mirror of
https://github.com/opencv/opencv.git
synced 2025-01-07 11:41:48 +08:00
0de26fd78e
Zlib-ng is zlib replacement with optimizations for "next generation" systems. Its optimization may benifits image library decode and encode speed such as libpng. In our tests, if using zlib-ng and libpng combination on a x86_64 machine with AVX2, the time of `imdecode` amd `imencode` will drop 20% approximately. This patch enables zlib-ng's optimization if `CV_DISABLE_OPTIMIZATION` is OFF. Since Zlib-ng can dispatch intrinsics on the fly, port work is much easier. Related discussion: https://github.com/opencv/opencv/issues/22573
216 lines
7.5 KiB
C
216 lines
7.5 KiB
C
/* Copyright (C) 1995-2011, 2016 Mark Adler
|
|
* Copyright (C) 2017 ARM Holdings Inc.
|
|
* Authors:
|
|
* Adenilson Cavalcanti <adenilson.cavalcanti@arm.com>
|
|
* Adam Stylinski <kungfujesus06@gmail.com>
|
|
* For conditions of distribution and use, see copyright notice in zlib.h
|
|
*/
|
|
#ifdef ARM_NEON
|
|
#include "neon_intrins.h"
|
|
#include "../../zbuild.h"
|
|
#include "../../adler32_p.h"
|
|
|
|
static void NEON_accum32(uint32_t *s, const uint8_t *buf, size_t len) {
|
|
static const uint16_t ALIGNED_(16) taps[64] = {
|
|
64, 63, 62, 61, 60, 59, 58, 57,
|
|
56, 55, 54, 53, 52, 51, 50, 49,
|
|
48, 47, 46, 45, 44, 43, 42, 41,
|
|
40, 39, 38, 37, 36, 35, 34, 33,
|
|
32, 31, 30, 29, 28, 27, 26, 25,
|
|
24, 23, 22, 21, 20, 19, 18, 17,
|
|
16, 15, 14, 13, 12, 11, 10, 9,
|
|
8, 7, 6, 5, 4, 3, 2, 1 };
|
|
|
|
uint32x4_t adacc = vdupq_n_u32(0);
|
|
uint32x4_t s2acc = vdupq_n_u32(0);
|
|
uint32x4_t s2acc_0 = vdupq_n_u32(0);
|
|
uint32x4_t s2acc_1 = vdupq_n_u32(0);
|
|
uint32x4_t s2acc_2 = vdupq_n_u32(0);
|
|
|
|
adacc = vsetq_lane_u32(s[0], adacc, 0);
|
|
s2acc = vsetq_lane_u32(s[1], s2acc, 0);
|
|
|
|
uint32x4_t s3acc = vdupq_n_u32(0);
|
|
uint32x4_t adacc_prev = adacc;
|
|
|
|
uint16x8_t s2_0, s2_1, s2_2, s2_3;
|
|
s2_0 = s2_1 = s2_2 = s2_3 = vdupq_n_u16(0);
|
|
|
|
uint16x8_t s2_4, s2_5, s2_6, s2_7;
|
|
s2_4 = s2_5 = s2_6 = s2_7 = vdupq_n_u16(0);
|
|
|
|
size_t num_iter = len >> 2;
|
|
int rem = len & 3;
|
|
|
|
for (size_t i = 0; i < num_iter; ++i) {
|
|
uint8x16x4_t d0_d3 = vld1q_u8_x4(buf);
|
|
|
|
/* Unfortunately it doesn't look like there's a direct sum 8 bit to 32
|
|
* bit instruction, we'll have to make due summing to 16 bits first */
|
|
uint16x8x2_t hsum, hsum_fold;
|
|
hsum.val[0] = vpaddlq_u8(d0_d3.val[0]);
|
|
hsum.val[1] = vpaddlq_u8(d0_d3.val[1]);
|
|
|
|
hsum_fold.val[0] = vpadalq_u8(hsum.val[0], d0_d3.val[2]);
|
|
hsum_fold.val[1] = vpadalq_u8(hsum.val[1], d0_d3.val[3]);
|
|
|
|
adacc = vpadalq_u16(adacc, hsum_fold.val[0]);
|
|
s3acc = vaddq_u32(s3acc, adacc_prev);
|
|
