize),
|
|
ippBorderRepl, 0, (Ipp8u*)(char*)buffer);
|
|
if(scale != 1)
|
|
ippiMulC_32f_C1IR((Ipp32f)scale,(Ipp32f *)dst.data,dst.step,ippiSize(dst.cols*dst.channels(),dst.rows));
|
|
|
|
return true;
|
|
}
|
|
|
|
if((dx == 0) && (dy == 2))
|
|
{
|
|
ippiFilterSobelHorizSecondGetBufferSize_32f_C1R(ippiSize(src.cols, src.rows), (IppiMaskSize)(ksize*10+ksize),&bufSize);
|
|
buffer.allocate(bufSize);
|
|
|
|
ippiFilterSobelHorizSecondBorder_32f_C1R((const Ipp32f*)src.data, src.step,
|
|
(Ipp32f*)dst.data, dst.step, ippiSize(src.cols, src.rows), (IppiMaskSize)(ksize*10+ksize),
|
|
ippBorderRepl, 0, (Ipp8u*)(char*)buffer);
|
|
if(scale != 1)
|
|
ippiMulC_32f_C1IR((Ipp32f)scale,(Ipp32f *)dst.data,dst.step,ippiSize(dst.cols*dst.channels(),dst.rows));
|
|
|
|
return true;
|
|
}
|
|
}
|
|
}
|
|
|
|
if(ksize <= 0)
|
|
return IPPDerivScharr(src, dst, ddepth, dx, dy, scale);
|
|
|
|
return false;
|
|
}
|
|
|
|
}
|
|
|
|
#endif
|
|
|
|
void cv::Sobel( InputArray _src, OutputArray _dst, int ddepth, int dx, int dy,
|
|
int ksize, double scale, double delta, int borderType )
|
|
{
|
|
Mat src = _src.getMat();
|
|
if (ddepth < 0)
|
|
ddepth = src.depth();
|
|
_dst.create( src.size(), CV_MAKETYPE(ddepth, src.channels()) );
|
|
Mat dst = _dst.getMat();
|
|
|
|
#ifdef HAVE_TEGRA_OPTIMIZATION
|
|
if (scale == 1.0 && delta == 0)
|
|
{
|
|
if (ksize == 3 && tegra::sobel3x3(src, dst, dx, dy, borderType))
|
|
return;
|
|
if (ksize == -1 && tegra::scharr(src, dst, dx, dy, borderType))
|
|
return;
|
|
}
|
|
#endif
|
|
|
|
#if defined (HAVE_IPP) && (IPP_VERSION_MAJOR >= 7)
|
|
if(dx < 3 && dy < 3 && src.channels() == 1 && borderType == 1)
|
|
{
|
|
if(IPPDeriv(src, dst, ddepth, dx, dy, ksize,scale))
|
|
return;
|
|
}
|
|
#endif
|
|
int ktype = std::max(CV_32F, std::max(ddepth, src.depth()));
|
|
|
|
Mat kx, ky;
|
|
getDerivKernels( kx, ky, dx, dy, ksize, false, ktype );
|
|
if( scale != 1 )
|
|
{
|
|
// usually the smoothing part is the slowest to compute,
|
|
// so try to scale it instead of the faster differenciating part
|
|
if( dx == 0 )
|
|
kx *= scale;
|
|
else
|
|
ky *= scale;
|
|
}
|
|
sepFilter2D( src, dst, ddepth, kx, ky, Point(-1,-1), delta, borderType );
|
|
}
|
|
|
|
|
|
void cv::Scharr( InputArray _src, OutputArray _dst, int ddepth, int dx, int dy,
|
|
double scale, double delta, int borderType )
|
|
{
|
|
Mat src = _src.getMat();
|
|
if (ddepth < 0)
|
|
ddepth = src.depth();
|
|
_dst.create( src.size(), CV_MAKETYPE(ddepth, src.channels()) );
|
|
Mat dst = _dst.getMat();
|
|
|
|
#ifdef HAVE_TEGRA_OPTIMIZATION
|
|
if (scale == 1.0 && delta == 0)
|
|
if (tegra::scharr(src, dst, dx, dy, borderType))
|
|
return;
|
|
#endif
|
|
|
|
#if defined (HAVE_IPP) && (IPP_VERSION_MAJOR >= 7)
|
|
if(dx < 2 && dy < 2 && src.channels() == 1 && borderType == 1)
|
|
{
|
|
if(IPPDerivScharr(src, dst, ddepth, dx, dy, scale))
|
|
return;
|
|
}
|
|
#endif
|
|
int ktype = std::max(CV_32F, std::max(ddepth, src.depth()));
|
|
|
|
Mat kx, ky;
|
|
getScharrKernels( kx, ky, dx, dy, false, ktype );
|
|
if( scale != 1 )
|
|
{
|
|
// usually the smoothing part is the slowest to compute,
|
|
// so try to scale it instead of the faster differenciating part
|
|
if( dx == 0 )
|
|
kx *= scale;
|
|
else
