opencv/modules/gapi/test/infer/gapi_infer_ie_test.cpp
2022-10-04 07:05:40 +00:00

3061 lines
110 KiB
C++

// This file is part of OpenCV project.
// It is subject to the license terms in the LICENSE file found in the top-level directory
// of this distribution and at http://opencv.org/license.html.
//
// Copyright (C) 2019-2021 Intel Corporation
#include "../test_precomp.hpp"
#ifdef HAVE_INF_ENGINE
#include <stdexcept>
#include <mutex>
#include <condition_variable>
#include <inference_engine.hpp>
#include <ade/util/iota_range.hpp>
#include <opencv2/gapi/infer/ie.hpp>
#include <opencv2/gapi/streaming/cap.hpp>
#include "backends/ie/util.hpp"
#include "backends/ie/giebackend/giewrapper.hpp"
#ifdef HAVE_NGRAPH
#if defined(__clang__) // clang or MSVC clang
#pragma clang diagnostic push
#pragma clang diagnostic ignored "-Wunused-parameter"
#elif defined(_MSC_VER)
#pragma warning(push)
#pragma warning(disable : 4100)
# if _MSC_VER < 1910
# pragma warning(disable:4268) // Disable warnings of ngraph. OpenVINO recommends to use MSVS 2019.
# pragma warning(disable:4800)
# endif
#elif defined(__GNUC__)
#pragma GCC diagnostic push
#pragma GCC diagnostic ignored "-Wunused-parameter"
#endif
#include <ngraph/ngraph.hpp>
#endif
namespace opencv_test
{
namespace {
class TestMediaBGR final: public cv::MediaFrame::IAdapter {
cv::Mat m_mat;
using Cb = cv::MediaFrame::View::Callback;
Cb m_cb;
public:
explicit TestMediaBGR(cv::Mat m, Cb cb = [](){})
: m_mat(m), m_cb(cb) {
}
cv::GFrameDesc meta() const override {
return cv::GFrameDesc{cv::MediaFormat::BGR, cv::Size(m_mat.cols, m_mat.rows)};
}
cv::MediaFrame::View access(cv::MediaFrame::Access) override {
cv::MediaFrame::View::Ptrs pp = { m_mat.ptr(), nullptr, nullptr, nullptr };
cv::MediaFrame::View::Strides ss = { m_mat.step, 0u, 0u, 0u };
return cv::MediaFrame::View(std::move(pp), std::move(ss), Cb{m_cb});
}
cv::util::any blobParams() const override {
return std::make_pair<InferenceEngine::TensorDesc,
InferenceEngine::ParamMap>({IE::Precision::U8,
{1, 3, 300, 300},
IE::Layout::NCHW},
{{"HELLO", 42},
{"COLOR_FORMAT",
InferenceEngine::ColorFormat::NV12}});
}
};
class TestMediaNV12 final: public cv::MediaFrame::IAdapter {
cv::Mat m_y;
cv::Mat m_uv;
public:
TestMediaNV12(cv::Mat y, cv::Mat uv) : m_y(y), m_uv(uv) {
}
cv::GFrameDesc meta() const override {
return cv::GFrameDesc{cv::MediaFormat::NV12, cv::Size(m_y.cols, m_y.rows)};
}
cv::MediaFrame::View access(cv::MediaFrame::Access) override {
cv::MediaFrame::View::Ptrs pp = {
m_y.ptr(), m_uv.ptr(), nullptr, nullptr
};
cv::MediaFrame::View::Strides ss = {
m_y.step, m_uv.step, 0u, 0u
};
return cv::MediaFrame::View(std::move(pp), std::move(ss));
}
};
// FIXME: taken from DNN module
static void initDLDTDataPath()
{
#ifndef WINRT
static bool initialized = false;
if (!initialized)
{
const char* omzDataPath = getenv("OPENCV_OPEN_MODEL_ZOO_DATA_PATH");
if (omzDataPath)
cvtest::addDataSearchPath(omzDataPath);
const char* dnnDataPath = getenv("OPENCV_DNN_TEST_DATA_PATH");
if (dnnDataPath) {
// Add the dnnDataPath itself - G-API is using some images there directly
cvtest::addDataSearchPath(dnnDataPath);
cvtest::addDataSearchPath(dnnDataPath + std::string("/omz_intel_models"));
}
initialized = true;
}
#endif // WINRT
}
#if INF_ENGINE_RELEASE >= 2020010000
static const std::string SUBDIR = "intel/age-gender-recognition-retail-0013/FP32/";
#else
static const std::string SUBDIR = "Retail/object_attributes/age_gender/dldt/";
#endif
// FIXME: taken from the DNN module
void normAssert(cv::InputArray ref, cv::InputArray test,
const char *comment /*= ""*/,
double l1 = 0.00001, double lInf = 0.0001)
{
double normL1 = cvtest::norm(ref, test, cv::NORM_L1) / ref.getMat().total();
EXPECT_LE(normL1, l1) << comment;
double normInf = cvtest::norm(ref, test, cv::NORM_INF);
EXPECT_LE(normInf, lInf) << comment;
}
namespace IE = InferenceEngine;
void setNetParameters(IE::CNNNetwork& net, bool is_nv12 = false) {
auto ii = net.getInputsInfo().at("data");
ii->setPrecision(IE::Precision::U8);
ii->getPreProcess().setResizeAlgorithm(IE::RESIZE_BILINEAR);
if (is_nv12) {
ii->getPreProcess().setColorFormat(IE::ColorFormat::NV12);
}
}
bool checkDeviceIsAvailable(const std::string& device) {
const static auto available_devices = [&](){
auto devices = cv::gimpl::ie::wrap::getCore().GetAvailableDevices();
return std::unordered_set<std::string>{devices.begin(), devices.end()};
}();
return available_devices.find(device) != available_devices.end();
}
void skipIfDeviceNotAvailable(const std::string& device) {
if (!checkDeviceIsAvailable(device)) {
throw SkipTestException("Device: " + device + " isn't available!");
}
}
void compileBlob(const cv::gapi::ie::detail::ParamDesc& params,
const std::string& output,
const IE::Precision& ip) {
auto plugin = cv::gimpl::ie::wrap::getPlugin(params);
auto net = cv::gimpl::ie::wrap::readNetwork(params);
for (auto&& ii : net.getInputsInfo()) {
ii.second->setPrecision(ip);
}
auto this_network = cv::gimpl::ie::wrap::loadNetwork(plugin, net, params);
std::ofstream out_file{output, std::ios::out | std::ios::binary};
GAPI_Assert(out_file.is_open());
this_network.Export(out_file);
}
std::string compileAgeGenderBlob(const std::string& device) {
const static std::string blob_path = [&](){
cv::gapi::ie::detail::ParamDesc params;
const std::string model_name = "age-gender-recognition-retail-0013";
const std::string output = model_name + ".blob";
params.model_path = findDataFile(SUBDIR + model_name + ".xml");
params.weights_path = findDataFile(SUBDIR + model_name + ".bin");
params.device_id = device;
compileBlob(params, output, IE::Precision::U8);
return output;
}();
return blob_path;
}
} // anonymous namespace
// TODO: Probably DNN/IE part can be further parametrized with a template
// NOTE: here ".." is used to leave the default "gapi/" search scope
TEST(TestAgeGenderIE, InferBasicTensor)
{
initDLDTDataPath();
cv::gapi::ie::detail::ParamDesc params;
params.model_path = findDataFile(SUBDIR + "age-gender-recognition-retail-0013.xml");
params.weights_path = findDataFile(SUBDIR + "age-gender-recognition-retail-0013.bin");
params.device_id = "CPU";
// Load IE network, initialize input data using that.
cv::Mat in_mat;
cv::Mat gapi_age, gapi_gender;
IE::Blob::Ptr ie_age, ie_gender;
{
auto plugin = cv::gimpl::ie::wrap::getPlugin(params);
auto net = cv::gimpl::ie::wrap::readNetwork(params);
auto this_network = cv::gimpl::ie::wrap::loadNetwork(plugin, net, params);
auto infer_request = this_network.CreateInferRequest();
const auto &iedims = net.getInputsInfo().begin()->second->getTensorDesc().getDims();
auto cvdims = cv::gapi::ie::util::to_ocv(iedims);
in_mat.create(cvdims, CV_32F);
cv::randu(in_mat, -1, 1);
infer_request.SetBlob("data", cv::gapi::ie::util::to_ie(in_mat));
infer_request.Infer();
ie_age = infer_request.GetBlob("age_conv3");
ie_gender = infer_request.GetBlob("prob");
}
// Configure & run G-API
using AGInfo = std::tuple<cv::GMat, cv::GMat>;
G_API_NET(AgeGender, <AGInfo(cv::GMat)>, "test-age-gender");
cv::GMat in;
cv::GMat age, gender;
std::tie(age, gender) = cv::gapi::infer<AgeGender>(in);
cv::GComputation comp(cv::GIn(in), cv::GOut(age, gender));
auto pp = cv::gapi::ie::Params<AgeGender> {
params.model_path, params.weights_path, params.device_id
}.cfgOutputLayers({ "age_conv3", "prob" });
comp.apply(cv::gin(in_mat), cv::gout(gapi_age, gapi_gender),
cv::compile_args(cv::gapi::networks(pp)));
// Validate with IE itself (avoid DNN module dependency here)
normAssert(cv::gapi::ie::util::to_ocv(ie_age), gapi_age, "Test age output" );
normAssert(cv::gapi::ie::util::to_ocv(ie_gender), gapi_gender, "Test gender output");
}
TEST(TestAgeGenderIE, InferBasicImage)
{
initDLDTDataPath();
cv::gapi::ie::detail::ParamDesc params;
params.model_path = findDataFile(SUBDIR + "age-gender-recognition-retail-0013.xml");
params.weights_path = findDataFile(SUBDIR + "age-gender-recognition-retail-0013.bin");
params.device_id = "CPU";
// FIXME: Ideally it should be an image from disk
// cv::Mat in_mat = cv::imread(findDataFile("grace_hopper_227.png"));
cv::Mat in_mat(cv::Size(320, 240), CV_8UC3);
cv::randu(in_mat, 0, 255);
cv::Mat gapi_age, gapi_gender;
// Load & run IE network
IE::Blob::Ptr ie_age, ie_gender;
{
auto plugin = cv::gimpl::ie::wrap::getPlugin(params);
auto net = cv::gimpl::ie::wrap::readNetwork(params);
setNetParameters(net);
auto this_network = cv::gimpl::ie::wrap::loadNetwork(plugin, net, params);
auto infer_request = this_network.CreateInferRequest();
infer_request.SetBlob("data", cv::gapi::ie::util::to_ie(in_mat));
infer_request.Infer();
ie_age = infer_request.GetBlob("age_conv3");
ie_gender = infer_request.GetBlob("prob");
}
// Configure & run G-API
using AGInfo = std::tuple<cv::GMat, cv::GMat>;
G_API_NET(AgeGender, <AGInfo(cv::GMat)>, "test-age-gender");
cv::GMat in;
cv::GMat age, gender;
std::tie(age, gender) = cv::gapi::infer<AgeGender>(in);
cv::GComputation comp(cv::GIn(in), cv::GOut(age, gender));
auto pp = cv::gapi::ie::Params<AgeGender> {
params.model_path, params.weights_path, params.device_id
}.cfgOutputLayers({ "age_conv3", "prob" });
comp.apply(cv::gin(in_mat), cv::gout(gapi_age, gapi_gender),
cv::compile_args(cv::gapi::networks(pp)));
// Validate with IE itself (avoid DNN module dependency here)
normAssert(cv::gapi::ie::util::to_ocv(ie_age), gapi_age, "Test age output" );
normAssert(cv::gapi::ie::util::to_ocv(ie_gender), gapi_gender, "Test gender output");
}
struct InferWithReshape: public ::testing::Test {
cv::gapi::ie::detail::ParamDesc params;
cv::Mat m_in_mat;
std::vector<cv::Rect> m_roi_list;
std::vector<size_t> reshape_dims;
std::vector<cv::Mat> m_out_ie_ages;
std::vector<cv::Mat> m_out_ie_genders;
std::vector<cv::Mat> m_out_gapi_ages;
std::vector<cv::Mat> m_out_gapi_genders;
using AGInfo = std::tuple<cv::GMat, cv::GMat>;
G_API_NET(AgeGender, <AGInfo(cv::GMat)>, "test-age-gender");
InferenceEngine::CNNNetwork net;
InferenceEngine::Core plugin;
InferWithReshape() {
// FIXME: it must be cv::imread(findDataFile("../dnn/grace_hopper_227.png", false));
m_in_mat = cv::Mat(cv::Size(320, 240), CV_8UC3);
cv::randu(m_in_mat, 0, 255);
m_out_gapi_ages.resize(1);
m_out_gapi_genders.resize(1);
// both ROIs point to the same face, with a slightly changed geometry
m_roi_list = {
cv::Rect(cv::Point{64, 60}, cv::Size{ 96, 96}),
cv::Rect(cv::Point{50, 32}, cv::Size{128, 160}),
};
// New dimensions for "data" input
reshape_dims = {1, 3, 70, 70};
initDLDTDataPath();
params.model_path = findDataFile(SUBDIR + "age-gender-recognition-retail-0013.xml");
params.weights_path = findDataFile(SUBDIR + "age-gender-recognition-retail-0013.bin");
params.device_id = "CPU";
plugin = cv::gimpl::ie::wrap::getPlugin(params);
net = cv::gimpl::ie::wrap::readNetwork(params);
setNetParameters(net);
net.reshape({{"data", reshape_dims}});
}
void inferROIs(IE::Blob::Ptr blob) {
auto this_network = cv::gimpl::ie::wrap::loadNetwork(plugin, net, params);
auto infer_request = this_network.CreateInferRequest();
for (auto &&rc : m_roi_list) {
const auto ie_rc = IE::ROI {
0u
, static_cast<std::size_t>(rc.x)
, static_cast<std::size_t>(rc.y)
, static_cast<std::size_t>(rc.width)
, static_cast<std::size_t>(rc.height)
};
infer_request.SetBlob("data", IE::make_shared_blob(blob, ie_rc));
infer_request.Infer();
using namespace cv::gapi::ie::util;
m_out_ie_ages.push_back(to_ocv(infer_request.GetBlob("age_conv3")).clone());
m_out_ie_genders.push_back(to_ocv(infer_request.GetBlob("prob")).clone());
}
}
void infer(cv::Mat& in, const bool with_roi = false) {
if (!with_roi) {
auto this_network = cv::gimpl::ie::wrap::loadNetwork(plugin, net, params);
auto infer_request = this_network.CreateInferRequest();
infer_request.SetBlob("data", cv::gapi::ie::util::to_ie(in));
infer_request.Infer();
using namespace cv::gapi::ie::util;
m_out_ie_ages.push_back(to_ocv(infer_request.GetBlob("age_conv3")).clone());
m_out_ie_genders.push_back(to_ocv(infer_request.GetBlob("prob")).clone());
} else {
auto frame_blob = cv::gapi::ie::util::to_ie(in);
inferROIs(frame_blob);
}
}
void validate() {
// Validate with IE itself (avoid DNN module dependency here)
GAPI_Assert(!m_out_gapi_ages.empty());
ASSERT_EQ(m_out_gapi_genders.size(), m_out_gapi_ages.size());
ASSERT_EQ(m_out_gapi_ages.size(), m_out_ie_ages.size());
ASSERT_EQ(m_out_gapi_genders.size(), m_out_ie_genders.size());
const size_t size = m_out_gapi_ages.size();
for (size_t i = 0; i < size; ++i) {
normAssert(m_out_ie_ages [i], m_out_gapi_ages [i], "Test age output");
normAssert(m_out_ie_genders[i], m_out_gapi_genders[i], "Test gender output");
}
}
}; // InferWithReshape
struct InferWithReshapeNV12: public InferWithReshape {
cv::Mat m_in_uv;
cv::Mat m_in_y;
void SetUp() {
cv::Size sz{320, 240};
m_in_y = cv::Mat{sz, CV_8UC1};
cv::randu(m_in_y, 0, 255);
m_in_uv = cv::Mat{sz / 2, CV_8UC2};
cv::randu(m_in_uv, 0, 255);
setNetParameters(net, true);
net.reshape({{"data", reshape_dims}});
auto frame_blob = cv::gapi::ie::util::to_ie(m_in_y, m_in_uv);
inferROIs(frame_blob);
}
};
struct ROIList: public ::testing::Test {
cv::gapi::ie::detail::ParamDesc params;
cv::Mat m_in_mat;
std::vector<cv::Rect> m_roi_list;
std::vector<cv::Mat> m_out_ie_ages;
std::vector<cv::Mat> m_out_ie_genders;
std::vector<cv::Mat> m_out_gapi_ages;
std::vector<cv::Mat> m_out_gapi_genders;
using AGInfo = std::tuple<cv::GMat, cv::GMat>;
G_API_NET(AgeGender, <AGInfo(cv::GMat)>, "test-age-gender");
void SetUp() {
initDLDTDataPath();
params.model_path = findDataFile(SUBDIR + "age-gender-recognition-retail-0013.xml");
params.weights_path = findDataFile(SUBDIR + "age-gender-recognition-retail-0013.bin");
params.device_id = "CPU";
// FIXME: it must be cv::imread(findDataFile("../dnn/grace_hopper_227.png", false));
m_in_mat = cv::Mat(cv::Size(320, 240), CV_8UC3);
cv::randu(m_in_mat, 0, 255);
// both ROIs point to the same face, with a slightly changed geometry
m_roi_list = {
cv::Rect(cv::Point{64, 60}, cv::Size{ 96, 96}),
cv::Rect(cv::Point{50, 32}, cv::Size{128, 160}),
};
// Load & run IE network
{
auto plugin = cv::gimpl::ie::wrap::getPlugin(params);
auto net = cv::gimpl::ie::wrap::readNetwork(params);
setNetParameters(net);
auto this_network = cv::gimpl::ie::wrap::loadNetwork(plugin, net, params);
auto infer_request = this_network.CreateInferRequest();
auto frame_blob = cv::gapi::ie::util::to_ie(m_in_mat);
for (auto &&rc : m_roi_list) {
const auto ie_rc = IE::ROI {
0u
, static_cast<std::size_t>(rc.x)
, static_cast<std::size_t>(rc.y)
, static_cast<std::size_t>(rc.width)
, static_cast<std::size_t>(rc.height)
};
infer_request.SetBlob("data", IE::make_shared_blob(frame_blob, ie_rc));
infer_request.Infer();
using namespace cv::gapi::ie::util;
m_out_ie_ages.push_back(to_ocv(infer_request.GetBlob("age_conv3")).clone());
m_out_ie_genders.push_back(to_ocv(infer_request.GetBlob("prob")).clone());
}
} // namespace IE = ..