adacc = vpadalq_u16(adacc, hsum_fold.val[1]);
|
|
|
|
/* If we do straight widening additions to the 16 bit values, we don't incur
|
|
* the usual penalties of a pairwise add. We can defer the multiplications
|
|
* until the very end. These will not overflow because we are incurring at
|
|
* most 408 loop iterations (NMAX / 64), and a given lane is only going to be
|
|
* summed into once. This means for the maximum input size, the largest value
|
|
* we will see is 255 * 102 = 26010, safely under uint16 max */
|
|
s2_0 = vaddw_u8(s2_0, vget_low_u8(d0_d3.val[0]));
|
|
s2_1 = vaddw_high_u8(s2_1, d0_d3.val[0]);
|
|
s2_2 = vaddw_u8(s2_2, vget_low_u8(d0_d3.val[1]));
|
|
s2_3 = vaddw_high_u8(s2_3, d0_d3.val[1]);
|
|
s2_4 = vaddw_u8(s2_4, vget_low_u8(d0_d3.val[2]));
|
|
s2_5 = vaddw_high_u8(s2_5, d0_d3.val[2]);
|
|
s2_6 = vaddw_u8(s2_6, vget_low_u8(d0_d3.val[3]));
|
|
s2_7 = vaddw_high_u8(s2_7, d0_d3.val[3]);
|
|
|
|
adacc_prev = adacc;
|
|
buf += 64;
|
|
}
|
|
|
|
s3acc = vshlq_n_u32(s3acc, 6);
|
|
|
|
if (rem) {
|
|
uint32x4_t s3acc_0 = vdupq_n_u32(0);
|
|
while (rem--) {
|
|
uint8x16_t d0 = vld1q_u8(buf);
|
|
uint16x8_t adler;
|
|
adler = vpaddlq_u8(d0);
|
|
s2_6 = vaddw_u8(s2_6, vget_low_u8(d0));
|
|
s2_7 = vaddw_high_u8(s2_7, d0);
|
|
adacc = vpadalq_u16(adacc, adler);
|
|
s3acc_0 = vaddq_u32(s3acc_0, adacc_prev);
|
|
adacc_prev = adacc;
|
|
buf += 16;
|
|
}
|
|
|
|
s3acc_0 = vshlq_n_u32(s3acc_0, 4);
|
|
s3acc = vaddq_u32(s3acc_0, s3acc);
|
|
}
|
|
|
|
uint16x8x4_t t0_t3 = vld1q_u16_x4(taps);
|
|
uint16x8x4_t t4_t7 = vld1q_u16_x4(taps + 32);
|
|
|
|
s2acc = vmlal_high_u16(s2acc, t0_t3.val[0], s2_0);
|
|
s2acc_0 = vmlal_u16(s2acc_0, vget_low_u16(t0_t3.val[0]), vget_low_u16(s2_0));
|
|
s2acc_1 = vmlal_high_u16(s2acc_1, t0_t3.val[1], s2_1);
|
|
s2acc_2 = vmlal_u16(s2acc_2, vget_low_u16(t0_t3.val[1]), vget_low_u16(s2_1));
|
|
|
|
s2acc = vmlal_high_u16(s2acc, t0_t3.val[2], s2_2);
|
|
s2acc_0 = vmlal_u16(s2acc_0, vget_low_u16(t0_t3.val[2]), vget_low_u16(s2_2));
|
|
s2acc_1 = vmlal_high_u16(s2acc_1, t0_t3.val[3], s2_3);
|
|
s2acc_2 = vmlal_u16(s2acc_2, vget_low_u16(t0_t3.val[3]), vget_low_u16(s2_3));
|
|
|
|
s2acc = vmlal_high_u16(s2acc, t4_t7.val[0], s2_4);
|
|
s2acc_0 = vmlal_u16(s2acc_0, vget_low_u16(t4_t7.val[0]), vget_low_u16(s2_4));
|
|
s2acc_1 = vmlal_high_u16(s2acc_1, t4_t7.val[1], s2_5);
|
|
s2acc_2 = vmlal_u16(s2acc_2, vget_low_u16(t4_t7.val[1]), vget_low_u16(s2_5));
|
|
|
|
s2acc = vmlal_high_u16(s2acc, t4_t7.val[2], s2_6);
|
|
s2acc_0 = vmlal_u16(s2acc_0, vget_low_u16(t4_t7.val[2]), vget_low_u16(s2_6));
|
|
s2acc_1 = vmlal_high_u16(s2acc_1, t4_t7.val[3], s2_7);
|
|
s2acc_2 = vmlal_u16(s2acc_2, vget_low_u16(t4_t7.val[3]), vget_low_u16(s2_7));
|
|
|
|
s2acc = vaddq_u32(s2acc_0, s2acc);
