opencv/modules/dnn/src/layers/blank_layer.cpp
Vadim Pisarevsky 416bf3253d
attempt to add 0d/1d mat support to OpenCV (#23473)
* attempt to add 0d/1d mat support to OpenCV

* revised the patch; now 1D mat is treated as 1xN 2D mat rather than Nx1.

* a step towards 'green' tests

* another little step towards 'green' tests

* calib test failures seem to be fixed now

* more fixes _core & _dnn

* another step towards green ci; even 0D mat's (a.k.a. scalars) are now partly supported!

* * fixed strange bug in aruco/charuco detector, not sure why it did not work
* also fixed a few remaining failures (hopefully) in dnn & core

* disabled failing GAPI tests - too complex to dig into this compiler pipeline

* hopefully fixed java tests

* trying to fix some more tests

* quick followup fix

* continue to fix test failures and warnings

* quick followup fix

* trying to fix some more tests

* partly fixed support for 0D/scalar UMat's

* use updated parseReduce() from upstream

* trying to fix the remaining test failures

* fixed [ch]aruco tests in Python

* still trying to fix tests

* revert "fix" in dnn's CUDA tensor

* trying to fix dnn+CUDA test failures

* fixed 1D umat creation

* hopefully fixed remaining cuda test failures

* removed training whitespaces
2023-09-21 18:24:38 +03:00

202 lines
7.1 KiB
C++

/*M///////////////////////////////////////////////////////////////////////////////////////
//
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
// By downloading, copying, installing or using the software you agree to this license.
// If you do not agree to this license, do not download, install,
// copy or use the software.
//
//
// License Agreement
// For Open Source Computer Vision Library
//
// Copyright (C) 2013, OpenCV Foundation, all rights reserved.
// Copyright (C) 2017, Intel Corporation, all rights reserved.
// Third party copyrights are property of their respective owners.
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
// * Redistribution's of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
//
// * Redistribution's in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other materials provided with the distribution.
//
// * The name of the copyright holders may not be used to endorse or promote products
// derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors "as is" and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/
#include "../precomp.hpp"
#include "../op_cuda.hpp"
#include "../op_inf_engine.hpp"
#include "../ie_ngraph.hpp"
#include "../op_cann.hpp"
#ifdef HAVE_CUDA
#include "../cuda4dnn/primitives/reshape.hpp"
using namespace cv::dnn::cuda4dnn;
#endif
namespace cv
{
namespace dnn
{
class BlankLayerImpl CV_FINAL : public BlankLayer
{
public:
BlankLayerImpl(const LayerParams& params)
{
setParamsFrom(params);
}
virtual bool supportBackend(int backendId) CV_OVERRIDE
{
#ifdef HAVE_INF_ENGINE
if (backendId == DNN_BACKEND_INFERENCE_ENGINE_NGRAPH)
return true;
#endif
return backendId == DNN_BACKEND_OPENCV ||
backendId == DNN_BACKEND_CUDA ||
backendId == DNN_BACKEND_CANN;
}
bool getMemoryShapes(const std::vector<MatShape> &inputs,
const int requiredOutputs,
std::vector<MatShape> &outputs,
std::vector<MatShape> &internals) const CV_OVERRIDE
{
Layer::getMemoryShapes(inputs, requiredOutputs, outputs, internals);
return true;
}
#ifdef HAVE_OPENCL
bool forward_ocl(InputArrayOfArrays inputs_, OutputArrayOfArrays outputs_, OutputArrayOfArrays internals_)
{
std::vector<UMat> inputs;
std::vector<UMat> outputs;
inputs_.getUMatVector(inputs);
outputs_.getUMatVector(outputs);
for (int i = 0, n = outputs.size(); i < n; ++i)
{
void *src_handle = inputs[i].handle(ACCESS_READ);
void *dst_handle = outputs[i].handle(ACCESS_WRITE);
if (src_handle != dst_handle)
inputs[i].copyTo(outputs[i]);
}
return true;
}
#endif
void forward(InputArrayOfArrays inputs_arr, OutputArrayOfArrays outputs_arr, OutputArrayOfArrays internals_arr) CV_OVERRIDE
{
CV_TRACE_FUNCTION();
CV_TRACE_ARG_VALUE(name, "name", name.c_str());
CV_OCL_RUN(IS_DNN_OPENCL_TARGET(preferableTarget),
forward_ocl(inputs_arr, outputs_arr, internals_arr))
std::vector<Mat> inputs, outputs;
inputs_arr.getMatVector(inputs);
outputs_arr.getMatVector(outputs);
size_t i, n = outputs.size();
for (i = 0; i < n; ++i)
if (outputs[i].data != inputs[i].data)
inputs[i].copyTo(outputs[i]);
}
#ifdef HAVE_CANN
virtual Ptr<BackendNode> initCann(const std::vector<Ptr<BackendWrapper> > &inputs,
const std::vector<Ptr<BackendWrapper> > &outputs,
const std::vector<Ptr<BackendNode> >& nodes) CV_OVERRIDE
{
auto x = inputs[0].dynamicCast<CannBackendWrapper>();
auto x_desc = x->getTensorDesc();
auto op_x = nodes[0].dynamicCast<CannBackendNode>()->getOp();
auto output_desc = std::make_shared<ge::TensorDesc>(ge::Shape(), ge::FORMAT_NCHW, ge::DT_FLOAT);
// create operator
auto op = std::make_shared<ge::op::Identity>(name);
// set inputs
op->set_input_x_by_name(*op_x, x->name.c_str());
op->update_input_desc_x(*x_desc);
// set output
op->update_output_desc_y(*output_desc);
return Ptr<BackendNode>(new CannBackendNode(op));
}
#endif
#ifdef HAVE_DNN_NGRAPH
virtual Ptr<BackendNode> initNgraph(const std::vector<Ptr<BackendWrapper> >& inputs,
const std::vector<Ptr<BackendNode> >& nodes) CV_OVERRIDE
{
auto ieInpNode = nodes[0].dynamicCast<InfEngineNgraphNode>()->node;
ngraph::OutputVector inp{ieInpNode};
auto blank = std::make_shared<ngraph::op::Concat>(inp, 0);
return Ptr<BackendNode>(new InfEngineNgraphNode(blank));
}
#endif // HAVE_DNN_NGRAPH
#ifdef HAVE_CUDA
Ptr<BackendNode> initCUDA(
void *context_,
const std::vector<Ptr<BackendWrapper>>& inputs,
const std::vector<Ptr<BackendWrapper>>& outputs
) override
{
auto context = reinterpret_cast<csl::CSLContext*>(context_);
return make_cuda_node<cuda4dnn::ReshapeOp>(preferableTarget, std::move(context->stream));
}
#endif
virtual bool tryQuantize(const std::vector<std::vector<float> > &scales,
const std::vector<std::vector<int> > &zeropoints, LayerParams& params) CV_OVERRIDE
{
return true;
}
};
Ptr<Layer> BlankLayer::create(const LayerParams& params)
{
// In case of Caffe's Dropout layer from Faster-RCNN framework,
// https://github.com/rbgirshick/caffe-fast-rcnn/tree/faster-rcnn
// return Power layer.
if (!params.get<bool>("scale_train", true))
{
float scale = 1 - params.get<float>("dropout_ratio", 0.5f);
CV_Assert(scale > 0);
LayerParams powerParams;
powerParams.name = params.name;
powerParams.type = "Power";
powerParams.set("scale", scale);
return PowerLayer::create(powerParams);
}
else
return Ptr<BlankLayer>(new BlankLayerImpl(params));
}
}
}