} // ROIList()
void validate() {
// Validate with IE itself (avoid DNN module dependency here)
ASSERT_EQ(2u, m_out_ie_ages.size());
ASSERT_EQ(2u, m_out_ie_genders.size());
ASSERT_EQ(2u, m_out_gapi_ages.size());
ASSERT_EQ(2u, m_out_gapi_genders.size());
normAssert(m_out_ie_ages [0], m_out_gapi_ages [0], "0: Test age output");
normAssert(m_out_ie_genders[0], m_out_gapi_genders[0], "0: Test gender output");
normAssert(m_out_ie_ages [1], m_out_gapi_ages [1], "1: Test age output");
normAssert(m_out_ie_genders[1], m_out_gapi_genders[1], "1: Test gender output");
}
}; // ROIList
struct ROIListNV12: public ::testing::Test {
cv::gapi::ie::detail::ParamDesc params;
cv::Mat m_in_uv;
cv::Mat m_in_y;
std::vector<cv::Rect> m_roi_list;
std::vector<cv::Mat> m_out_ie_ages;
std::vector<cv::Mat> m_out_ie_genders;
std::vector<cv::Mat> m_out_gapi_ages;
std::vector<cv::Mat> m_out_gapi_genders;
using AGInfo = std::tuple<cv::GMat, cv::GMat>;
G_API_NET(AgeGender, <AGInfo(cv::GMat)>, "test-age-gender");
void SetUp() {
initDLDTDataPath();
params.model_path = findDataFile(SUBDIR + "age-gender-recognition-retail-0013.xml");
params.weights_path = findDataFile(SUBDIR + "age-gender-recognition-retail-0013.bin");
params.device_id = "CPU";
cv::Size sz{320, 240};
m_in_y = cv::Mat{sz, CV_8UC1};
cv::randu(m_in_y, 0, 255);
m_in_uv = cv::Mat{sz / 2, CV_8UC2};
cv::randu(m_in_uv, 0, 255);
// both ROIs point to the same face, with a slightly changed geometry
m_roi_list = {
cv::Rect(cv::Point{64, 60}, cv::Size{ 96, 96}),
cv::Rect(cv::Point{50, 32}, cv::Size{128, 160}),
};
// Load & run IE network
{
auto plugin = cv::gimpl::ie::wrap::getPlugin(params);
auto net = cv::gimpl::ie::wrap::readNetwork(params);
setNetParameters(net, true);
auto this_network = cv::gimpl::ie::wrap::loadNetwork(plugin, net, params);
auto infer_request = this_network.CreateInferRequest();
auto frame_blob = cv::gapi::ie::util::to_ie(m_in_y, m_in_uv);
for (auto &&rc : m_roi_list) {
const auto ie_rc = IE::ROI {
0u
, static_cast<std::size_t>(rc.x)
, static_cast<std::size_t>(rc.y)
, static_cast<std::size_t>(rc.width)
, static_cast<std::size_t>(rc.height)
};
infer_request.SetBlob("data", IE::make_shared_blob(frame_blob, ie_rc));
infer_request.Infer();
using namespace cv::gapi::ie::util;
m_out_ie_ages.push_back(to_ocv(infer_request.GetBlob("age_conv3")).clone());
m_out_ie_genders.push_back(to_ocv(infer_request.GetBlob("prob")).clone());
}
} // namespace IE = ..
} // ROIList()
void validate() {
// Validate with IE itself (avoid DNN module dependency here)
ASSERT_EQ(2u, m_out_ie_ages.size());
ASSERT_EQ(2u, m_out_ie_genders.size());
ASSERT_EQ(2u, m_out_gapi_ages.size());
ASSERT_EQ(2u, m_out_gapi_genders.size());
normAssert(m_out_ie_ages [0], m_out_gapi_ages [0], "0: Test age output");
normAssert(m_out_ie_genders[0], m_out_gapi_genders[0], "0: Test gender output");
normAssert(m_out_ie_ages [1], m_out_gapi_ages [1], "1: Test age output");
normAssert(m_out_ie_genders[1], m_out_gapi_genders[1], "1: Test gender output");
}
};
struct SingleROI: public ::testing::Test {
cv::gapi::ie::detail::ParamDesc params;
cv::Mat m_in_mat;
cv::Rect m_roi;
cv::Mat m_out_gapi_age;
cv::Mat m_out_gapi_gender;
cv::Mat m_out_ie_age;
cv::Mat m_out_ie_gender;
void SetUp() {
initDLDTDataPath();
params.model_path = findDataFile(SUBDIR + "age-gender-recognition-retail-0013.xml");
params.weights_path = findDataFile(SUBDIR + "age-gender-recognition-retail-0013.bin");
params.device_id = "CPU";
// FIXME: it must be cv::imread(findDataFile("../dnn/grace_hopper_227.png", false));
m_in_mat = cv::Mat(cv::Size(320, 240), CV_8UC3);
cv::randu(m_in_mat, 0, 255);
m_roi = cv::Rect(cv::Point{64, 60}, cv::Size{96, 96});
// Load & run IE network
IE::Blob::Ptr ie_age, ie_gender;
{
auto plugin = cv::gimpl::ie::wrap::getPlugin(params);
auto net = cv::gimpl::ie::wrap::readNetwork(params);
setNetParameters(net);
auto this_network = cv::gimpl::ie::wrap::loadNetwork(plugin, net, params);
auto infer_request = this_network.CreateInferRequest();
const auto ie_rc = IE::ROI {
0u
, static_cast<std::size_t>(m_roi.x)
, static_cast<std::size_t>(m_roi.y)
, static_cast<std::size_t>(m_roi.width)
, static_cast<std::size_t>(m_roi.height)
};
IE::Blob::Ptr roi_blob = IE::make_shared_blob(cv::gapi::ie::util::to_ie(m_in_mat), ie_rc);
infer_request.SetBlob("data", roi_blob);
infer_request.Infer();
using namespace cv::gapi::ie::util;
m_out_ie_age = to_ocv(infer_request.GetBlob("age_conv3")).clone();
m_out_ie_gender = to_ocv(infer_request.GetBlob("prob")).clone();
}
}
void validate() {
// Validate with IE itself (avoid DNN module dependency here)
normAssert(m_out_ie_age , m_out_gapi_age , "Test age output");
normAssert(m_out_ie_gender, m_out_gapi_gender, "Test gender output");
}
};
struct SingleROINV12: public ::testing::Test {
cv::gapi::ie::detail::ParamDesc params;
cv::Mat m_in_y;
cv::Mat m_in_uv;
cv::Rect m_roi;
cv::Mat m_out_gapi_age;
cv::Mat m_out_gapi_gender;
cv::Mat m_out_ie_age;
cv::Mat m_out_ie_gender;
void SetUp() {
initDLDTDataPath();
params.model_path = findDataFile(SUBDIR + "age-gender-recognition-retail-0013.xml");
params.weights_path = findDataFile(SUBDIR + "age-gender-recognition-retail-0013.bin");
params.device_id = "CPU";
cv::Size sz{320, 240};
m_in_y = cv::Mat{sz, CV_8UC1};
cv::randu(m_in_y, 0, 255);
m_in_uv = cv::Mat{sz / 2, CV_8UC2};
cv::randu(m_in_uv, 0, 255);
m_roi = cv::Rect(cv::Point{64, 60}, cv::Size{96, 96});
// Load & run IE network
IE::Blob::Ptr ie_age, ie_gender;
{
auto plugin = cv::gimpl::ie::wrap::getPlugin(params);
auto net = cv::gimpl::ie::wrap::readNetwork(params);
setNetParameters(net, /* NV12 */ true);
auto this_network = cv::gimpl::ie::wrap::loadNetwork(plugin, net, params);
auto infer_request = this_network.CreateInferRequest();
auto blob = cv::gapi::ie::util::to_ie(m_in_y, m_in_uv);
const auto ie_rc = IE::ROI {
0u
, static_cast<std::size_t>(m_roi.x)
, static_cast<std::size_t>(m_roi.y)
, static_cast<std::size_t>(m_roi.width)
, static_cast<std::size_t>(m_roi.height)
};
IE::Blob::Ptr roi_blob = IE::make_shared_blob(blob, ie_rc);
infer_request.SetBlob("data", roi_blob);
infer_request.Infer();
using namespace cv::gapi::ie::util;
m_out_ie_age = to_ocv(infer_request.GetBlob("age_conv3")).clone();
m_out_ie_gender = to_ocv(infer_request.GetBlob("prob")).clone();
}
}
void validate() {
// Validate with IE itself (avoid DNN module dependency here)
normAssert(m_out_ie_age , m_out_gapi_age , "Test age output");
normAssert(m_out_ie_gender, m_out_gapi_gender, "Test gender output");
}
};
TEST_F(ROIList, TestInfer)
{
cv::GArray<cv::Rect> rr;
cv::GMat in;
cv::GArray<cv::GMat> age, gender;
std::tie(age, gender) = cv::gapi::infer<AgeGender>(rr, in);
cv::GComputation comp(cv::GIn(in, rr), cv::GOut(age, gender));
auto pp = cv::gapi::ie::Params<AgeGender> {
params.model_path, params.weights_path, params.device_id
}.cfgOutputLayers({ "age_conv3", "prob" });
comp.apply(cv::gin(m_in_mat, m_roi_list),
cv::gout(m_out_gapi_ages, m_out_gapi_genders),
cv::compile_args(cv::gapi::networks(pp)));
validate();
}
TEST_F(ROIList, TestInfer2)
{
cv::GArray<cv::Rect> rr;
cv::GMat in;
cv::GArray<cv::GMat> age, gender;
std::tie(age, gender) = cv::gapi::infer2<AgeGender>(in, rr);
cv::GComputation comp(cv::GIn(in, rr), cv::GOut(age, gender));
auto pp = cv::gapi::ie::Params<AgeGender> {
params.model_path, params.weights_path, params.device_id
}.cfgOutputLayers({ "age_conv3", "prob" });
comp.apply(cv::gin(m_in_mat, m_roi_list),
cv::gout(m_out_gapi_ages, m_out_gapi_genders),
cv::compile_args(cv::gapi::networks(pp)));
validate();
}
TEST(DISABLED_TestTwoIENNPipeline, InferBasicImage)
{
initDLDTDataPath();
cv::gapi::ie::detail::ParamDesc AGparams;
AGparams.model_path = findDataFile(SUBDIR + "age-gender-recognition-retail-0013.xml", false);
AGparams.weights_path = findDataFile(SUBDIR + "age-gender-recognition-retail-0013.bin", false);
AGparams.device_id = "MYRIAD";
// FIXME: Ideally it should be an image from disk
// cv::Mat in_mat = cv::imread(findDataFile("grace_hopper_227.png"));
cv::Mat in_mat(cv::Size(320, 240), CV_8UC3);
cv::randu(in_mat, 0, 255);
cv::Mat gapi_age1, gapi_gender1, gapi_age2, gapi_gender2;
// Load & run IE network
IE::Blob::Ptr ie_age1, ie_gender1, ie_age2, ie_gender2;
{
auto AGplugin1 = cv::gimpl::ie::wrap::getPlugin(AGparams);
auto AGnet1 = cv::gimpl::ie::wrap::readNetwork(AGparams);
setNetParameters(AGnet1);
auto AGplugin_network1 = cv::gimpl::ie::wrap::loadNetwork(AGplugin1, AGnet1, AGparams);
auto AGinfer_request1 = AGplugin_network1.CreateInferRequest();
AGinfer_request1.SetBlob("data", cv::gapi::ie::util::to_ie(in_mat));
AGinfer_request1.Infer();
ie_age1 = AGinfer_request1.GetBlob("age_conv3");
ie_gender1 = AGinfer_request1.GetBlob("prob");
auto AGplugin2 = cv::gimpl::ie::wrap::getPlugin(AGparams);
auto AGnet2 = cv::gimpl::ie::wrap::readNetwork(AGparams);
setNetParameters(AGnet2);
auto AGplugin_network2 = cv::gimpl::ie::wrap::loadNetwork(AGplugin2, AGnet2, AGparams);
auto AGinfer_request2 = AGplugin_network2.CreateInferRequest();
AGinfer_request2.SetBlob("data", cv::gapi::ie::util::to_ie(in_mat));
AGinfer_request2.Infer();
ie_age2 = AGinfer_request2.GetBlob("age_conv3");
ie_gender2 = AGinfer_request2.GetBlob("prob");
}
// Configure & run G-API
using AGInfo = std::tuple<cv::GMat, cv::GMat>;
G_API_NET(AgeGender1, <AGInfo(cv::GMat)>, "test-age-gender1");
G_API_NET(AgeGender2, <AGInfo(cv::GMat)>, "test-age-gender2");
cv::GMat in;
cv::GMat age1, gender1;
std::tie(age1, gender1) = cv::gapi::infer<AgeGender1>(in);
cv::GMat age2, gender2;
// FIXME: "Multi-node inference is not supported!", workarounded 'till enabling proper tools
std::tie(age2, gender2) = cv::gapi::infer<AgeGender2>(cv::gapi::copy(in));
cv::GComputation comp(cv::GIn(in), cv::GOut(age1, gender1, age2, gender2));
auto age_net1 = cv::gapi::ie::Params<AgeGender1> {
AGparams.model_path, AGparams.weights_path, AGparams.device_id
}.cfgOutputLayers({ "age_conv3", "prob" });
auto age_net2 = cv::gapi::ie::Params<AgeGender2> {
AGparams.model_path, AGparams.weights_path, AGparams.device_id
}.cfgOutputLayers({ "age_conv3", "prob" });
comp.apply(cv::gin(in_mat), cv::gout(gapi_age1, gapi_gender1, gapi_age2, gapi_gender2),
cv::compile_args(cv::gapi::networks(age_net1, age_net2)));
// Validate with IE itself (avoid DNN module dependency here)
normAssert(cv::gapi::ie::util::to_ocv(ie_age1), gapi_age1, "Test age output 1");
normAssert(cv::gapi::ie::util::to_ocv(ie_gender1), gapi_gender1, "Test gender output 1");
normAssert(cv::gapi::ie::util::to_ocv(ie_age2), gapi_age2, "Test age output 2");
normAssert(cv::gapi::ie::util::to_ocv(ie_gender2), gapi_gender2, "Test gender output 2");
}
TEST(TestAgeGenderIE, GenericInfer)
{
initDLDTDataPath();
cv::gapi::ie::detail::ParamDesc params;
params.model_path = findDataFile(SUBDIR + "age-gender-recognition-retail-0013.xml");
params.weights_path = findDataFile(SUBDIR + "age-gender-recognition-retail-0013.bin");
params.device_id = "CPU";