|
|
s2acc_2 = vaddq_u32(s2acc_1, s2acc_2);
|
|
s2acc = vaddq_u32(s2acc, s2acc_2);
|
|
|
|
uint32x2_t adacc2, s2acc2, as;
|
|
s2acc = vaddq_u32(s2acc, s3acc);
|
|
adacc2 = vpadd_u32(vget_low_u32(adacc), vget_high_u32(adacc));
|
|
s2acc2 = vpadd_u32(vget_low_u32(s2acc), vget_high_u32(s2acc));
|
|
as = vpadd_u32(adacc2, s2acc2);
|
|
s[0] = vget_lane_u32(as, 0);
|
|
s[1] = vget_lane_u32(as, 1);
|
|
}
|
|
|
|
static void NEON_handle_tail(uint32_t *pair, const uint8_t *buf, size_t len) {
|
|
unsigned int i;
|
|
for (i = 0; i < len; ++i) {
|
|
pair[0] += buf[i];
|
|
pair[1] += pair[0];
|
|
}
|
|
}
|
|
|
|
Z_INTERNAL uint32_t adler32_neon(uint32_t adler, const uint8_t *buf, size_t len) {
|
|
/* split Adler-32 into component sums */
|
|
uint32_t sum2 = (adler >> 16) & 0xffff;
|
|
adler &= 0xffff;
|
|
|
|
/* in case user likes doing a byte at a time, keep it fast */
|
|
if (len == 1)
|
|
return adler32_len_1(adler, buf, sum2);
|
|
|
|
/* initial Adler-32 value (deferred check for len == 1 speed) */
|
|
if (buf == NULL)
|
|
return 1L;
|
|
|
|
/* in case short lengths are provided, keep it somewhat fast */
|
|
if (len < 16)
|
|
return adler32_len_16(adler, buf, len, sum2);
|
|
|
|
uint32_t pair[2];
|
|
int n = NMAX;
|
|
unsigned int done = 0;
|
|
|
|
/* Split Adler-32 into component sums, it can be supplied by
|
|
* the caller sites (e.g. in a PNG file).
|
|
*/
|
|
pair[0] = adler;
|
|
pair[1] = sum2;
|
|
|
|
/* If memory is not SIMD aligned, do scalar sums to an aligned
|
|
* offset, provided that doing so doesn't completely eliminate
|
|
* SIMD operation. Aligned loads are still faster on ARM, even
|
|
* though there's no explicit aligned load instruction */
|
|
unsigned int align_offset = ((uintptr_t)buf & 15);
|
|
unsigned int align_adj = (align_offset) ? 16 - align_offset : 0;
|
|
|
|
if (align_offset && len >= (16 + align_adj)) {
|
|
NEON_handle_tail(pair, buf, align_adj);
|
|
n -= align_adj;
|
|
done += align_adj;
|
|
|
|
} else {
|
|
/* If here, we failed the len criteria test, it wouldn't be
|
|
* worthwhile to do scalar aligning sums */
|
|
align_adj = 0;
|
|
}
|
|
|
|
while (done < len) {
|
|
int remaining = (int)(len - done);
|
|
n = MIN(remaining, (done == align_adj) ? n : NMAX);
|
|
|
|
if (n < 16)
|
|
break;
|
|
|
|
NEON_accum32(pair, buf + done, n >> 4);
|
|
pair[0] %= BASE;
|
|
pair[1] %= BASE;
|
|
|
|
int actual_nsums = (n >> 4) << 4;
|
|
done += actual_nsums;
|
|
}
|
|
|
|
/* Handle the tail elements. */
|
|
if (done < len) {
|
|
NEON_handle_tail(pair, (buf + done), len - done);
|
|
pair[0] %= BASE;
|
|
pair[1] %= BASE;
|
|
}
|
|
|
|
/* D = B * 65536 + A, see: https://en.wikipedia.org/wiki/Adler-32. */
|
|
return (pair[1] << 16) | pair[0];
|
|
}
|
|
|
|
#endif
|