mirror of
https://github.com/opencv/opencv.git
synced 2025-01-08 20:42:41 +08:00
110 lines
3.6 KiB
C++
110 lines
3.6 KiB
C++
// This file is part of OpenCV project.
|
|
// It is subject to the license terms in the LICENSE file found in the top-level directory
|
|
// of this distribution and at http://opencv.org/license.html.
|
|
|
|
#include "precomp.hpp"
|
|
|
|
#ifdef HAVE_CUDA
|
|
#include "op_cuda.hpp"
|
|
#include "cuda4dnn/init.hpp"
|
|
#include "net_impl.hpp"
|
|
|
|
namespace cv { namespace dnn {
|
|
CV__DNN_INLINE_NS_BEGIN
|
|
|
|
|
|
void Net::Impl::initCUDABackend(const std::vector<LayerPin>& blobsToKeep_)
|
|
{
|
|
CV_Assert(preferableBackend == DNN_BACKEND_CUDA);
|
|
|
|
if (!cudaInfo) /* we need to check only once */
|
|
cuda4dnn::checkVersions();
|
|
|
|
if (cuda4dnn::getDeviceCount() <= 0)
|
|
CV_Error(Error::StsError, "No CUDA capable device found.");
|
|
|
|
if (cuda4dnn::getDevice() < 0)
|
|
CV_Error(Error::StsError, "No CUDA capable device selected.");
|
|
|
|
if (!cuda4dnn::isDeviceCompatible())
|
|
CV_Error(Error::GpuNotSupported, "OpenCV was not built to work with the selected device. Please check CUDA_ARCH_PTX or CUDA_ARCH_BIN in your build configuration.");
|
|
|
|
if (preferableTarget == DNN_TARGET_CUDA_FP16 && !cuda4dnn::doesDeviceSupportFP16())
|
|
{
|
|
CV_LOG_WARNING(NULL, "The selected CUDA device does not support FP16 target; switching to FP32 target.");
|
|
preferableTarget = DNN_TARGET_CUDA;
|
|
}
|
|
|
|
if (!cudaInfo)
|
|
{
|
|
cuda4dnn::csl::CSLContext context;
|
|
context.stream = cuda4dnn::csl::Stream(true);
|
|
context.cublas_handle = cuda4dnn::csl::cublas::Handle(context.stream);
|
|
context.cudnn_handle = cuda4dnn::csl::cudnn::Handle(context.stream);
|
|
|
|
auto d2h_stream = cuda4dnn::csl::Stream(true); // stream for background D2H data transfers
|
|
cudaInfo = std::unique_ptr<CudaInfo_t>(new CudaInfo_t(std::move(context), std::move(d2h_stream)));
|
|
}
|
|
|
|
cudaInfo->workspace = cuda4dnn::csl::Workspace(); // release workspace memory if any
|
|
|
|
for (auto& layer : layers)
|
|
{
|
|
auto& ld = layer.second;
|
|
if (ld.id == 0)
|
|
{
|
|
for (auto& wrapper : ld.inputBlobsWrappers)
|
|
{
|
|
auto cudaWrapper = wrapper.dynamicCast<CUDABackendWrapper>();
|
|
cudaWrapper->setStream(cudaInfo->context.stream, cudaInfo->d2h_stream);
|
|
}
|
|
}
|
|
|
|
for (auto& wrapper : ld.outputBlobsWrappers)
|
|
{
|
|
auto cudaWrapper = wrapper.dynamicCast<CUDABackendWrapper>();
|
|
cudaWrapper->setStream(cudaInfo->context.stream, cudaInfo->d2h_stream);
|
|
}
|
|
}
|
|
|
|
for (auto& layer : layers)
|
|
{
|
|
auto& ld = layer.second;
|
|
auto& layerInstance = ld.layerInstance;
|
|
|
|
if (!layerInstance->supportBackend(DNN_BACKEND_CUDA))
|
|
{
|
|
std::ostringstream os;
|
|
os << "CUDA backend will fallback to the CPU implementation for the layer \"" << ld.name
|
|
<< "\" of type " << ld.type << '\n';
|
|
CV_LOG_INFO(NULL, os.str().c_str());
|
|
continue;
|
|
}
|
|
|
|
/* we make a copy so that `initCUDA` doesn't modify `cudaInfo->context` */
|
|
auto context = cudaInfo->context;
|
|
auto node = layerInstance->initCUDA(&context, ld.inputBlobsWrappers, ld.outputBlobsWrappers);
|
|
ld.backendNodes[DNN_BACKEND_CUDA] = node;
|
|
|
|
if(!node.empty())
|
|
{
|
|
auto cudaNode = node.dynamicCast<CUDABackendNode>();
|
|
cudaInfo->workspace.require(cudaNode->get_workspace_memory_in_bytes());
|
|
}
|
|
}
|
|
|
|
if (blobsToKeep_.size() > 1)
|
|
{
|
|
for (const auto& pin : blobsToKeep_)
|
|
{
|
|
LayerData& ld = layers[pin.lid];
|
|
ld.cudaD2HBackgroundTransfers.push_back(pin.oid);
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
CV__DNN_INLINE_NS_END
|
|
}} // namespace cv::dnn
|
|
#endif // HAVE_CUDA
|