cv::Mat in_mat(cv::Size(320, 240), CV_8UC3);
cv::randu(in_mat, 0, 255);
cv::Mat gapi_age, gapi_gender;
// Load & run IE network
IE::Blob::Ptr ie_age, ie_gender;
{
auto plugin = cv::gimpl::ie::wrap::getPlugin(params);
auto net = cv::gimpl::ie::wrap::readNetwork(params);
setNetParameters(net);
auto this_network = cv::gimpl::ie::wrap::loadNetwork(plugin, net, params);
auto infer_request = this_network.CreateInferRequest();
infer_request.SetBlob("data", cv::gapi::ie::util::to_ie(in_mat));
infer_request.Infer();
ie_age = infer_request.GetBlob("age_conv3");
ie_gender = infer_request.GetBlob("prob");
}
// Configure & run G-API
cv::GMat in;
GInferInputs inputs;
inputs["data"] = in;
auto outputs = cv::gapi::infer<cv::gapi::Generic>("age-gender-generic", inputs);
auto age = outputs.at("age_conv3");
auto gender = outputs.at("prob");
cv::GComputation comp(cv::GIn(in), cv::GOut(age, gender));
cv::gapi::ie::Params<cv::gapi::Generic> pp{
"age-gender-generic", params.model_path, params.weights_path, params.device_id};
comp.apply(cv::gin(in_mat), cv::gout(gapi_age, gapi_gender),
cv::compile_args(cv::gapi::networks(pp)));
// Validate with IE itself (avoid DNN module dependency here)
normAssert(cv::gapi::ie::util::to_ocv(ie_age), gapi_age, "Test age output" );
normAssert(cv::gapi::ie::util::to_ocv(ie_gender), gapi_gender, "Test gender output");
}
TEST(TestAgeGenderIE, InvalidConfigGeneric)
{
initDLDTDataPath();
std::string model_path = findDataFile(SUBDIR + "age-gender-recognition-retail-0013.xml");
std::string weights_path = findDataFile(SUBDIR + "age-gender-recognition-retail-0013.bin");
std::string device_id = "CPU";
// Configure & run G-API
cv::GMat in;
GInferInputs inputs;
inputs["data"] = in;
auto outputs = cv::gapi::infer<cv::gapi::Generic>("age-gender-generic", inputs);
auto age = outputs.at("age_conv3");
auto gender = outputs.at("prob");
cv::GComputation comp(cv::GIn(in), cv::GOut(age, gender));
auto pp = cv::gapi::ie::Params<cv::gapi::Generic>{
"age-gender-generic", model_path, weights_path, device_id
}.pluginConfig({{"unsupported_config", "some_value"}});
EXPECT_ANY_THROW(comp.compile(cv::GMatDesc{CV_8U,3,cv::Size{320, 240}},
cv::compile_args(cv::gapi::networks(pp))));
}
TEST(TestAgeGenderIE, CPUConfigGeneric)
{
initDLDTDataPath();
std::string model_path = findDataFile(SUBDIR + "age-gender-recognition-retail-0013.xml");
std::string weights_path = findDataFile(SUBDIR + "age-gender-recognition-retail-0013.bin");
std::string device_id = "CPU";
// Configure & run G-API
cv::GMat in;
GInferInputs inputs;
inputs["data"] = in;
auto outputs = cv::gapi::infer<cv::gapi::Generic>("age-gender-generic", inputs);
auto age = outputs.at("age_conv3");
auto gender = outputs.at("prob");
cv::GComputation comp(cv::GIn(in), cv::GOut(age, gender));
auto pp = cv::gapi::ie::Params<cv::gapi::Generic> {
"age-gender-generic", model_path, weights_path, device_id
}.pluginConfig({{IE::PluginConfigParams::KEY_CPU_THROUGHPUT_STREAMS,
IE::PluginConfigParams::CPU_THROUGHPUT_NUMA}});
EXPECT_NO_THROW(comp.compile(cv::GMatDesc{CV_8U,3,cv::Size{320, 240}},
cv::compile_args(cv::gapi::networks(pp))));
}
TEST(TestAgeGenderIE, InvalidConfig)
{
initDLDTDataPath();
std::string model_path = findDataFile(SUBDIR + "age-gender-recognition-retail-0013.xml");
std::string weights_path = findDataFile(SUBDIR + "age-gender-recognition-retail-0013.bin");
std::string device_id = "CPU";
using AGInfo = std::tuple<cv::GMat, cv::GMat>;
G_API_NET(AgeGender, <AGInfo(cv::GMat)>, "test-age-gender");
cv::GMat in;
cv::GMat age, gender;
std::tie(age, gender) = cv::gapi::infer<AgeGender>(in);
cv::GComputation comp(cv::GIn(in), cv::GOut(age, gender));
auto pp = cv::gapi::ie::Params<AgeGender> {
model_path, weights_path, device_id
}.cfgOutputLayers({ "age_conv3", "prob" })
.pluginConfig({{"unsupported_config", "some_value"}});
EXPECT_ANY_THROW(comp.compile(cv::GMatDesc{CV_8U,3,cv::Size{320, 240}},
cv::compile_args(cv::gapi::networks(pp))));
}
TEST(TestAgeGenderIE, CPUConfig)
{
initDLDTDataPath();
std::string model_path = findDataFile(SUBDIR + "age-gender-recognition-retail-0013.xml");
std::string weights_path = findDataFile(SUBDIR + "age-gender-recognition-retail-0013.bin");
std::string device_id = "CPU";
using AGInfo = std::tuple<cv::GMat, cv::GMat>;
G_API_NET(AgeGender, <AGInfo(cv::GMat)>, "test-age-gender");
cv::GMat in;
cv::GMat age, gender;
std::tie(age, gender) = cv::gapi::infer<AgeGender>(in);
cv::GComputation comp(cv::GIn(in), cv::GOut(age, gender));
auto pp = cv::gapi::ie::Params<AgeGender> {
model_path, weights_path, device_id
}.cfgOutputLayers({ "age_conv3", "prob" })
.pluginConfig({{IE::PluginConfigParams::KEY_CPU_THROUGHPUT_STREAMS,
IE::PluginConfigParams::CPU_THROUGHPUT_NUMA}});
EXPECT_NO_THROW(comp.compile(cv::GMatDesc{CV_8U,3,cv::Size{320, 240}},
cv::compile_args(cv::gapi::networks(pp))));
}
TEST_F(ROIList, MediaInputBGR)
{
initDLDTDataPath();
cv::GFrame in;
cv::GArray<cv::Rect> rr;
cv::GArray<cv::GMat> age, gender;
std::tie(age, gender) = cv::gapi::infer<AgeGender>(rr, in);
cv::GComputation comp(cv::GIn(in, rr), cv::GOut(age, gender));
auto frame = MediaFrame::Create<TestMediaBGR>(m_in_mat);
auto pp = cv::gapi::ie::Params<AgeGender> {
params.model_path, params.weights_path, params.device_id
}.cfgOutputLayers({ "age_conv3", "prob" });
comp.apply(cv::gin(frame, m_roi_list),
cv::gout(m_out_gapi_ages, m_out_gapi_genders),
cv::compile_args(cv::gapi::networks(pp)));
validate();
}
TEST_F(ROIListNV12, MediaInputNV12)
{
initDLDTDataPath();
cv::GFrame in;
cv::GArray<cv::Rect> rr;
cv::GArray<cv::GMat> age, gender;
std::tie(age, gender) = cv::gapi::infer<AgeGender>(rr, in);
cv::GComputation comp(cv::GIn(in, rr), cv::GOut(age, gender));
auto frame = MediaFrame::Create<TestMediaNV12>(m_in_y, m_in_uv);
auto pp = cv::gapi::ie::Params<AgeGender> {
params.model_path, params.weights_path, params.device_id
}.cfgOutputLayers({ "age_conv3", "prob" });
comp.apply(cv::gin(frame, m_roi_list),
cv::gout(m_out_gapi_ages, m_out_gapi_genders),
cv::compile_args(cv::gapi::networks(pp)));
validate();
}
TEST(TestAgeGenderIE, MediaInputNV12)
{
initDLDTDataPath();
cv::gapi::ie::detail::ParamDesc params;
params.model_path = findDataFile(SUBDIR + "age-gender-recognition-retail-0013.xml");
params.weights_path = findDataFile(SUBDIR + "age-gender-recognition-retail-0013.bin");
params.device_id = "CPU";
cv::Size sz{320, 240};
cv::Mat in_y_mat(sz, CV_8UC1);
cv::randu(in_y_mat, 0, 255);
cv::Mat in_uv_mat(sz / 2, CV_8UC2);
cv::randu(in_uv_mat, 0, 255);
cv::Mat gapi_age, gapi_gender;
// Load & run IE network
IE::Blob::Ptr ie_age, ie_gender;
{
auto plugin = cv::gimpl::ie::wrap::getPlugin(params);
auto net = cv::gimpl::ie::wrap::readNetwork(params);
setNetParameters(net, true);
auto this_network = cv::gimpl::ie::wrap::loadNetwork(plugin, net, params);
auto infer_request = this_network.CreateInferRequest();
infer_request.SetBlob("data", cv::gapi::ie::util::to_ie(in_y_mat, in_uv_mat));
infer_request.Infer();
ie_age = infer_request.GetBlob("age_conv3");
ie_gender = infer_request.GetBlob("prob");
}
// Configure & run G-API
using AGInfo = std::tuple<cv::GMat, cv::GMat>;
G_API_NET(AgeGender, <AGInfo(cv::GMat)>, "test-age-gender");
cv::GFrame in;
cv::GMat age, gender;
std::tie(age, gender) = cv::gapi::infer<AgeGender>(in);
cv::GComputation comp(cv::GIn(in), cv::GOut(age, gender));
auto frame = MediaFrame::Create<TestMediaNV12>(in_y_mat, in_uv_mat);
auto pp = cv::gapi::ie::Params<AgeGender> {
params.model_path, params.weights_path, params.device_id
}.cfgOutputLayers({ "age_conv3", "prob" });
comp.apply(cv::gin(frame), cv::gout(gapi_age, gapi_gender),
cv::compile_args(cv::gapi::networks(pp)));
// Validate with IE itself (avoid DNN module dependency here)
normAssert(cv::gapi::ie::util::to_ocv(ie_age), gapi_age, "Test age output" );
normAssert(cv::gapi::ie::util::to_ocv(ie_gender), gapi_gender, "Test gender output");
}
TEST(TestAgeGenderIE, MediaInputBGR)
{
initDLDTDataPath();
cv::gapi::ie::detail::ParamDesc params;
params.model_path = findDataFile(SUBDIR + "age-gender-recognition-retail-0013.xml");
params.weights_path = findDataFile(SUBDIR + "age-gender-recognition-retail-0013.bin");
params.device_id = "CPU";
cv::Size sz{320, 240};
cv::Mat in_mat(sz, CV_8UC3);
cv::randu(in_mat, 0, 255);
cv::Mat gapi_age, gapi_gender;
// Load & run IE network
IE::Blob::Ptr ie_age, ie_gender;
{
auto plugin = cv::gimpl::ie::wrap::getPlugin(params);
auto net = cv::gimpl::ie::wrap::readNetwork(params);
setNetParameters(net);
auto this_network = cv::gimpl::ie::wrap::loadNetwork(plugin, net, params);
auto infer_request = this_network.CreateInferRequest();
infer_request.SetBlob("data", cv::gapi::ie::util::to_ie(in_mat));
infer_request.Infer();
ie_age = infer_request.GetBlob("age_conv3");
ie_gender = infer_request.GetBlob("prob");
}
// Configure & run G-API
using AGInfo = std::tuple<cv::GMat, cv::GMat>;
G_API_NET(AgeGender, <AGInfo(cv::GMat)>, "test-age-gender");
cv::GFrame in;
cv::GMat age, gender;
std::tie(age, gender) = cv::gapi::infer<AgeGender>(in);
cv::GComputation comp(cv::GIn(in), cv::GOut(age, gender));
auto frame = MediaFrame::Create<TestMediaBGR>(in_mat);
auto pp = cv::gapi::ie::Params<AgeGender> {
params.model_path, params.weights_path, params.device_id
}.cfgOutputLayers({ "age_conv3", "prob" });
comp.apply(cv::gin(frame), cv::gout(gapi_age, gapi_gender),
cv::compile_args(cv::gapi::networks(pp)));
// Validate with IE itself (avoid DNN module dependency here)
normAssert(cv::gapi::ie::util::to_ocv(ie_age), gapi_age, "Test age output" );
normAssert(cv::gapi::ie::util::to_ocv(ie_gender), gapi_gender, "Test gender output");
}
TEST(InferROI, MediaInputBGR)
{
initDLDTDataPath();
cv::gapi::ie::detail::ParamDesc params;
params.model_path = findDataFile(SUBDIR + "age-gender-recognition-retail-0013.xml");
params.weights_path = findDataFile(SUBDIR + "age-gender-recognition-retail-0013.bin");
params.device_id = "CPU";
cv::Size sz{320, 240};
cv::Mat in_mat(sz, CV_8UC3);
cv::randu(in_mat, 0, 255);
cv::Mat gapi_age, gapi_gender;
cv::Rect rect(cv::Point{64, 60}, cv::Size{96, 96});
// Load & run IE network
IE::Blob::Ptr ie_age, ie_gender;
{
auto plugin = cv::gimpl::ie::wrap::getPlugin(params);
auto net = cv::gimpl::ie::wrap::readNetwork(params);
setNetParameters(net);
auto this_network = cv::gimpl::ie::wrap::loadNetwork(plugin, net, params);
auto infer_request = this_network.CreateInferRequest();
const auto ie_rc = IE::ROI {
0u
, static_cast<std::size_t>(rect.x)
, static_cast<std::size_t>(rect.y)
, static_cast<std::size_t>(rect.width)
, static_cast<std::size_t>(rect.height)
};
IE::Blob::Ptr roi_blob = IE::make_shared_blob(cv::gapi::ie::util::to_ie(in_mat), ie_rc);
infer_request.SetBlob("data", roi_blob);
infer_request.Infer();
ie_age = infer_request.GetBlob("age_conv3");
ie_gender = infer_request.GetBlob("prob");
}
// Configure & run G-API
using AGInfo = std::tuple<cv::GMat, cv::GMat>;
G_API_NET(AgeGender, <AGInfo(cv::GMat)>, "test-age-gender");
cv::GFrame in;
