mirror of
https://github.com/opencv/opencv.git
synced 2025-06-12 04:12:52 +08:00

Add HoughCirclesWithAccumulator binding #27389 ### Pull Request Readiness Checklist Fix #27377 See details at https://github.com/opencv/opencv/wiki/How_to_contribute#making-a-good-pull-request - [x] I agree to contribute to the project under Apache 2 License. - [x] To the best of my knowledge, the proposed patch is not based on a code under GPL or another license that is incompatible with OpenCV - [x] The PR is proposed to the proper branch - [x] There is a reference to the original bug report and related work - [x] There is accuracy test, performance test and test data in opencv_extra repository, if applicable Patch to opencv_extra has the same branch name. - [x] The feature is well documented and sample code can be built with the project CMake
162 lines
4.5 KiB
Python
162 lines
4.5 KiB
Python
#!/usr/bin/python
|
|
|
|
'''
|
|
This example illustrates how to use cv.HoughCircles() function.
|
|
'''
|
|
|
|
# Python 2/3 compatibility
|
|
from __future__ import print_function
|
|
|
|
import cv2 as cv
|
|
import numpy as np
|
|
import sys
|
|
from numpy import pi, sin, cos
|
|
|
|
from tests_common import NewOpenCVTests
|
|
|
|
def circleApproximation(circle):
|
|
|
|
nPoints = 30
|
|
dPhi = 2*pi / nPoints
|
|
contour = []
|
|
for i in range(nPoints):
|
|
contour.append(([circle[0] + circle[2]*cos(i*dPhi),
|
|
circle[1] + circle[2]*sin(i*dPhi)]))
|
|
|
|
return np.array(contour).astype(int)
|
|
|
|
def convContoursIntersectiponRate(c1, c2):
|
|
|
|
s1 = cv.contourArea(c1)
|
|
s2 = cv.contourArea(c2)
|
|
|
|
s, _ = cv.intersectConvexConvex(c1, c2)
|
|
|
|
return 2*s/(s1+s2)
|
|
|
|
class houghcircles_test(NewOpenCVTests):
|
|
|
|
def test_houghcircles(self):
|
|
|
|
fn = "samples/data/board.jpg"
|
|
|
|
src = self.get_sample(fn, 1)
|
|
img = cv.cvtColor(src, cv.COLOR_BGR2GRAY)
|
|
img = cv.medianBlur(img, 5)
|
|
|
|
circles = cv.HoughCircles(img, cv.HOUGH_GRADIENT, 1, 10, np.array([]), 100, 30, 1, 30)[0]
|
|
|
|
testCircles = [[38, 181, 17.6],
|
|
[99.7, 166, 13.12],
|
|
[142.7, 160, 13.52],
|
|
[223.6, 110, 8.62],
|
|
[79.1, 206.7, 8.62],
|
|
[47.5, 351.6, 11.64],
|
|
[189.5, 354.4, 11.64],
|
|
[189.8, 298.9, 10.64],
|
|
[189.5, 252.4, 14.62],
|
|
[252.5, 393.4, 15.62],
|
|
[602.9, 467.5, 11.42],
|
|
[222, 210.4, 9.12],
|
|
[263.1, 216.7, 9.12],
|
|
[359.8, 222.6, 9.12],
|
|
[518.9, 120.9, 9.12],
|
|
[413.8, 113.4, 9.12],
|
|
[489, 127.2, 9.12],
|
|
[448.4, 121.3, 9.12],
|
|
[384.6, 128.9, 8.62]]
|
|
|
|
matches_counter = 0
|
|
|
|
for i in range(len(testCircles)):
|
|
for j in range(len(circles)):
|
|
|
|
tstCircle = circleApproximation(testCircles[i])
|
|
circle = circleApproximation(circles[j])
|
|
if convContoursIntersectiponRate(tstCircle, circle) > 0.6:
|
|
matches_counter += 1
|
|
|
|
self.assertGreater(float(matches_counter) / len(testCircles), .5)
|
|
self.assertLess(float(len(circles) - matches_counter) / len(circles), .75)
|
|
|
|
circles_acc = cv.HoughCirclesWithAccumulator(
|
|
image=img,
|
|
method=cv.HOUGH_GRADIENT,
|
|
dp=1,
|
|
minDist=10,
|
|
circles=np.array([]),
|
|
param1=150,
|
|
param2=45,
|
|
minRadius=1,
|
|
maxRadius=30)
|
|
|
|
self.assertEqual(circles_acc.shape, (1, 2, 4))
|
|
self.assertEqual(circles_acc[0, 0, 3], 66.)
|
|
self.assertEqual(circles_acc[0, 1, 3], 62.)
|
|
|
|
def test_houghcircles_alt(self):
|
|
|
|
fn = "samples/data/board.jpg"
|
|
|
|
src = self.get_sample(fn, 1)
|
|
img = cv.cvtColor(src, cv.COLOR_BGR2GRAY)
|
|
img = cv.medianBlur(img, 5)
|
|
|
|
circles = cv.HoughCircles(img, cv.HOUGH_GRADIENT_ALT, 1, 10, np.array([]), 300, 0.9, 1, 30)
|
|
|
|
self.assertEqual(circles.shape, (1, 18, 3))
|
|
|
|
circles = circles[0]
|
|
|
|
testCircles = [[38, 181, 17.6],
|
|
[99.7, 166, 13.12],
|
|
[142.7, 160, 13.52],
|
|
[223.6, 110, 8.62],
|
|
[79.1, 206.7, 8.62],
|
|
[47.5, 351.6, 11.64],
|
|
[189.5, 354.4, 11.64],
|
|
[189.8, 298.9, 10.64],
|
|
[189.5, 252.4, 14.62],
|
|
[252.5, 393.4, 15.62],
|
|
[602.9, 467.5, 11.42],
|
|
[222, 210.4, 9.12],
|
|
[263.1, 216.7, 9.12],
|
|
[359.8, 222.6, 9.12],
|
|
[518.9, 120.9, 9.12],
|
|
[413.8, 113.4, 9.12],
|
|
[489, 127.2, 9.12],
|
|
[448.4, 121.3, 9.12],
|
|
[384.6, 128.9, 8.62]]
|
|
|
|
matches_counter = 0
|
|
|
|
for i in range(len(testCircles)):
|
|
for j in range(len(circles)):
|
|
|
|
tstCircle = circleApproximation(testCircles[i])
|
|
circle = circleApproximation(circles[j])
|
|
if convContoursIntersectiponRate(tstCircle, circle) > 0.6:
|
|
matches_counter += 1
|
|
|
|
self.assertGreater(float(matches_counter) / len(testCircles), .5)
|
|
self.assertLess(float(len(circles) - matches_counter) / len(circles), .75)
|
|
|
|
circles_acc = cv.HoughCirclesWithAccumulator(
|
|
image=img,
|
|
method=cv.HOUGH_GRADIENT_ALT,
|
|
dp=1,
|
|
minDist=10,
|
|
circles=np.array([]),
|
|
param1=300,
|
|
param2=0.9,
|
|
minRadius=13,
|
|
maxRadius=15)
|
|
|
|
self.assertEqual(circles_acc.shape, (1, 3, 4))
|
|
self.assertEqual(circles_acc[0, 0, 3], 62.)
|
|
self.assertEqual(circles_acc[0, 1, 3], 59.)
|
|
self.assertEqual(circles_acc[0, 2, 3], 47.)
|
|
|
|
if __name__ == '__main__':
|
|
NewOpenCVTests.bootstrap()
|