|
|
ky *= scale;
|
|
}
|
|
sepFilter2D( src, dst, ddepth, kx, ky, Point(-1,-1), delta, borderType );
|
|
}
|
|
|
|
|
|
void cv::Laplacian( InputArray _src, OutputArray _dst, int ddepth, int ksize,
|
|
double scale, double delta, int borderType )
|
|
{
|
|
Mat src = _src.getMat();
|
|
if (ddepth < 0)
|
|
ddepth = src.depth();
|
|
_dst.create( src.size(), CV_MAKETYPE(ddepth, src.channels()) );
|
|
Mat dst = _dst.getMat();
|
|
|
|
if( ksize == 1 || ksize == 3 )
|
|
{
|
|
float K[2][9] =
|
|
{{0, 1, 0, 1, -4, 1, 0, 1, 0},
|
|
{2, 0, 2, 0, -8, 0, 2, 0, 2}};
|
|
Mat kernel(3, 3, CV_32F, K[ksize == 3]);
|
|
if( scale != 1 )
|
|
kernel *= scale;
|
|
filter2D( src, dst, ddepth, kernel, Point(-1,-1), delta, borderType );
|
|
}
|
|
else
|
|
{
|
|
const size_t STRIPE_SIZE = 1 << 14;
|
|
|
|
int depth = src.depth();
|
|
int ktype = std::max(CV_32F, std::max(ddepth, depth));
|
|
int wdepth = depth == CV_8U && ksize <= 5 ? CV_16S : depth <= CV_32F ? CV_32F : CV_64F;
|
|
int wtype = CV_MAKETYPE(wdepth, src.channels());
|
|
Mat kd, ks;
|
|
getSobelKernels( kd, ks, 2, 0, ksize, false, ktype );
|
|
if( ddepth < 0 )
|
|
ddepth = src.depth();
|
|
int dtype = CV_MAKETYPE(ddepth, src.channels());
|
|
|
|
int dy0 = std::min(std::max((int)(STRIPE_SIZE/(getElemSize(src.type())*src.cols)), 1), src.rows);
|
|
Ptr<FilterEngine> fx = createSeparableLinearFilter(src.type(),
|
|
wtype, kd, ks, Point(-1,-1), 0, borderType, borderType, Scalar() );
|
|
Ptr<FilterEngine> fy = createSeparableLinearFilter(src.type(),
|
|
wtype, ks, kd, Point(-1,-1), 0, borderType, borderType, Scalar() );
|
|
|
|
int y = fx->start(src), dsty = 0, dy = 0;
|
|
fy->start(src);
|
|
const uchar* sptr = src.data + y*src.step;
|
|
|
|
Mat d2x( dy0 + kd.rows - 1, src.cols, wtype );
|
|
Mat d2y( dy0 + kd.rows - 1, src.cols, wtype );
|
|
|
|
for( ; dsty < src.rows; sptr += dy0*src.step, dsty += dy )
|
|
{
|
|
fx->proceed( sptr, (int)src.step, dy0, d2x.data, (int)d2x.step );
|
|
dy = fy->proceed( sptr, (int)src.step, dy0, d2y.data, (int)d2y.step );
|
|
if( dy > 0 )
|
|
{
|
|
Mat dstripe = dst.rowRange(dsty, dsty + dy);
|
|
d2x.rows = d2y.rows = dy; // modify the headers, which should work
|
|
d2x += d2y;
|
|
d2x.convertTo( dstripe, dtype, scale, delta );
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
/////////////////////////////////////////////////////////////////////////////////////////
|
|
|
|
CV_IMPL void
|
|
cvSobel( const void* srcarr, void* dstarr, int dx, int dy, int aperture_size )
|
|
{
|
|
cv::Mat src = cv::cvarrToMat(srcarr), dst = cv::cvarrToMat(dstarr);
|
|
|
|
CV_Assert( src.size() == dst.size() && src.channels() == dst.channels() );
|
|
|
|
cv::Sobel( src, dst, dst.depth(), dx, dy, aperture_size, 1, 0, cv::BORDER_REPLICATE );
|
|
if( CV_IS_IMAGE(srcarr) && ((IplImage*)srcarr)->origin && dy % 2 != 0 )
|
|
dst *= -1;
|
|
}
|
|
|
|
|
|
CV_IMPL void
|
|
cvLaplace( const void* srcarr, void* dstarr, int aperture_size )
|
|
{
|
|
cv::Mat src = cv::cvarrToMat(srcarr), dst = cv::cvarrToMat(dstarr);
|
|
|
|
CV_Assert( src.size() == dst.size() && src.channels() == dst.channels() );
|
|
|
|
cv::Laplacian( src, dst, dst.depth(), aperture_size, 1, 0, cv::BORDER_REPLICATE );
|
|
}
|
|
|
|
/* End of file. */
|