cv::GOpaque<cv::Rect> roi;
cv::GMat age, gender;
std::tie(age, gender) = cv::gapi::infer<AgeGender>(roi, in);
cv::GComputation comp(cv::GIn(in, roi), cv::GOut(age, gender));
auto frame = MediaFrame::Create<TestMediaBGR>(in_mat);
auto pp = cv::gapi::ie::Params<AgeGender> {
params.model_path, params.weights_path, params.device_id
}.cfgOutputLayers({ "age_conv3", "prob" });
comp.apply(cv::gin(frame, rect), cv::gout(gapi_age, gapi_gender),
cv::compile_args(cv::gapi::networks(pp)));
// Validate with IE itself (avoid DNN module dependency here)
normAssert(cv::gapi::ie::util::to_ocv(ie_age), gapi_age, "Test age output" );
normAssert(cv::gapi::ie::util::to_ocv(ie_gender), gapi_gender, "Test gender output");
}
TEST(InferROI, MediaInputNV12)
{
initDLDTDataPath();
cv::gapi::ie::detail::ParamDesc params;
params.model_path = findDataFile(SUBDIR + "age-gender-recognition-retail-0013.xml");
params.weights_path = findDataFile(SUBDIR + "age-gender-recognition-retail-0013.bin");
params.device_id = "CPU";
cv::Size sz{320, 240};
auto in_y_mat = cv::Mat{sz, CV_8UC1};
cv::randu(in_y_mat, 0, 255);
auto in_uv_mat = cv::Mat{sz / 2, CV_8UC2};
cv::randu(in_uv_mat, 0, 255);
cv::Mat gapi_age, gapi_gender;
cv::Rect rect(cv::Point{64, 60}, cv::Size{96, 96});
// Load & run IE network
IE::Blob::Ptr ie_age, ie_gender;
{
auto plugin = cv::gimpl::ie::wrap::getPlugin(params);
auto net = cv::gimpl::ie::wrap::readNetwork(params);
setNetParameters(net, true);
auto this_network = cv::gimpl::ie::wrap::loadNetwork(plugin, net, params);
auto infer_request = this_network.CreateInferRequest();
const auto ie_rc = IE::ROI {
0u
, static_cast<std::size_t>(rect.x)
, static_cast<std::size_t>(rect.y)
, static_cast<std::size_t>(rect.width)
, static_cast<std::size_t>(rect.height)
};
IE::Blob::Ptr roi_blob = IE::make_shared_blob(cv::gapi::ie::util::to_ie(in_y_mat, in_uv_mat), ie_rc);
infer_request.SetBlob("data", roi_blob);
infer_request.Infer();
ie_age = infer_request.GetBlob("age_conv3");
ie_gender = infer_request.GetBlob("prob");
}
// Configure & run G-API
using AGInfo = std::tuple<cv::GMat, cv::GMat>;
G_API_NET(AgeGender, <AGInfo(cv::GMat)>, "test-age-gender");
cv::GFrame in;
cv::GOpaque<cv::Rect> roi;
cv::GMat age, gender;
std::tie(age, gender) = cv::gapi::infer<AgeGender>(roi, in);
cv::GComputation comp(cv::GIn(in, roi), cv::GOut(age, gender));
auto frame = MediaFrame::Create<TestMediaNV12>(in_y_mat, in_uv_mat);
auto pp = cv::gapi::ie::Params<AgeGender> {
params.model_path, params.weights_path, params.device_id
}.cfgOutputLayers({ "age_conv3", "prob" });
comp.apply(cv::gin(frame, rect), cv::gout(gapi_age, gapi_gender),
cv::compile_args(cv::gapi::networks(pp)));
// Validate with IE itself (avoid DNN module dependency here)
normAssert(cv::gapi::ie::util::to_ocv(ie_age), gapi_age, "Test age output" );
normAssert(cv::gapi::ie::util::to_ocv(ie_gender), gapi_gender, "Test gender output");
}
TEST_F(ROIList, Infer2MediaInputBGR)
{
cv::GArray<cv::Rect> rr;
cv::GFrame in;
cv::GArray<cv::GMat> age, gender;
std::tie(age, gender) = cv::gapi::infer2<AgeGender>(in, rr);
cv::GComputation comp(cv::GIn(in, rr), cv::GOut(age, gender));
auto frame = MediaFrame::Create<TestMediaBGR>(m_in_mat);
auto pp = cv::gapi::ie::Params<AgeGender> {
params.model_path, params.weights_path, params.device_id
}.cfgOutputLayers({ "age_conv3", "prob" });
comp.apply(cv::gin(frame, m_roi_list),
cv::gout(m_out_gapi_ages, m_out_gapi_genders),
cv::compile_args(cv::gapi::networks(pp)));
validate();
}
TEST_F(ROIListNV12, Infer2MediaInputNV12)
{
cv::GArray<cv::Rect> rr;
cv::GFrame in;
cv::GArray<cv::GMat> age, gender;
std::tie(age, gender) = cv::gapi::infer2<AgeGender>(in, rr);
cv::GComputation comp(cv::GIn(in, rr), cv::GOut(age, gender));
auto frame = MediaFrame::Create<TestMediaNV12>(m_in_y, m_in_uv);
auto pp = cv::gapi::ie::Params<AgeGender> {
params.model_path, params.weights_path, params.device_id
}.cfgOutputLayers({ "age_conv3", "prob" });
comp.apply(cv::gin(frame, m_roi_list),
cv::gout(m_out_gapi_ages, m_out_gapi_genders),
cv::compile_args(cv::gapi::networks(pp)));
validate();
}
TEST_F(SingleROI, GenericInfer)
{
// Configure & run G-API
cv::GMat in;
cv::GOpaque<cv::Rect> roi;
cv::GInferInputs inputs;
inputs["data"] = in;
auto outputs = cv::gapi::infer<cv::gapi::Generic>("age-gender-generic", roi, inputs);
auto age = outputs.at("age_conv3");
auto gender = outputs.at("prob");
cv::GComputation comp(cv::GIn(in, roi), cv::GOut(age, gender));
cv::gapi::ie::Params<cv::gapi::Generic> pp{
"age-gender-generic", params.model_path, params.weights_path, params.device_id
};
pp.cfgNumRequests(2u);
comp.apply(cv::gin(m_in_mat, m_roi), cv::gout(m_out_gapi_age, m_out_gapi_gender),
cv::compile_args(cv::gapi::networks(pp)));
validate();
}
TEST_F(SingleROI, GenericInferMediaBGR)
{
// Configure & run G-API
cv::GFrame in;
cv::GOpaque<cv::Rect> roi;
cv::GInferInputs inputs;
inputs["data"] = in;
auto outputs = cv::gapi::infer<cv::gapi::Generic>("age-gender-generic", roi, inputs);
auto age = outputs.at("age_conv3");
auto gender = outputs.at("prob");
cv::GComputation comp(cv::GIn(in, roi), cv::GOut(age, gender));
cv::gapi::ie::Params<cv::gapi::Generic> pp{
"age-gender-generic", params.model_path, params.weights_path, params.device_id
};
pp.cfgNumRequests(2u);
auto frame = MediaFrame::Create<TestMediaBGR>(m_in_mat);
comp.apply(cv::gin(frame, m_roi), cv::gout(m_out_gapi_age, m_out_gapi_gender),
cv::compile_args(cv::gapi::networks(pp)));
validate();
}
TEST_F(SingleROINV12, GenericInferMediaNV12)
{
// Configure & run G-API
cv::GFrame in;
cv::GOpaque<cv::Rect> roi;
cv::GInferInputs inputs;
inputs["data"] = in;
auto outputs = cv::gapi::infer<cv::gapi::Generic>("age-gender-generic", roi, inputs);
auto age = outputs.at("age_conv3");
auto gender = outputs.at("prob");
cv::GComputation comp(cv::GIn(in, roi), cv::GOut(age, gender));
cv::gapi::ie::Params<cv::gapi::Generic> pp{
"age-gender-generic", params.model_path, params.weights_path, params.device_id
};
pp.cfgNumRequests(2u);
auto frame = MediaFrame::Create<TestMediaNV12>(m_in_y, m_in_uv);
comp.apply(cv::gin(frame, m_roi), cv::gout(m_out_gapi_age, m_out_gapi_gender),
cv::compile_args(cv::gapi::networks(pp)));
validate();
}
TEST_F(ROIList, GenericInfer)
{
cv::GMat in;
cv::GArray<cv::Rect> rr;
cv::GInferInputs inputs;
inputs["data"] = in;
auto outputs = cv::gapi::infer<cv::gapi::Generic>("age-gender-generic", rr, inputs);
auto age = outputs.at("age_conv3");
auto gender = outputs.at("prob");
cv::GComputation comp(cv::GIn(in, rr), cv::GOut(age, gender));
cv::gapi::ie::Params<cv::gapi::Generic> pp{
"age-gender-generic", params.model_path, params.weights_path, params.device_id
};
pp.cfgNumRequests(2u);
comp.apply(cv::gin(m_in_mat, m_roi_list),
cv::gout(m_out_gapi_ages, m_out_gapi_genders),
cv::compile_args(cv::gapi::networks(pp)));
validate();
}
TEST_F(ROIList, GenericInferMediaBGR)
{
cv::GFrame in;
cv::GArray<cv::Rect> rr;
cv::GInferInputs inputs;
inputs["data"] = in;
auto outputs = cv::gapi::infer<cv::gapi::Generic>("age-gender-generic", rr, inputs);
auto age = outputs.at("age_conv3");
auto gender = outputs.at("prob");
cv::GComputation comp(cv::GIn(in, rr), cv::GOut(age, gender));
cv::gapi::ie::Params<cv::gapi::Generic> pp{
"age-gender-generic", params.model_path, params.weights_path, params.device_id
};
pp.cfgNumRequests(2u);
auto frame = MediaFrame::Create<TestMediaBGR>(m_in_mat);
comp.apply(cv::gin(frame, m_roi_list),
cv::gout(m_out_gapi_ages, m_out_gapi_genders),
cv::compile_args(cv::gapi::networks(pp)));
validate();
}
TEST_F(ROIListNV12, GenericInferMediaNV12)
{
cv::GFrame in;
cv::GArray<cv::Rect> rr;
cv::GInferInputs inputs;
inputs["data"] = in;
auto outputs = cv::gapi::infer<cv::gapi::Generic>("age-gender-generic", rr, inputs);
auto age = outputs.at("age_conv3");
auto gender = outputs.at("prob");
cv::GComputation comp(cv::GIn(in, rr), cv::GOut(age, gender));
cv::gapi::ie::Params<cv::gapi::Generic> pp{
"age-gender-generic", params.model_path, params.weights_path, params.device_id
};
pp.cfgNumRequests(2u);
auto frame = MediaFrame::Create<TestMediaNV12>(m_in_y, m_in_uv);
comp.apply(cv::gin(frame, m_roi_list),
cv::gout(m_out_gapi_ages, m_out_gapi_genders),
cv::compile_args(cv::gapi::networks(pp)));
validate();
}
TEST_F(ROIList, GenericInfer2)
{
cv::GArray<cv::Rect> rr;
cv::GMat in;
GInferListInputs list;
list["data"] = rr;
auto outputs = cv::gapi::infer2<cv::gapi::Generic>("age-gender-generic", in, list);
auto age = outputs.at("age_conv3");
auto gender = outputs.at("prob");
cv::GComputation comp(cv::GIn(in, rr), cv::GOut(age, gender));
cv::gapi::ie::Params<cv::gapi::Generic> pp{
"age-gender-generic", params.model_path, params.weights_path, params.device_id
};
pp.cfgNumRequests(2u);
comp.apply(cv::gin(m_in_mat, m_roi_list),
cv::gout(m_out_gapi_ages, m_out_gapi_genders),
cv::compile_args(cv::gapi::networks(pp)));
validate();
}
TEST_F(ROIList, GenericInfer2MediaInputBGR)
{
cv::GArray<cv::Rect> rr;
cv::GFrame in;
GInferListInputs inputs;
inputs["data"] = rr;
auto outputs = cv::gapi::infer2<cv::gapi::Generic>("age-gender-generic", in, inputs);
auto age = outputs.at("age_conv3");
auto gender = outputs.at("prob");
cv::GComputation comp(cv::GIn(in, rr), cv::GOut(age, gender));
cv::gapi::ie::Params<cv::gapi::Generic> pp{
"age-gender-generic", params.model_path, params.weights_path, params.device_id
};
pp.cfgNumRequests(2u);
auto frame = MediaFrame::Create<TestMediaBGR>(m_in_mat);
comp.apply(cv::gin(frame, m_roi_list),
cv::gout(m_out_gapi_ages, m_out_gapi_genders),
cv::compile_args(cv::gapi::networks(pp)));
validate();
}
TEST_F(ROIListNV12, GenericInfer2MediaInputNV12)
{
cv::GArray<cv::Rect> rr;
cv::GFrame in;
GInferListInputs inputs;
inputs["data"] = rr;
auto outputs = cv::gapi::infer2<cv::gapi::Generic>("age-gender-generic", in, inputs);
auto age = outputs.at("age_conv3");
auto gender = outputs.at("prob");
cv::GComputation comp(cv::GIn(in, rr), cv::GOut(age, gender));
cv::gapi::ie::Params<cv::gapi::Generic> pp{
"age-gender-generic", params.model_path, params.weights_path, params.device_id
};
pp.cfgNumRequests(2u);
auto frame = MediaFrame::Create<TestMediaNV12>(m_in_y, m_in_uv);
comp.apply(cv::gin(frame, m_roi_list),
cv::gout(m_out_gapi_ages, m_out_gapi_genders),
cv::compile_args(cv::gapi::networks(pp)));
validate();
}
TEST(Infer, SetInvalidNumberOfRequests)
{
using AGInfo = std::tuple<cv::GMat, cv::GMat>;
G_API_NET(AgeGender, <AGInfo(cv::GMat)>, "test-age-gender");
cv::gapi::ie::Params<AgeGender> pp{"model", "weights", "device"};
EXPECT_ANY_THROW(pp.cfgNumRequests(0u));
}
TEST(Infer, TestStreamingInfer)
{
initDLDTDataPath();
std::string filepath = findDataFile("cv/video/768x576.avi");
cv::gapi::ie::detail::ParamDesc params;
params.model_path = findDataFile(SUBDIR + "age-gender-recognition-retail-0013.xml");
params.weights_path = findDataFile(SUBDIR + "age-gender-recognition-retail-0013.bin");
params.device_id = "CPU";
// Load IE network, initialize input data using that.
