mirror of
https://github.com/opencv/opencv.git
synced 2025-06-12 20:42:53 +08:00
82 lines
2.9 KiB
C++
82 lines
2.9 KiB
C++
// This file is part of OpenCV project.
|
|
// It is subject to the license terms in the LICENSE file found in the top-level directory
|
|
// of this distribution and at http://opencv.org/license.html.
|
|
|
|
#ifndef OPENCV_DNN_SRC_CUDA4DNN_PRIMITIVES_RESIZE_HPP
|
|
#define OPENCV_DNN_SRC_CUDA4DNN_PRIMITIVES_RESIZE_HPP
|
|
|
|
#include "../../op_cuda.hpp"
|
|
|
|
#include "../csl/stream.hpp"
|
|
|
|
#include "../kernels/resize.hpp"
|
|
|
|
#include <utility>
|
|
|
|
namespace cv { namespace dnn { namespace cuda4dnn {
|
|
|
|
enum class InterpolationType {
|
|
NEAREST_NEIGHBOUR,
|
|
BILINEAR
|
|
};
|
|
|
|
struct ResizeConfiguration {
|
|
InterpolationType type;
|
|
bool align_corners;
|
|
bool half_pixel_centers;
|
|
};
|
|
|
|
template <class T>
|
|
class ResizeOp final : public CUDABackendNode {
|
|
public:
|
|
using wrapper_type = GetCUDABackendWrapperType<T>;
|
|
|
|
ResizeOp(csl::Stream stream_, const ResizeConfiguration& config)
|
|
: stream(std::move(stream_))
|
|
{
|
|
type = config.type;
|
|
align_corners = config.align_corners;
|
|
half_pixel_centers = config.half_pixel_centers;
|
|
}
|
|
|
|
void forward(
|
|
const std::vector<cv::Ptr<BackendWrapper>>& inputs,
|
|
const std::vector<cv::Ptr<BackendWrapper>>& outputs,
|
|
csl::Workspace& workspace) override
|
|
{
|
|
// sometimes the target shape is taken from the second input; we don't use it however
|
|
CV_Assert((inputs.size() == 1 || inputs.size() == 2) && outputs.size() == 1);
|
|
|
|
auto input_wrapper = inputs[0].dynamicCast<wrapper_type>();
|
|
auto input = input_wrapper->getView();
|
|
|
|
auto output_wrapper = outputs[0].dynamicCast<wrapper_type>();
|
|
auto output = output_wrapper->getSpan();
|
|
|
|
const auto compute_scale = [this](std::size_t input_size, std::size_t output_size) {
|
|
return (align_corners && output_size > 1) ?
|
|
static_cast<float>(input_size - 1) / (output_size - 1) :
|
|
static_cast<float>(input_size) / output_size;
|
|
};
|
|
|
|
auto out_height = output.get_axis_size(-2), out_width = output.get_axis_size(-1);
|
|
auto in_height = input.get_axis_size(-2), in_width = input.get_axis_size(-1);
|
|
float scale_height = compute_scale(in_height, out_height),
|
|
scale_width = compute_scale(in_width, out_width);
|
|
|
|
if (type == InterpolationType::NEAREST_NEIGHBOUR)
|
|
kernels::resize_nn<T>(stream, output, input, scale_height, scale_width, align_corners, half_pixel_centers);
|
|
else if (type == InterpolationType::BILINEAR)
|
|
kernels::resize_bilinear<T>(stream, output, input, scale_height, scale_width, half_pixel_centers);
|
|
}
|
|
|
|
private:
|
|
csl::Stream stream;
|
|
InterpolationType type;
|
|
bool align_corners, half_pixel_centers;
|
|
};
|
|
|
|
}}} /* namespace cv::dnn::cuda4dnn */
|
|
|
|
#endif /* OPENCV_DNN_SRC_CUDA4DNN_PRIMITIVES_RESIZE_HPP */
|