mirror of
https://github.com/opencv/opencv.git
synced 2025-01-07 11:41:48 +08:00
8d0dae4cec
If there will be measurement before the next predict, `statePost` would be assigned to updated value. So I guess these steps are meant to handle when no measurement and KF only do the predict step. ```cpp statePre.copyTo(statePost); errorCovPre.copyTo(errorCovPost); ```
135 lines
4.4 KiB
C++
135 lines
4.4 KiB
C++
/*M///////////////////////////////////////////////////////////////////////////////////////
|
|
//
|
|
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
|
|
//
|
|
// By downloading, copying, installing or using the software you agree to this license.
|
|
// If you do not agree to this license, do not download, install,
|
|
// copy or use the software.
|
|
//
|
|
//
|
|
// Intel License Agreement
|
|
// For Open Source Computer Vision Library
|
|
//
|
|
// Copyright (C) 2000, Intel Corporation, all rights reserved.
|
|
// Third party copyrights are property of their respective owners.
|
|
//
|
|
// Redistribution and use in source and binary forms, with or without modification,
|
|
// are permitted provided that the following conditions are met:
|
|
//
|
|
// * Redistribution's of source code must retain the above copyright notice,
|
|
// this list of conditions and the following disclaimer.
|
|
//
|
|
// * Redistribution's in binary form must reproduce the above copyright notice,
|
|
// this list of conditions and the following disclaimer in the documentation
|
|
// and/or other materials provided with the distribution.
|
|
//
|
|
// * The name of Intel Corporation may not be used to endorse or promote products
|
|
// derived from this software without specific prior written permission.
|
|
//
|
|
// This software is provided by the copyright holders and contributors "as is" and
|
|
// any express or implied warranties, including, but not limited to, the implied
|
|
// warranties of merchantability and fitness for a particular purpose are disclaimed.
|
|
// In no event shall the Intel Corporation or contributors be liable for any direct,
|
|
// indirect, incidental, special, exemplary, or consequential damages
|
|
// (including, but not limited to, procurement of substitute goods or services;
|
|
// loss of use, data, or profits; or business interruption) however caused
|
|
// and on any theory of liability, whether in contract, strict liability,
|
|
// or tort (including negligence or otherwise) arising in any way out of
|
|
// the use of this software, even if advised of the possibility of such damage.
|
|
//
|
|
//M*/
|
|
#include "precomp.hpp"
|
|
|
|
namespace cv
|
|
{
|
|
|
|
KalmanFilter::KalmanFilter() {}
|
|
KalmanFilter::KalmanFilter(int dynamParams, int measureParams, int controlParams, int type)
|
|
{
|
|
init(dynamParams, measureParams, controlParams, type);
|
|
}
|
|
|
|
void KalmanFilter::init(int DP, int MP, int CP, int type)
|
|
{
|
|
CV_Assert( DP > 0 && MP > 0 );
|
|
CV_Assert( type == CV_32F || type == CV_64F );
|
|
CP = std::max(CP, 0);
|
|
|
|
statePre = Mat::zeros(DP, 1, type);
|
|
statePost = Mat::zeros(DP, 1, type);
|
|
transitionMatrix = Mat::eye(DP, DP, type);
|
|
|
|
processNoiseCov = Mat::eye(DP, DP, type);
|
|
measurementMatrix = Mat::zeros(MP, DP, type);
|
|
measurementNoiseCov = Mat::eye(MP, MP, type);
|
|
|
|
errorCovPre = Mat::zeros(DP, DP, type);
|
|
errorCovPost = Mat::zeros(DP, DP, type);
|
|
gain = Mat::zeros(DP, MP, type);
|
|
|
|
if( CP > 0 )
|
|
controlMatrix = Mat::zeros(DP, CP, type);
|
|
else
|
|
controlMatrix.release();
|
|
|
|
temp1.create(DP, DP, type);
|
|
temp2.create(MP, DP, type);
|
|
temp3.create(MP, MP, type);
|
|
temp4.create(MP, DP, type);
|
|
temp5.create(MP, 1, type);
|
|
}
|
|
|
|
const Mat& KalmanFilter::predict(const Mat& control)
|
|
{
|
|
CV_INSTRUMENT_REGION();
|
|
|
|
// update the state: x'(k) = A*x(k)
|
|
statePre = transitionMatrix*statePost;
|
|
|
|
if( !control.empty() )
|
|
// x'(k) = x'(k) + B*u(k)
|
|
statePre += controlMatrix*control;
|
|
|
|
// update error covariance matrices: temp1 = A*P(k)
|
|
temp1 = transitionMatrix*errorCovPost;
|
|
|
|
// P'(k) = temp1*At + Q
|
|
gemm(temp1, transitionMatrix, 1, processNoiseCov, 1, errorCovPre, GEMM_2_T);
|
|
|
|
// handle the case when there will be no measurement before the next predict.
|
|
statePre.copyTo(statePost);
|
|
errorCovPre.copyTo(errorCovPost);
|
|
|
|
return statePre;
|
|
}
|
|
|
|
const Mat& KalmanFilter::correct(const Mat& measurement)
|
|
{
|
|
CV_INSTRUMENT_REGION();
|
|
|
|
// temp2 = H*P'(k)
|
|
temp2 = measurementMatrix * errorCovPre;
|
|
|
|
// temp3 = temp2*Ht + R
|
|
gemm(temp2, measurementMatrix, 1, measurementNoiseCov, 1, temp3, GEMM_2_T);
|
|
|
|
// temp4 = inv(temp3)*temp2 = Kt(k)
|
|
solve(temp3, temp2, temp4, DECOMP_SVD);
|
|
|
|
// K(k)
|
|
gain = temp4.t();
|
|
|
|
// temp5 = z(k) - H*x'(k)
|
|
temp5 = measurement - measurementMatrix*statePre;
|
|
|
|
// x(k) = x'(k) + K(k)*temp5
|
|
statePost = statePre + gain*temp5;
|
|
|
|
// P(k) = P'(k) - K(k)*temp2
|
|
errorCovPost = errorCovPre - gain*temp2;
|
|
|
|
return statePost;
|
|
}
|
|
|
|
}
|