cv::Mat in_mat;
cv::Mat gapi_age, gapi_gender;
using AGInfo = std::tuple<cv::GMat, cv::GMat>;
G_API_NET(AgeGender, <AGInfo(cv::GMat)>, "test-age-gender");
cv::GMat in;
cv::GMat age, gender;
std::tie(age, gender) = cv::gapi::infer<AgeGender>(in);
cv::GComputation comp(cv::GIn(in), cv::GOut(age, gender));
auto pp = cv::gapi::ie::Params<AgeGender> {
params.model_path, params.weights_path, params.device_id
}.cfgOutputLayers({ "age_conv3", "prob" })
.cfgNumRequests(4u);
std::size_t num_frames = 0u;
std::size_t max_frames = 10u;
cv::VideoCapture cap;
cap.open(filepath);
if (!cap.isOpened())
throw SkipTestException("Video file can not be opened");
cap >> in_mat;
auto pipeline = comp.compileStreaming(cv::compile_args(cv::gapi::networks(pp)));
pipeline.setSource<cv::gapi::wip::GCaptureSource>(filepath);
pipeline.start();
while (num_frames < max_frames && pipeline.pull(cv::gout(gapi_age, gapi_gender)))
{
IE::Blob::Ptr ie_age, ie_gender;
{
auto plugin = cv::gimpl::ie::wrap::getPlugin(params);
auto net = cv::gimpl::ie::wrap::readNetwork(params);
setNetParameters(net);
auto this_network = cv::gimpl::ie::wrap::loadNetwork(plugin, net, params);
auto infer_request = this_network.CreateInferRequest();
infer_request.SetBlob("data", cv::gapi::ie::util::to_ie(in_mat));
infer_request.Infer();
ie_age = infer_request.GetBlob("age_conv3");
ie_gender = infer_request.GetBlob("prob");
}
// Validate with IE itself (avoid DNN module dependency here)
normAssert(cv::gapi::ie::util::to_ocv(ie_age), gapi_age, "Test age output" );
normAssert(cv::gapi::ie::util::to_ocv(ie_gender), gapi_gender, "Test gender output");
++num_frames;
cap >> in_mat;
}
pipeline.stop();
}
TEST(InferROI, TestStreamingInfer)
{
initDLDTDataPath();
std::string filepath = findDataFile("cv/video/768x576.avi");
cv::gapi::ie::detail::ParamDesc params;
params.model_path = findDataFile(SUBDIR + "age-gender-recognition-retail-0013.xml");
params.weights_path = findDataFile(SUBDIR + "age-gender-recognition-retail-0013.bin");
params.device_id = "CPU";
// Load IE network, initialize input data using that.
cv::Mat in_mat;
cv::Mat gapi_age, gapi_gender;
cv::Rect rect(cv::Point{64, 60}, cv::Size{96, 96});
using AGInfo = std::tuple<cv::GMat, cv::GMat>;
G_API_NET(AgeGender, <AGInfo(cv::GMat)>, "test-age-gender");
cv::GMat in;
cv::GOpaque<cv::Rect> roi;
cv::GMat age, gender;
std::tie(age, gender) = cv::gapi::infer<AgeGender>(roi, in);
cv::GComputation comp(cv::GIn(in, roi), cv::GOut(age, gender));
auto pp = cv::gapi::ie::Params<AgeGender> {
params.model_path, params.weights_path, params.device_id
}.cfgOutputLayers({ "age_conv3", "prob" })
.cfgNumRequests(4u);
std::size_t num_frames = 0u;
std::size_t max_frames = 10u;
cv::VideoCapture cap;
cap.open(filepath);
if (!cap.isOpened())
throw SkipTestException("Video file can not be opened");
cap >> in_mat;
auto pipeline = comp.compileStreaming(cv::compile_args(cv::gapi::networks(pp)));
pipeline.setSource(
cv::gin(cv::gapi::wip::make_src<cv::gapi::wip::GCaptureSource>(filepath), rect));
pipeline.start();
while (num_frames < max_frames && pipeline.pull(cv::gout(gapi_age, gapi_gender)))
{
// Load & run IE network
IE::Blob::Ptr ie_age, ie_gender;
{
auto plugin = cv::gimpl::ie::wrap::getPlugin(params);
auto net = cv::gimpl::ie::wrap::readNetwork(params);
setNetParameters(net);
auto this_network = cv::gimpl::ie::wrap::loadNetwork(plugin, net, params);
auto infer_request = this_network.CreateInferRequest();
const auto ie_rc = IE::ROI {
0u
, static_cast<std::size_t>(rect.x)
, static_cast<std::size_t>(rect.y)
, static_cast<std::size_t>(rect.width)
, static_cast<std::size_t>(rect.height)
};
IE::Blob::Ptr roi_blob = IE::make_shared_blob(cv::gapi::ie::util::to_ie(in_mat), ie_rc);
infer_request.SetBlob("data", roi_blob);
infer_request.Infer();
ie_age = infer_request.GetBlob("age_conv3");
ie_gender = infer_request.GetBlob("prob");
}
// Validate with IE itself (avoid DNN module dependency here)
normAssert(cv::gapi::ie::util::to_ocv(ie_age), gapi_age, "Test age output" );
normAssert(cv::gapi::ie::util::to_ocv(ie_gender), gapi_gender, "Test gender output");
++num_frames;
cap >> in_mat;
}
pipeline.stop();
}
TEST(InferList, TestStreamingInfer)
{
initDLDTDataPath();
std::string filepath = findDataFile("cv/video/768x576.avi");
cv::gapi::ie::detail::ParamDesc params;
params.model_path = findDataFile(SUBDIR + "age-gender-recognition-retail-0013.xml");
params.weights_path = findDataFile(SUBDIR + "age-gender-recognition-retail-0013.bin");
params.device_id = "CPU";
// Load IE network, initialize input data using that.
cv::Mat in_mat;
std::vector<cv::Mat> ie_ages, ie_genders, gapi_ages, gapi_genders;
std::vector<cv::Rect> roi_list = {
cv::Rect(cv::Point{64, 60}, cv::Size{ 96, 96}),
cv::Rect(cv::Point{50, 32}, cv::Size{128, 160}),
};
using AGInfo = std::tuple<cv::GMat, cv::GMat>;
G_API_NET(AgeGender, <AGInfo(cv::GMat)>, "test-age-gender");
cv::GMat in;
cv::GArray<cv::Rect> roi;
cv::GArray<GMat> age, gender;
std::tie(age, gender) = cv::gapi::infer<AgeGender>(roi, in);
cv::GComputation comp(cv::GIn(in, roi), cv::GOut(age, gender));
auto pp = cv::gapi::ie::Params<AgeGender> {
params.model_path, params.weights_path, params.device_id
}.cfgOutputLayers({ "age_conv3", "prob" })
.cfgNumRequests(4u);
std::size_t num_frames = 0u;
std::size_t max_frames = 10u;
cv::VideoCapture cap;
cap.open(filepath);
if (!cap.isOpened())
throw SkipTestException("Video file can not be opened");
cap >> in_mat;
auto pipeline = comp.compileStreaming(cv::compile_args(cv::gapi::networks(pp)));
pipeline.setSource(
cv::gin(cv::gapi::wip::make_src<cv::gapi::wip::GCaptureSource>(filepath), roi_list));
pipeline.start();
while (num_frames < max_frames && pipeline.pull(cv::gout(gapi_ages, gapi_genders)))
{
{
auto plugin = cv::gimpl::ie::wrap::getPlugin(params);
auto net = cv::gimpl::ie::wrap::readNetwork(params);
setNetParameters(net);
auto this_network = cv::gimpl::ie::wrap::loadNetwork(plugin, net, params);
auto infer_request = this_network.CreateInferRequest();
auto frame_blob = cv::gapi::ie::util::to_ie(in_mat);
for (auto &&rc : roi_list) {
const auto ie_rc = IE::ROI {
0u
, static_cast<std::size_t>(rc.x)
, static_cast<std::size_t>(rc.y)
, static_cast<std::size_t>(rc.width)
, static_cast<std::size_t>(rc.height)
};
infer_request.SetBlob("data", IE::make_shared_blob(frame_blob, ie_rc));
infer_request.Infer();
using namespace cv::gapi::ie::util;
ie_ages.push_back(to_ocv(infer_request.GetBlob("age_conv3")).clone());
ie_genders.push_back(to_ocv(infer_request.GetBlob("prob")).clone());
}
} // namespace IE = ..
// Validate with IE itself (avoid DNN module dependency here)
normAssert(ie_ages [0], gapi_ages [0], "0: Test age output");
normAssert(ie_genders[0], gapi_genders[0], "0: Test gender output");
normAssert(ie_ages [1], gapi_ages [1], "1: Test age output");
normAssert(ie_genders[1], gapi_genders[1], "1: Test gender output");
ie_ages.clear();
ie_genders.clear();
++num_frames;
cap >> in_mat;
}
}
TEST(Infer2, TestStreamingInfer)
{
initDLDTDataPath();
std::string filepath = findDataFile("cv/video/768x576.avi");
cv::gapi::ie::detail::ParamDesc params;
params.model_path = findDataFile(SUBDIR + "age-gender-recognition-retail-0013.xml");
params.weights_path = findDataFile(SUBDIR + "age-gender-recognition-retail-0013.bin");
params.device_id = "CPU";
// Load IE network, initialize input data using that.
cv::Mat in_mat;
std::vector<cv::Mat> ie_ages, ie_genders, gapi_ages, gapi_genders;
std::vector<cv::Rect> roi_list = {
cv::Rect(cv::Point{64, 60}, cv::Size{ 96, 96}),
cv::Rect(cv::Point{50, 32}, cv::Size{128, 160}),
};
using AGInfo = std::tuple<cv::GMat, cv::GMat>;
G_API_NET(AgeGender, <AGInfo(cv::GMat)>, "test-age-gender");
cv::GArray<cv::Rect> rr;
cv::GMat in;
cv::GArray<cv::GMat> age, gender;
std::tie(age, gender) = cv::gapi::infer2<AgeGender>(in, rr);
cv::GComputation comp(cv::GIn(in, rr), cv::GOut(age, gender));
auto pp = cv::gapi::ie::Params<AgeGender> {
params.model_path, params.weights_path, params.device_id
}.cfgOutputLayers({ "age_conv3", "prob" })
.cfgNumRequests(4u);
std::size_t num_frames = 0u;
std::size_t max_frames = 10u;
cv::VideoCapture cap;
cap.open(filepath);
if (!cap.isOpened())
throw SkipTestException("Video file can not be opened");
cap >> in_mat;
auto pipeline = comp.compileStreaming(cv::compile_args(cv::gapi::networks(pp)));
pipeline.setSource(
cv::gin(cv::gapi::wip::make_src<cv::gapi::wip::GCaptureSource>(filepath), roi_list));
pipeline.start();
while (num_frames < max_frames && pipeline.pull(cv::gout(gapi_ages, gapi_genders)))
{
{
auto plugin = cv::gimpl::ie::wrap::getPlugin(params);
auto net = cv::gimpl::ie::wrap::readNetwork(params);
setNetParameters(net);
auto this_network = cv::gimpl::ie::wrap::loadNetwork(plugin, net, params);
auto infer_request = this_network.CreateInferRequest();
auto frame_blob = cv::gapi::ie::util::to_ie(in_mat);
for (auto &&rc : roi_list) {
const auto ie_rc = IE::ROI {
0u
, static_cast<std::size_t>(rc.x)
, static_cast<std::size_t>(rc.y)
, static_cast<std::size_t>(rc.width)
, static_cast<std::size_t>(rc.height)
};
infer_request.SetBlob("data", IE::make_shared_blob(frame_blob, ie_rc));
infer_request.Infer();
using namespace cv::gapi::ie::util;
ie_ages.push_back(to_ocv(infer_request.GetBlob("age_conv3")).clone());
ie_genders.push_back(to_ocv(infer_request.GetBlob("prob")).clone());
}
} // namespace IE = ..
// Validate with IE itself (avoid DNN module dependency here)
normAssert(ie_ages [0], gapi_ages [0], "0: Test age output");
normAssert(ie_genders[0], gapi_genders[0], "0: Test gender output");
normAssert(ie_ages [1], gapi_ages [1], "1: Test age output");
normAssert(ie_genders[1], gapi_genders[1], "1: Test gender output");
ie_ages.clear();
ie_genders.clear();
++num_frames;
cap >> in_mat;
}
pipeline.stop();
}
TEST(InferEmptyList, TestStreamingInfer)
{
initDLDTDataPath();
std::string filepath = findDataFile("cv/video/768x576.avi");
cv::gapi::ie::detail::ParamDesc params;
params.model_path = findDataFile(SUBDIR + "age-gender-recognition-retail-0013.xml");
params.weights_path = findDataFile(SUBDIR + "age-gender-recognition-retail-0013.bin");
params.device_id = "CPU";
// Load IE network, initialize input data using that.
cv::Mat in_mat;
std::vector<cv::Mat> ie_ages, ie_genders, gapi_ages, gapi_genders;
// NB: Empty list of roi
std::vector<cv::Rect> roi_list;
using AGInfo = std::tuple<cv::GMat, cv::GMat>;
G_API_NET(AgeGender, <AGInfo(cv::GMat)>, "test-age-gender");
cv::GMat in;
cv::GArray<cv::Rect> roi;
cv::GArray<GMat> age, gender;
std::tie(age, gender) = cv::gapi::infer<AgeGender>(roi, in);
cv::GComputation comp(cv::GIn(in, roi), cv::GOut(age, gender));
auto pp = cv::gapi::ie::Params<AgeGender> {
params.model_path, params.weights_path, params.device_id
}.cfgOutputLayers({ "age_conv3", "prob" })
.cfgNumRequests(4u);
std::size_t num_frames = 0u;
std::size_t max_frames = 1u;
cv::VideoCapture cap;
cap.open(filepath);
if (!cap.isOpened())
throw SkipTestException("Video file can not be opened");
cap >> in_mat;
auto pipeline = comp.compileStreaming(cv::compile_args(cv::gapi::networks(pp)));
pipeline.setSource(
cv::gin(cv::gapi::wip::make_src<cv::gapi::wip::GCaptureSource>(filepath), roi_list));
pipeline.start();
while (num_frames < max_frames && pipeline.pull(cv::gout(gapi_ages, gapi_genders)))
{
EXPECT_TRUE(gapi_ages.empty());
EXPECT_TRUE(gapi_genders.empty());
}
}
TEST(Infer2EmptyList, TestStreamingInfer)
{
initDLDTDataPath();
std::string filepath = findDataFile("cv/video/768x576.avi");
cv::gapi::ie::detail::ParamDesc params;
params.model_path = findDataFile(SUBDIR + "age-gender-recognition-retail-0013.xml");
params.weights_path = findDataFile(SUBDIR + "age-gender-recognition-retail-0013.bin");
params.device_id = "CPU";
// Load IE network, initialize input data using that.
cv::Mat in_mat;
std::vector<cv::Mat> ie_ages, ie_genders, gapi_ages, gapi_genders;
// NB: Empty list of roi
std::vector<cv::Rect> roi_list;
using AGInfo = std::tuple<cv::GMat, cv::GMat>;
G_API_NET(AgeGender, <AGInfo(cv::GMat)>, "test-age-gender");
cv::GArray<cv::Rect> rr;
cv::GMat in;
cv::GArray<cv::GMat> age, gender;
std::tie(age, gender) = cv::gapi::infer2<AgeGender>(in, rr);
cv::GComputation comp(cv::GIn(in, rr), cv::GOut(age, gender));
auto pp = cv::gapi::ie::Params<AgeGender> {
params.model_path, params.weights_path, params.device_id
}.cfgOutputLayers({ "age_conv3", "prob" })
.cfgNumRequests(4u);
std::size_t num_frames = 0u;
std::size_t max_frames = 1u;
cv::VideoCapture cap;
cap.open(filepath);
if (!cap.isOpened())
throw SkipTestException("Video file can not be opened");
cap >> in_mat;
auto pipeline = comp.compileStreaming(cv::compile_args(cv::gapi::networks(pp)));
pipeline.setSource(
cv::gin(cv::gapi::wip::make_src<cv::gapi::wip::GCaptureSource>(filepath), roi_list));
pipeline.start();
while (num_frames < max_frames && pipeline.pull(cv::gout(gapi_ages, gapi_genders)))
{
EXPECT_TRUE(gapi_ages.empty());
EXPECT_TRUE(gapi_genders.empty());
}
}
TEST_F(InferWithReshape, TestInfer)
{
// IE code
infer(m_in_mat);
// G-API code
cv::GMat in;
cv::GMat age, gender;
std::tie(age, gender) = cv::gapi::infer<AgeGender>(in);
cv::GComputation comp(cv::GIn(in), cv::GOut(age, gender));
auto pp = cv::gapi::ie::Params<AgeGender> {
params.model_path, params.weights_path, params.device_id
}.cfgOutputLayers({ "age_conv3", "prob" }).cfgInputReshape({{"data", reshape_dims}});
comp.apply(cv::gin(m_in_mat), cv::gout(m_out_gapi_ages.front(), m_out_gapi_genders.front()),
cv::compile_args(cv::gapi::networks(pp)));
// Validate
validate();
}
TEST_F(InferWithReshape, TestInferInImage)
{
// Input image already has 70x70 size
cv::Mat rsz;
cv::resize(m_in_mat, rsz, cv::Size(70, 70));
// IE code
infer(rsz);
// G-API code
cv::GMat in;
cv::GMat age, gender;
std::tie(age, gender) = cv::gapi::infer<AgeGender>(in);
cv::GComputation comp(cv::GIn(in), cv::GOut(age, gender));
auto pp = cv::gapi::ie::Params<AgeGender> {
params.model_path, params.weights_path, params.device_id
}.cfgOutputLayers({ "age_conv3", "prob" }).cfgInputReshape({"data"});
// Reshape CNN input by input image size
comp.apply(cv::gin(rsz), cv::gout(m_out_gapi_ages.front(), m_out_gapi_genders.front()),
cv::compile_args(cv::gapi::networks(pp)));
// Validate
validate();
}
TEST_F(InferWithReshape, TestInferForSingleLayer)
{
// IE code
infer(m_in_mat);
// G-API code
cv::GMat in;
cv::GMat age, gender;
std::tie(age, gender) = cv::gapi::infer<AgeGender>(in);
cv::GComputation comp(cv::GIn(in), cv::GOut(age, gender));
auto pp = cv::gapi::ie::Params<AgeGender> {
params.model_path, params.weights_path, params.device_id
}.cfgOutputLayers({ "age_conv3", "prob" })
.cfgInputReshape("data", reshape_dims);
comp.apply(cv::gin(m_in_mat), cv::gout(m_out_gapi_ages.front(), m_out_gapi_genders.front()),
cv::compile_args(cv::gapi::networks(pp)));
// Validate
validate();
}
TEST_F(InferWithReshape, TestInferList)
{
// IE code
infer(m_in_mat, true);
// G-API code
cv::GArray<cv::Rect> rr;
cv::GMat in;
cv::GArray<cv::GMat> age, gender;
std::tie(age, gender) = cv::gapi::infer<AgeGender>(rr, in);
cv::GComputation comp(cv::GIn(in, rr), cv::GOut(age, gender));
auto pp = cv::gapi::ie::Params<AgeGender> {
params.model_path, params.weights_path, params.device_id
}.cfgOutputLayers({ "age_conv3", "prob" }).cfgInputReshape({{"data", reshape_dims}});
comp.apply(cv::gin(m_in_mat, m_roi_list),
cv::gout(m_out_gapi_ages, m_out_gapi_genders),
cv::compile_args(cv::gapi::networks(pp)));
// Validate
validate();
}
TEST_F(InferWithReshape, TestInferList2)
{
// IE code
infer(m_in_mat, true);
// G-API code
cv::GArray<cv::Rect> rr;
cv::GMat in;
cv::GArray<cv::GMat> age, gender;
std::tie(age, gender) = cv::gapi::infer2<AgeGender>(in, rr);
cv::GComputation comp(cv::GIn(in, rr), cv::GOut(age, gender));
auto pp = cv::gapi::ie::Params<AgeGender> {
params.model_path, params.weights_path, params.device_id
}.cfgOutputLayers({ "age_conv3", "prob" }).cfgInputReshape({{"data", reshape_dims}});
comp.apply(cv::gin(m_in_mat, m_roi_list),
cv::gout(m_out_gapi_ages, m_out_gapi_genders),
cv::compile_args(cv::gapi::networks(pp)));
// Validate
validate();
}
TEST_F(InferWithReshape, TestInferListBGR)
{
// IE code
infer(m_in_mat, true);
// G-API code
cv::GArray<cv::Rect> rr;
cv::GFrame in;
cv::GArray<cv::GMat> age, gender;
std::tie(age, gender) = cv::gapi::infer<AgeGender>(rr, in);
cv::GComputation comp(cv::GIn(in, rr), cv::GOut(age, gender));
auto frame = MediaFrame::Create<TestMediaBGR>(m_in_mat);
auto pp = cv::gapi::ie::Params<AgeGender> {
params.model_path, params.weights_path, params.device_id
}.cfgOutputLayers({ "age_conv3", "prob" }).cfgInputReshape({{"data", reshape_dims}});
comp.apply(cv::gin(frame, m_roi_list),
cv::gout(m_out_gapi_ages, m_out_gapi_genders),
cv::compile_args(cv::gapi::networks(pp)));
// Validate
validate();
}
TEST_F(InferWithReshapeNV12, TestInferListYUV)
{
// G-API code
cv::GFrame in;
cv::GArray<cv::Rect> rr;
cv::GArray<cv::GMat> age, gender;
std::tie(age, gender) = cv::gapi::infer<AgeGender>(rr, in);
cv::GComputation comp(cv::GIn(in, rr), cv::GOut(age, gender));
auto frame = MediaFrame::Create<TestMediaNV12>(m_in_y, m_in_uv);
auto pp = cv::gapi::ie::Params<AgeGender> {
params.model_path, params.weights_path, params.device_id
}.cfgOutputLayers({ "age_conv3", "prob" }).cfgInputReshape({{"data", reshape_dims}});
comp.apply(cv::gin(frame, m_roi_list),
cv::gout(m_out_gapi_ages, m_out_gapi_genders),
cv::compile_args(cv::gapi::networks(pp)));
// Validate
validate();
}
TEST_F(ROIList, CallInferMultipleTimes)
{
cv::GArray<cv::Rect> rr;
cv::GMat in;
cv::GArray<cv::GMat> age, gender;
std::tie(age, gender) = cv::gapi::infer<AgeGender>(rr, in);
cv::GComputation comp(cv::GIn(in, rr), cv::GOut(age, gender));
auto pp = cv::gapi::ie::Params<AgeGender> {
params.model_path, params.weights_path, params.device_id
}.cfgOutputLayers({ "age_conv3", "prob" });
auto cc = comp.compile(cv::descr_of(cv::gin(m_in_mat, m_roi_list)),
cv::compile_args(cv::gapi::networks(pp)));
for (int i = 0; i < 10; ++i) {
cc(cv::gin(m_in_mat, m_roi_list), cv::gout(m_out_gapi_ages, m_out_gapi_genders));
}
validate();
}
TEST(IEFrameAdapter, blobParams)
{
cv::Mat bgr = cv::Mat::eye(240, 320, CV_8UC3);
cv::MediaFrame frame = cv::MediaFrame::Create<TestMediaBGR>(bgr);
auto expected = std::make_pair(IE::TensorDesc{IE::Precision::U8, {1, 3, 300, 300},
IE::Layout::NCHW},
IE::ParamMap{{"HELLO", 42}, {"COLOR_FORMAT",
IE::ColorFormat::NV12}});
auto actual = cv::util::any_cast<decltype(expected)>(frame.blobParams());
EXPECT_EQ(expected, actual);
}
namespace
{
struct Sync {
std::mutex m;
std::condition_variable cv;
int counter = 0;
};
class GMockMediaAdapter final: public cv::MediaFrame::IAdapter {
public:
explicit GMockMediaAdapter(cv::Mat m, std::shared_ptr<Sync> sync)
: m_mat(m), m_sync(sync) {
}
cv::GFrameDesc meta() const override {
return cv::GFrameDesc{cv::MediaFormat::BGR, m_mat.size()};
}
cv::MediaFrame::View access(cv::MediaFrame::Access) override {
cv::MediaFrame::View::Ptrs pp = { m_mat.ptr(), nullptr, nullptr, nullptr };
cv::MediaFrame::View::Strides ss = { m_mat.step, 0u, 0u, 0u };
return cv::MediaFrame::View(std::move(pp), std::move(ss));
}
~GMockMediaAdapter() {
{
std::lock_guard<std::mutex> lk{m_sync->m};
m_sync->counter--;
}
m_sync->cv.notify_one();
}
private:
cv::Mat m_mat;
std::shared_ptr<Sync> m_sync;
};
// NB: This source is needed to simulate real
// cases where the memory resources are limited.
// GMockSource(int limit) - accept the number of MediaFrames that
// the source can produce until resources are over.
class GMockSource : public cv::gapi::wip::IStreamSource {
public:
explicit GMockSource(int limit)
: m_limit(limit), m_mat(cv::Size(1920, 1080), CV_8UC3),
m_sync(new Sync{}) {
cv::randu(m_mat, cv::Scalar::all(0), cv::Scalar::all(255));
}
bool pull(cv::gapi::wip::Data& data) {
std::unique_lock<std::mutex> lk(m_sync->m);
m_sync->counter++;
// NB: Can't produce new frames until old ones are released.
m_sync->cv.wait(lk, [this]{return m_sync->counter <= m_limit;});
data = cv::MediaFrame::Create<GMockMediaAdapter>(m_mat, m_sync);
return true;
}
GMetaArg descr_of() const override {
return GMetaArg{cv::GFrameDesc{cv::MediaFormat::BGR, m_mat.size()}};
}
private:
int m_limit;
cv::Mat m_mat;
std::shared_ptr<Sync> m_sync;
};
struct LimitedSourceInfer: public ::testing::Test {
using AGInfo = std::tuple<cv::GMat, cv::GMat>;
G_API_NET(AgeGender, <AGInfo(cv::GMat)>, "test-age-gender");
LimitedSourceInfer()
: comp([](){
cv::GFrame in;
cv::GMat age, gender;
std::tie(age, gender) = cv::gapi::infer<AgeGender>(in);
return cv::GComputation(cv::GIn(in), cv::GOut(age, gender));
}) {
initDLDTDataPath();
}
GStreamingCompiled compileStreaming(int nireq) {
cv::gapi::ie::detail::ParamDesc params;
params.model_path = findDataFile(SUBDIR + "age-gender-recognition-retail-0013.xml");
params.weights_path = findDataFile(SUBDIR + "age-gender-recognition-retail-0013.bin");
params.device_id = "CPU";
auto pp = cv::gapi::ie::Params<AgeGender> {
params.model_path, params.weights_path, params.device_id }
.cfgOutputLayers({ "age_conv3", "prob" })
.cfgNumRequests(nireq);
return comp.compileStreaming(cv::compile_args(cv::gapi::networks(pp)));
}
void run(const int max_frames, const int limit, const int nireq) {
auto pipeline = compileStreaming(nireq);
pipeline.setSource<GMockSource>(limit);
pipeline.start();
int num_frames = 0;
while (num_frames != max_frames &&
pipeline.pull(cv::gout(out_age, out_gender))) {
++num_frames;
}
}
cv::GComputation comp;
cv::Mat out_age, out_gender;
};
} // anonymous namespace
TEST_F(LimitedSourceInfer, ReleaseFrame)
{
constexpr int max_frames = 50;
constexpr int resources_limit = 1;
constexpr int nireq = 1;
run(max_frames, resources_limit, nireq);
}
TEST_F(LimitedSourceInfer, ReleaseFrameAsync)
{
constexpr int max_frames = 50;
constexpr int resources_limit = 4;
constexpr int nireq = 8;
run(max_frames, resources_limit, nireq);
}
TEST(TestAgeGenderIE, InferWithBatch)
{
initDLDTDataPath();
constexpr int batch_size = 4;
cv::gapi::ie::detail::ParamDesc params;
params.model_path = findDataFile(SUBDIR + "age-gender-recognition-retail-0013.xml");
params.weights_path = findDataFile(SUBDIR + "age-gender-recognition-retail-0013.bin");
params.device_id = "CPU";
cv::Mat in_mat({batch_size, 3, 320, 240}, CV_8U);
cv::randu(in_mat, 0, 255);
cv::Mat gapi_age, gapi_gender;
// Load & run IE network
IE::Blob::Ptr ie_age, ie_gender;
{
auto plugin = cv::gimpl::ie::wrap::getPlugin(params);
auto net = cv::gimpl::ie::wrap::readNetwork(params);
setNetParameters(net);
net.setBatchSize(batch_size);
auto this_network = cv::gimpl::ie::wrap::loadNetwork(plugin, net, params);
auto infer_request = this_network.CreateInferRequest();
infer_request.SetBlob("data", cv::gapi::ie::util::to_ie(in_mat));
infer_request.Infer();
ie_age = infer_request.GetBlob("age_conv3");
ie_gender = infer_request.GetBlob("prob");
}
// Configure & run G-API
using AGInfo = std::tuple<cv::GMat, cv::GMat>;
G_API_NET(AgeGender, <AGInfo(cv::GMat)>, "test-age-gender");
cv::GMat in;
cv::GMat age, gender;
std::tie(age, gender) = cv::gapi::infer<AgeGender>(in);
cv::GComputation comp(cv::GIn(in), cv::GOut(age, gender));
auto pp = cv::gapi::ie::Params<AgeGender> {
params.model_path, params.weights_path, params.device_id
}.cfgOutputLayers({ "age_conv3", "prob" })
.cfgBatchSize(batch_size);
comp.apply(cv::gin(in_mat), cv::gout(gapi_age, gapi_gender),
cv::compile_args(cv::gapi::networks(pp)));
// Validate with IE itself (avoid DNN module dependency here)
normAssert(cv::gapi::ie::util::to_ocv(ie_age), gapi_age, "Test age output" );
normAssert(cv::gapi::ie::util::to_ocv(ie_gender), gapi_gender, "Test gender output");
}
TEST(ImportNetwork, Infer)
{
const std::string device = "MYRIAD";
skipIfDeviceNotAvailable(device);
initDLDTDataPath();
cv::gapi::ie::detail::ParamDesc params;
params.model_path = compileAgeGenderBlob(device);
params.device_id = device;
cv::Mat in_mat(320, 240, CV_8UC3);
cv::randu(in_mat, 0, 255);
cv::Mat gapi_age, gapi_gender;
// Load & run IE network
IE::Blob::Ptr ie_age, ie_gender;
{
auto plugin = cv::gimpl::ie::wrap::getPlugin(params);
auto this_network = cv::gimpl::ie::wrap::importNetwork(plugin, params);
auto infer_request = this_network.CreateInferRequest();
IE::PreProcessInfo info;
info.setResizeAlgorithm(IE::RESIZE_BILINEAR);
infer_request.SetBlob("data", cv::gapi::ie::util::to_ie(in_mat), info);
infer_request.Infer();
ie_age = infer_request.GetBlob("age_conv3");
ie_gender = infer_request.GetBlob("prob");
}
// Configure & run G-API
using AGInfo = std::tuple<cv::GMat, cv::GMat>;
G_API_NET(AgeGender, <AGInfo(cv::GMat)>, "test-age-gender");
cv::GMat in;
cv::GMat age, gender;
std::tie(age, gender) = cv::gapi::infer<AgeGender>(in);
cv::GComputation comp(cv::GIn(in), cv::GOut(age, gender));
auto pp = cv::gapi::ie::Params<AgeGender> {
params.model_path, params.device_id
}.cfgOutputLayers({ "age_conv3", "prob" });
comp.apply(cv::gin(in_mat), cv::gout(gapi_age, gapi_gender),
cv::compile_args(cv::gapi::networks(pp)));
// Validate with IE itself (avoid DNN module dependency here)
normAssert(cv::gapi::ie::util::to_ocv(ie_age), gapi_age, "Test age output" );
normAssert(cv::gapi::ie::util::to_ocv(ie_gender), gapi_gender, "Test gender output");
}
TEST(ImportNetwork, InferNV12)
{
const std::string device = "MYRIAD";
skipIfDeviceNotAvailable(device);
initDLDTDataPath();
cv::gapi::ie::detail::ParamDesc params;
params.model_path= compileAgeGenderBlob(device);
params.device_id = device;
cv::Size sz{320, 240};
cv::Mat in_y_mat(sz, CV_8UC1);
cv::randu(in_y_mat, 0, 255);
cv::Mat in_uv_mat(sz / 2, CV_8UC2);
cv::randu(in_uv_mat, 0, 255);
cv::Mat gapi_age, gapi_gender;
// Load & run IE network
IE::Blob::Ptr ie_age, ie_gender;
{
auto plugin = cv::gimpl::ie::wrap::getPlugin(params);
auto this_network = cv::gimpl::ie::wrap::importNetwork(plugin, params);
auto infer_request = this_network.CreateInferRequest();
IE::PreProcessInfo info;
info.setResizeAlgorithm(IE::RESIZE_BILINEAR);
info.setColorFormat(IE::ColorFormat::NV12);
infer_request.SetBlob("data", cv::gapi::ie::util::to_ie(in_y_mat, in_uv_mat), info);
infer_request.Infer();
ie_age = infer_request.GetBlob("age_conv3");
ie_gender = infer_request.GetBlob("prob");
}
// Configure & run G-API
using AGInfo = std::tuple<cv::GMat, cv::GMat>;
G_API_NET(AgeGender, <AGInfo(cv::GMat)>, "test-age-gender");
cv::GFrame in;
cv::GMat age, gender;
std::tie(age, gender) = cv::gapi::infer<AgeGender>(in);
cv::GComputation comp(cv::GIn(in), cv::GOut(age, gender));
auto frame = MediaFrame::Create<TestMediaNV12>(in_y_mat, in_uv_mat);
auto pp = cv::gapi::ie::Params<AgeGender> {
params.model_path, params.device_id
}.cfgOutputLayers({ "age_conv3", "prob" });
comp.apply(cv::gin(frame), cv::gout(gapi_age, gapi_gender),
cv::compile_args(cv::gapi::networks(pp)));
// Validate with IE itself (avoid DNN module dependency here)
normAssert(cv::gapi::ie::util::to_ocv(ie_age), gapi_age, "Test age output" );
normAssert(cv::gapi::ie::util::to_ocv(ie_gender), gapi_gender, "Test gender output");
}
TEST(ImportNetwork, InferROI)
{
const std::string device = "MYRIAD";
skipIfDeviceNotAvailable(device);
initDLDTDataPath();
cv::gapi::ie::detail::ParamDesc params;
params.model_path = compileAgeGenderBlob(device);
params.device_id = device;
cv::Mat in_mat(320, 240, CV_8UC3);
cv::randu(in_mat, 0, 255);
cv::Mat gapi_age, gapi_gender;
cv::Rect rect(cv::Point{64, 60}, cv::Size{96, 96});
// Load & run IE network
IE::Blob::Ptr ie_age, ie_gender;
{
auto plugin = cv::gimpl::ie::wrap::getPlugin(params);
auto this_network = cv::gimpl::ie::wrap::importNetwork(plugin, params);
auto infer_request = this_network.CreateInferRequest();
const auto ie_rc = IE::ROI {
0u
, static_cast<std::size_t>(rect.x)
, static_cast<std::size_t>(rect.y)
, static_cast<std::size_t>(rect.width)
, static_cast<std::size_t>(rect.height)
};
IE::Blob::Ptr roi_blob = IE::make_shared_blob(cv::gapi::ie::util::to_ie(in_mat), ie_rc);
IE::PreProcessInfo info;
info.setResizeAlgorithm(IE::RESIZE_BILINEAR);
infer_request.SetBlob("data", roi_blob, info);
infer_request.Infer();
ie_age = infer_request.GetBlob("age_conv3");
ie_gender = infer_request.GetBlob("prob");
}
using AGInfo = std::tuple<cv::GMat, cv::GMat>;
G_API_NET(AgeGender, <AGInfo(cv::GMat)>, "test-age-gender");
cv::GMat in;
cv::GOpaque<cv::Rect> roi;
cv::GMat age, gender;
std::tie(age, gender) = cv::gapi::infer<AgeGender>(roi, in);
cv::GComputation comp(cv::GIn(in, roi), cv::GOut(age, gender));
auto pp = cv::gapi::ie::Params<AgeGender> {
params.model_path, params.device_id
}.cfgOutputLayers({ "age_conv3", "prob" });
comp.apply(cv::gin(in_mat, rect), cv::gout(gapi_age, gapi_gender),
cv::compile_args(cv::gapi::networks(pp)));
// Validate with IE itself (avoid DNN module dependency here)
normAssert(cv::gapi::ie::util::to_ocv(ie_age), gapi_age, "Test age output" );
normAssert(cv::gapi::ie::util::to_ocv(ie_gender), gapi_gender, "Test gender output");
}
TEST(ImportNetwork, InferROINV12)
{
const std::string device = "MYRIAD";
skipIfDeviceNotAvailable(device);
initDLDTDataPath();
cv::gapi::ie::detail::ParamDesc params;
params.model_path = compileAgeGenderBlob(device);
params.device_id = device;
cv::Size sz{320, 240};
cv::Mat in_y_mat(sz, CV_8UC1);
cv::randu(in_y_mat, 0, 255);
cv::Mat in_uv_mat(sz / 2, CV_8UC2);
cv::randu(in_uv_mat, 0, 255);
cv::Rect rect(cv::Point{64, 60}, cv::Size{96, 96});
cv::Mat gapi_age, gapi_gender;
// Load & run IE network
IE::Blob::Ptr ie_age, ie_gender;
{
auto plugin = cv::gimpl::ie::wrap::getPlugin(params);
auto this_network = cv::gimpl::ie::wrap::importNetwork(plugin, params);
auto infer_request = this_network.CreateInferRequest();
const auto ie_rc = IE::ROI {
0u
, static_cast<std::size_t>(rect.x)
, static_cast<std::size_t>(rect.y)
, static_cast<std::size_t>(rect.width)
, static_cast<std::size_t>(rect.height)
};
IE::Blob::Ptr roi_blob =
IE::make_shared_blob(cv::gapi::ie::util::to_ie(in_y_mat, in_uv_mat), ie_rc);
IE::PreProcessInfo info;
info.setResizeAlgorithm(IE::RESIZE_BILINEAR);
info.setColorFormat(IE::ColorFormat::NV12);
infer_request.SetBlob("data", roi_blob, info);
infer_request.Infer();
ie_age = infer_request.GetBlob("age_conv3");
ie_gender = infer_request.GetBlob("prob");
}
using AGInfo = std::tuple<cv::GMat, cv::GMat>;
G_API_NET(AgeGender, <AGInfo(cv::GMat)>, "test-age-gender");
cv::GFrame in;
cv::GOpaque<cv::Rect> roi;
cv::GMat age, gender;
std::tie(age, gender) = cv::gapi::infer<AgeGender>(roi, in);
cv::GComputation comp(cv::GIn(in, roi), cv::GOut(age, gender));
auto frame = MediaFrame::Create<TestMediaNV12>(in_y_mat, in_uv_mat);
auto pp = cv::gapi::ie::Params<AgeGender> {
params.model_path, params.device_id
}.cfgOutputLayers({ "age_conv3", "prob" });
comp.apply(cv::gin(frame, rect), cv::gout(gapi_age, gapi_gender),
cv::compile_args(cv::gapi::networks(pp)));
// Validate with IE itself (avoid DNN module dependency here)
normAssert(cv::gapi::ie::util::to_ocv(ie_age), gapi_age, "Test age output" );
normAssert(cv::gapi::ie::util::to_ocv(ie_gender), gapi_gender, "Test gender output");
}
TEST(ImportNetwork, InferList)
{
const std::string device = "MYRIAD";
skipIfDeviceNotAvailable(device);
initDLDTDataPath();
cv::gapi::ie::detail::ParamDesc params;
params.model_path = compileAgeGenderBlob(device);
params.device_id = device;
cv::Mat in_mat(320, 240, CV_8UC3);
cv::randu(in_mat, 0, 255);
std::vector<cv::Rect> roi_list = {
cv::Rect(cv::Point{64, 60}, cv::Size{ 96, 96}),
cv::Rect(cv::Point{50, 32}, cv::Size{128, 160}),
};
std::vector<cv::Mat> out_ie_ages, out_ie_genders, out_gapi_ages, out_gapi_genders;
// Load & run IE network
{
auto plugin = cv::gimpl::ie::wrap::getPlugin(params);
auto this_network = cv::gimpl::ie::wrap::importNetwork(plugin, params);
auto infer_request = this_network.CreateInferRequest();
for (auto &&rc : roi_list) {
const auto ie_rc = IE::ROI {
0u
, static_cast<std::size_t>(rc.x)
, static_cast<std::size_t>(rc.y)
, static_cast<std::size_t>(rc.width)
, static_cast<std::size_t>(rc.height)
};
IE::Blob::Ptr roi_blob =
IE::make_shared_blob(cv::gapi::ie::util::to_ie(in_mat), ie_rc);
IE::PreProcessInfo info;
info.setResizeAlgorithm(IE::RESIZE_BILINEAR);
infer_request.SetBlob("data", roi_blob, info);
infer_request.Infer();
using namespace cv::gapi::ie::util;
out_ie_ages.push_back(to_ocv(infer_request.GetBlob("age_conv3")).clone());
out_ie_genders.push_back(to_ocv(infer_request.GetBlob("prob")).clone());
}
}
// Configure & run G-API
using AGInfo = std::tuple<cv::GMat, cv::GMat>;
G_API_NET(AgeGender, <AGInfo(cv::GMat)>, "test-age-gender");
cv::GArray<cv::Rect> rr;
cv::GMat in;
cv::GArray<cv::GMat> age, gender;
std::tie(age, gender) = cv::gapi::infer<AgeGender>(rr, in);
cv::GComputation comp(cv::GIn(in, rr), cv::GOut(age, gender));
auto pp = cv::gapi::ie::Params<AgeGender> {
params.model_path, params.device_id
}.cfgOutputLayers({ "age_conv3", "prob" });
comp.apply(cv::gin(in_mat, roi_list), cv::gout(out_gapi_ages, out_gapi_genders),
cv::compile_args(cv::gapi::networks(pp)));
// Validate with IE itself (avoid DNN module dependency here)
GAPI_Assert(!out_gapi_ages.empty());
ASSERT_EQ(out_gapi_genders.size(), out_gapi_ages.size());
ASSERT_EQ(out_gapi_ages.size(), out_ie_ages.size());
ASSERT_EQ(out_gapi_genders.size(), out_ie_genders.size());
const size_t size = out_gapi_ages.size();
for (size_t i = 0; i < size; ++i) {
normAssert(out_ie_ages [i], out_gapi_ages [i], "Test age output");
normAssert(out_ie_genders[i], out_gapi_genders[i], "Test gender output");
}
}
TEST(ImportNetwork, InferListNV12)
{
const std::string device = "MYRIAD";
skipIfDeviceNotAvailable(device);
initDLDTDataPath();
cv::gapi::ie::detail::ParamDesc params;
params.model_path = compileAgeGenderBlob(device);
params.device_id = device;
cv::Size sz{320, 240};
cv::Mat in_y_mat(sz, CV_8UC1);
cv::randu(in_y_mat, 0, 255);
cv::Mat in_uv_mat(sz / 2, CV_8UC2);
cv::randu(in_uv_mat, 0, 255);
std::vector<cv::Rect> roi_list = {
cv::Rect(cv::Point{64, 60}, cv::Size{ 96, 96}),
cv::Rect(cv::Point{50, 32}, cv::Size{128, 160}),
};
std::vector<cv::Mat> out_ie_ages, out_ie_genders, out_gapi_ages, out_gapi_genders;
// Load & run IE network
{
auto plugin = cv::gimpl::ie::wrap::getPlugin(params);
auto this_network = cv::gimpl::ie::wrap::importNetwork(plugin, params);
auto infer_request = this_network.CreateInferRequest();
for (auto &&rc : roi_list) {
const auto ie_rc = IE::ROI {
0u
, static_cast<std::size_t>(rc.x)
, static_cast<std::size_t>(rc.y)
, static_cast<std::size_t>(rc.width)
, static_cast<std::size_t>(rc.height)
};
IE::Blob::Ptr roi_blob =
IE::make_shared_blob(cv::gapi::ie::util::to_ie(in_y_mat, in_uv_mat), ie_rc);
IE::PreProcessInfo info;
info.setResizeAlgorithm(IE::RESIZE_BILINEAR);
info.setColorFormat(IE::ColorFormat::NV12);
infer_request.SetBlob("data", roi_blob, info);
infer_request.Infer();
using namespace cv::gapi::ie::util;
out_ie_ages.push_back(to_ocv(infer_request.GetBlob("age_conv3")).clone());
out_ie_genders.push_back(to_ocv(infer_request.GetBlob("prob")).clone());
}
}
// Configure & run G-API
using AGInfo = std::tuple<cv::GMat, cv::GMat>;
G_API_NET(AgeGender, <AGInfo(cv::GMat)>, "test-age-gender");
cv::GArray<cv::Rect> rr;
cv::GFrame in;
cv::GArray<cv::GMat> age, gender;
std::tie(age, gender) = cv::gapi::infer<AgeGender>(rr, in);
cv::GComputation comp(cv::GIn(in, rr), cv::GOut(age, gender));
auto pp = cv::gapi::ie::Params<AgeGender> {
params.model_path, params.device_id
}.cfgOutputLayers({ "age_conv3", "prob" });
auto frame = MediaFrame::Create<TestMediaNV12>(in_y_mat, in_uv_mat);
comp.apply(cv::gin(frame, roi_list), cv::gout(out_gapi_ages, out_gapi_genders),
cv::compile_args(cv::gapi::networks(pp)));
// Validate with IE itself (avoid DNN module dependency here)
GAPI_Assert(!out_gapi_ages.empty());
ASSERT_EQ(out_gapi_genders.size(), out_gapi_ages.size());
ASSERT_EQ(out_gapi_ages.size(), out_ie_ages.size());
ASSERT_EQ(out_gapi_genders.size(), out_ie_genders.size());
const size_t size = out_gapi_ages.size();
for (size_t i = 0; i < size; ++i) {
normAssert(out_ie_ages [i], out_gapi_ages [i], "Test age output");
normAssert(out_ie_genders[i], out_gapi_genders[i], "Test gender output");
}
}
TEST(ImportNetwork, InferList2)
{
const std::string device = "MYRIAD";
skipIfDeviceNotAvailable(device);
initDLDTDataPath();
cv::gapi::ie::detail::ParamDesc params;
params.model_path = compileAgeGenderBlob(device);
params.device_id = device;
cv::Mat in_mat(320, 240, CV_8UC3);
cv::randu(in_mat, 0, 255);
std::vector<cv::Rect> roi_list = {
cv::Rect(cv::Point{64, 60}, cv::Size{ 96, 96}),
cv::Rect(cv::Point{50, 32}, cv::Size{128, 160}),
};
std::vector<cv::Mat> out_ie_ages, out_ie_genders, out_gapi_ages, out_gapi_genders;
// Load & run IE network
{
auto plugin = cv::gimpl::ie::wrap::getPlugin(params);
auto this_network = cv::gimpl::ie::wrap::importNetwork(plugin, params);
auto infer_request = this_network.CreateInferRequest();
for (auto &&rc : roi_list) {
const auto ie_rc = IE::ROI {
0u
, static_cast<std::size_t>(rc.x)
, static_cast<std::size_t>(rc.y)
, static_cast<std::size_t>(rc.width)
, static_cast<std::size_t>(rc.height)
};
IE::Blob::Ptr roi_blob =
IE::make_shared_blob(cv::gapi::ie::util::to_ie(in_mat), ie_rc);
IE::PreProcessInfo info;
info.setResizeAlgorithm(IE::RESIZE_BILINEAR);
infer_request.SetBlob("data", roi_blob, info);
infer_request.Infer();
using namespace cv::gapi::ie::util;
out_ie_ages.push_back(to_ocv(infer_request.GetBlob("age_conv3")).clone());
out_ie_genders.push_back(to_ocv(infer_request.GetBlob("prob")).clone());
}
}
// Configure & run G-API
using AGInfo = std::tuple<cv::GMat, cv::GMat>;
G_API_NET(AgeGender, <AGInfo(cv::GMat)>, "test-age-gender");
cv::GArray<cv::Rect> rr;
cv::GMat in;
cv::GArray<cv::GMat> age, gender;
std::tie(age, gender) = cv::gapi::infer2<AgeGender>(in, rr);
cv::GComputation comp(cv::GIn(in, rr), cv::GOut(age, gender));
auto pp = cv::gapi::ie::Params<AgeGender> {
params.model_path, params.device_id
}.cfgOutputLayers({ "age_conv3", "prob" });
comp.apply(cv::gin(in_mat, roi_list), cv::gout(out_gapi_ages, out_gapi_genders),
cv::compile_args(cv::gapi::networks(pp)));
// Validate with IE itself (avoid DNN module dependency here)
GAPI_Assert(!out_gapi_ages.empty());
ASSERT_EQ(out_gapi_genders.size(), out_gapi_ages.size());
ASSERT_EQ(out_gapi_ages.size(), out_ie_ages.size());
ASSERT_EQ(out_gapi_genders.size(), out_ie_genders.size());
const size_t size = out_gapi_ages.size();
for (size_t i = 0; i < size; ++i) {
normAssert(out_ie_ages [i], out_gapi_ages [i], "Test age output");
normAssert(out_ie_genders[i], out_gapi_genders[i], "Test gender output");
}
}
TEST(ImportNetwork, InferList2NV12)
{
const std::string device = "MYRIAD";
skipIfDeviceNotAvailable(device);
initDLDTDataPath();
cv::gapi::ie::detail::ParamDesc params;
params.model_path = compileAgeGenderBlob(device);
params.device_id = device;
cv::Size sz{320, 240};
cv::Mat in_y_mat(sz, CV_8UC1);
cv::randu(in_y_mat, 0, 255);
cv::Mat in_uv_mat(sz / 2, CV_8UC2);
cv::randu(in_uv_mat, 0, 255);
std::vector<cv::Rect> roi_list = {
cv::Rect(cv::Point{64, 60}, cv::Size{ 96, 96}),
cv::Rect(cv::Point{50, 32}, cv::Size{128, 160}),
};
std::vector<cv::Mat> out_ie_ages, out_ie_genders, out_gapi_ages, out_gapi_genders;
// Load & run IE network
{
auto plugin = cv::gimpl::ie::wrap::getPlugin(params);
auto this_network = cv::gimpl::ie::wrap::importNetwork(plugin, params);
auto infer_request = this_network.CreateInferRequest();
for (auto &&rc : roi_list) {
const auto ie_rc = IE::ROI {
0u
, static_cast<std::size_t>(rc.x)
, static_cast<std::size_t>(rc.y)
, static_cast<std::size_t>(rc.width)
, static_cast<std::size_t>(rc.height)
};
IE::Blob::Ptr roi_blob =
IE::make_shared_blob(cv::gapi::ie::util::to_ie(in_y_mat, in_uv_mat), ie_rc);
IE::PreProcessInfo info;
info.setResizeAlgorithm(IE::RESIZE_BILINEAR);
info.setColorFormat(IE::ColorFormat::NV12);
infer_request.SetBlob("data", roi_blob, info);
infer_request.Infer();
using namespace cv::gapi::ie::util;
out_ie_ages.push_back(to_ocv(infer_request.GetBlob("age_conv3")).clone());
out_ie_genders.push_back(to_ocv(infer_request.GetBlob("prob")).clone());
}
}
// Configure & run G-API
using AGInfo = std::tuple<cv::GMat, cv::GMat>;
G_API_NET(AgeGender, <AGInfo(cv::GMat)>, "test-age-gender");
cv::GArray<cv::Rect> rr;
cv::GFrame in;
cv::GArray<cv::GMat> age, gender;
std::tie(age, gender) = cv::gapi::infer2<AgeGender>(in, rr);
cv::GComputation comp(cv::GIn(in, rr), cv::GOut(age, gender));
auto pp = cv::gapi::ie::Params<AgeGender> {
params.model_path, params.device_id
}.cfgOutputLayers({ "age_conv3", "prob" });
auto frame = MediaFrame::Create<TestMediaNV12>(in_y_mat, in_uv_mat);
comp.apply(cv::gin(frame, roi_list), cv::gout(out_gapi_ages, out_gapi_genders),
cv::compile_args(cv::gapi::networks(pp)));
// Validate with IE itself (avoid DNN module dependency here)
GAPI_Assert(!out_gapi_ages.empty());
ASSERT_EQ(out_gapi_genders.size(), out_gapi_ages.size());
ASSERT_EQ(out_gapi_ages.size(), out_ie_ages.size());
ASSERT_EQ(out_gapi_genders.size(), out_ie_genders.size());
const size_t size = out_gapi_ages.size();
for (size_t i = 0; i < size; ++i) {
normAssert(out_ie_ages [i], out_gapi_ages [i], "Test age output");
normAssert(out_ie_genders[i], out_gapi_genders[i], "Test gender output");
}
}
TEST(TestAgeGender, ThrowBlobAndInputPrecisionMismatch)
{
const std::string device = "MYRIAD";
skipIfDeviceNotAvailable(device);
initDLDTDataPath();
cv::gapi::ie::detail::ParamDesc params;
// NB: Precision for inputs is U8.
params.model_path = compileAgeGenderBlob(device);
params.device_id = device;
// Configure & run G-API
using AGInfo = std::tuple<cv::GMat, cv::GMat>;
G_API_NET(AgeGender, <AGInfo(cv::GMat)>, "test-age-gender");
cv::GMat in, age, gender;
std::tie(age, gender) = cv::gapi::infer<AgeGender>(in);
cv::GComputation comp(cv::GIn(in), cv::GOut(age, gender));
auto pp = cv::gapi::ie::Params<AgeGender> {
params.model_path, params.device_id
}.cfgOutputLayers({ "age_conv3", "prob" });
cv::Mat in_mat(320, 240, CV_32FC3);
cv::randu(in_mat, 0, 1);
cv::Mat gapi_age, gapi_gender;
// NB: Blob precision is U8, but user pass FP32 data, so exception will be thrown.
// Now exception comes directly from IE, but since G-API has information
// about data precision at the compile stage, consider the possibility of
// throwing exception from there.
EXPECT_ANY_THROW(comp.apply(cv::gin(in_mat), cv::gout(gapi_age, gapi_gender),
cv::compile_args(cv::gapi::networks(pp))));
}
#ifdef HAVE_NGRAPH
TEST(Infer, ModelWith2DInputs)
{
const std::string model_name = "ModelWith2DInputs";
const std::string model_path = model_name + ".xml";
const std::string weights_path = model_name + ".bin";
const std::string device_id = "CPU";
const int W = 10;
const int H = 5;
// NB: Define model with 2D inputs.
auto in1 = std::make_shared<ngraph::op::Parameter>(
ngraph::element::Type_t::u8,
ngraph::Shape(std::vector<size_t>{(size_t)H, (size_t)W})
);
auto in2 = std::make_shared<ngraph::op::Parameter>(
ngraph::element::Type_t::u8,
ngraph::Shape(std::vector<size_t>{(size_t)H, (size_t)W})
);
auto result = std::make_shared<ngraph::op::v1::Add>(in1, in2);
auto func = std::make_shared<ngraph::Function>(
ngraph::OutputVector{result},
ngraph::ParameterVector{in1, in2}
);
cv::Mat in_mat1(std::vector<int>{H, W}, CV_8U),
in_mat2(std::vector<int>{H, W}, CV_8U),
gapi_mat, ref_mat;
cv::randu(in_mat1, 0, 100);
cv::randu(in_mat2, 0, 100);
cv::add(in_mat1, in_mat2, ref_mat, cv::noArray(), CV_32F);
// Compile xml file
IE::CNNNetwork(func).serialize(model_path);
// Configure & run G-API
cv::GMat g_in1, g_in2;
cv::GInferInputs inputs;
inputs[in1->get_name()] = g_in1;
inputs[in2->get_name()] = g_in2;
auto outputs = cv::gapi::infer<cv::gapi::Generic>(model_name, inputs);
auto out = outputs.at(result->get_name());
cv::GComputation comp(cv::GIn(g_in1, g_in2), cv::GOut(out));
auto pp = cv::gapi::ie::Params<cv::gapi::Generic>(model_name,
model_path,
weights_path,
device_id);
comp.apply(cv::gin(in_mat1, in_mat2), cv::gout(gapi_mat),
cv::compile_args(cv::gapi::networks(pp)));
normAssert(ref_mat, gapi_mat, "Test model output");
}
#endif // HAVE_NGRAPH
TEST(TestAgeGender, ThrowBlobAndInputPrecisionMismatchStreaming)
{
const std::string device = "MYRIAD";
skipIfDeviceNotAvailable(device);
initDLDTDataPath();
cv::gapi::ie::detail::ParamDesc params;
// NB: Precision for inputs is U8.
params.model_path = compileAgeGenderBlob(device);
params.device_id = device;
// Configure & run G-API
using AGInfo = std::tuple<cv::GMat, cv::GMat>;
G_API_NET(AgeGender, <AGInfo(cv::GMat)>, "test-age-gender");
auto pp = cv::gapi::ie::Params<AgeGender> {
params.model_path, params.device_id
}.cfgOutputLayers({ "age_conv3", "prob" });
cv::GMat in, age, gender;
std::tie(age, gender) = cv::gapi::infer<AgeGender>(in);
auto pipeline = cv::GComputation(cv::GIn(in), cv::GOut(age, gender))
.compileStreaming(cv::compile_args(cv::gapi::networks(pp)));
cv::Mat in_mat(320, 240, CV_32FC3);
cv::randu(in_mat, 0, 1);
cv::Mat gapi_age, gapi_gender;
pipeline.setSource(cv::gin(in_mat));
pipeline.start();
// NB: Blob precision is U8, but user pass FP32 data, so exception will be thrown.
// Now exception comes directly from IE, but since G-API has information
// about data precision at the compile stage, consider the possibility of
// throwing exception from there.
for (int i = 0; i < 10; ++i) {
EXPECT_ANY_THROW(pipeline.pull(cv::gout(gapi_age, gapi_gender)));
}
}
struct AgeGenderInferTest: public ::testing::Test {
cv::Mat m_in_mat;
cv::Mat m_gapi_age;
cv::Mat m_gapi_gender;
cv::gimpl::ie::wrap::Plugin m_plugin;
IE::CNNNetwork m_net;
cv::gapi::ie::detail::ParamDesc m_params;
using AGInfo = std::tuple<cv::GMat, cv::GMat>;
G_API_NET(AgeGender, <AGInfo(cv::GMat)>, "test-age-gender");
void SetUp() {
initDLDTDataPath();
m_params.model_path = findDataFile(SUBDIR + "age-gender-recognition-retail-0013.xml");
m_params.weights_path = findDataFile(SUBDIR + "age-gender-recognition-retail-0013.bin");
m_params.device_id = "CPU";
m_plugin = cv::gimpl::ie::wrap::getPlugin(m_params);
m_net = cv::gimpl::ie::wrap::readNetwork(m_params);
setNetParameters(m_net);
m_in_mat = cv::Mat(cv::Size(320, 240), CV_8UC3);
cv::randu(m_in_mat, 0, 255);
}
cv::GComputation buildGraph() {
cv::GMat in, age, gender;
std::tie(age, gender) = cv::gapi::infer<AgeGender>(in);
return cv::GComputation(cv::GIn(in), cv::GOut(age, gender));
}
void validate() {
IE::Blob::Ptr ie_age, ie_gender;
{
auto this_network = cv::gimpl::ie::wrap::loadNetwork(m_plugin, m_net, m_params);
auto infer_request = this_network.CreateInferRequest();
infer_request.SetBlob("data", cv::gapi::ie::util::to_ie(m_in_mat));
infer_request.Infer();
ie_age = infer_request.GetBlob("age_conv3");
ie_gender = infer_request.GetBlob("prob");
}
// Validate with IE itself (avoid DNN module dependency here)
normAssert(cv::gapi::ie::util::to_ocv(ie_age), m_gapi_age, "Test age output" );
normAssert(cv::gapi::ie::util::to_ocv(ie_gender), m_gapi_gender, "Test gender output");
}
};
TEST_F(AgeGenderInferTest, SyncExecution) {
auto pp = cv::gapi::ie::Params<AgeGender> {
m_params.model_path, m_params.weights_path, m_params.device_id
}.cfgOutputLayers({ "age_conv3", "prob" })
.cfgInferMode(cv::gapi::ie::InferMode::Sync);
buildGraph().apply(cv::gin(m_in_mat), cv::gout(m_gapi_age, m_gapi_gender),
cv::compile_args(cv::gapi::networks(pp)));
validate();
}
TEST_F(AgeGenderInferTest, ThrowSyncWithNireqNotEqualToOne) {
auto pp = cv::gapi::ie::Params<AgeGender> {
m_params.model_path, m_params.weights_path, m_params.device_id
}.cfgOutputLayers({ "age_conv3", "prob" })
.cfgInferMode(cv::gapi::ie::InferMode::Sync)
.cfgNumRequests(4u);
EXPECT_ANY_THROW(buildGraph().apply(cv::gin(m_in_mat), cv::gout(m_gapi_age, m_gapi_gender),
cv::compile_args(cv::gapi::networks(pp))));
}
TEST_F(AgeGenderInferTest, ChangeOutputPrecision) {
auto pp = cv::gapi::ie::Params<AgeGender> {
m_params.model_path, m_params.weights_path, m_params.device_id
}.cfgOutputLayers({ "age_conv3", "prob" })
.cfgOutputPrecision(CV_8U);
for (auto it : m_net.getOutputsInfo()) {
it.second->setPrecision(IE::Precision::U8);
}
buildGraph().apply(cv::gin(m_in_mat), cv::gout(m_gapi_age, m_gapi_gender),
cv::compile_args(cv::gapi::networks(pp)));
validate();
}
TEST_F(AgeGenderInferTest, ChangeSpecificOutputPrecison) {
auto pp = cv::gapi::ie::Params<AgeGender> {
m_params.model_path, m_params.weights_path, m_params.device_id
}.cfgOutputLayers({ "age_conv3", "prob" })
.cfgOutputPrecision({{"prob", CV_8U}});
m_net.getOutputsInfo().at("prob")->setPrecision(IE::Precision::U8);
buildGraph().apply(cv::gin(m_in_mat), cv::gout(m_gapi_age, m_gapi_gender),
cv::compile_args(cv::gapi::networks(pp)));
validate();
}
} // namespace opencv_test
#endif // HAVE_INF_ENGINE