opencv/modules/stereo/src/stereo_geom.cpp
2024-06-26 19:01:34 +03:00

713 lines
23 KiB
C++

// This file is part of OpenCV project.
// It is subject to the license terms in the LICENSE file found in the top-level directory
// of this distribution and at http://opencv.org/license.html
#include "precomp.hpp"
namespace cv {
void reprojectImageTo3D( InputArray _disparity, OutputArray __3dImage,
InputArray _Qmat, bool handleMissingValues, int dtype )
{
CV_INSTRUMENT_REGION();
Mat disparity = _disparity.getMat(), Q = _Qmat.getMat();
int stype = disparity.type();
CV_Assert( stype == CV_8UC1 || stype == CV_16SC1 ||
stype == CV_32SC1 || stype == CV_32FC1 );
CV_Assert( Q.size() == Size(4,4) );
if( dtype >= 0 )
dtype = CV_MAKETYPE(CV_MAT_DEPTH(dtype), 3);
if( __3dImage.fixedType() )
{
int dtype_ = __3dImage.type();
CV_Assert( dtype == -1 || dtype == dtype_ );
dtype = dtype_;
}
if( dtype < 0 )
dtype = CV_32FC3;
else
CV_Assert( dtype == CV_16SC3 || dtype == CV_32SC3 || dtype == CV_32FC3 );
__3dImage.create(disparity.size(), dtype);
Mat _3dImage = __3dImage.getMat();
const float bigZ = 10000.f;
Matx44d _Q;
Q.convertTo(_Q, CV_64F);
int x, cols = disparity.cols;
CV_Assert( cols >= 0 );
std::vector<float> _sbuf(cols);
std::vector<Vec3f> _dbuf(cols);
float* sbuf = &_sbuf[0];
Vec3f* dbuf = &_dbuf[0];
double minDisparity = FLT_MAX;
// NOTE: here we quietly assume that at least one pixel in the disparity map is not defined.
// and we set the corresponding Z's to some fixed big value.
if( handleMissingValues )
cv::minMaxIdx( disparity, &minDisparity, 0, 0, 0 );
for( int y = 0; y < disparity.rows; y++ )
{
float* sptr = sbuf;
Vec3f* dptr = dbuf;
if( stype == CV_8UC1 )
{
const uchar* sptr0 = disparity.ptr<uchar>(y);
for( x = 0; x < cols; x++ )
sptr[x] = (float)sptr0[x];
}
else if( stype == CV_16SC1 )
{
const short* sptr0 = disparity.ptr<short>(y);
for( x = 0; x < cols; x++ )
sptr[x] = (float)sptr0[x];
}
else if( stype == CV_32SC1 )
{
const int* sptr0 = disparity.ptr<int>(y);
for( x = 0; x < cols; x++ )
sptr[x] = (float)sptr0[x];
}
else
sptr = disparity.ptr<float>(y);
if( dtype == CV_32FC3 )
dptr = _3dImage.ptr<Vec3f>(y);
for( x = 0; x < cols; x++)
{
double d = sptr[x];
Vec4d homg_pt = _Q*Vec4d(x, y, d, 1.0);
dptr[x] = Vec3d(homg_pt.val);
dptr[x] /= homg_pt[3];
if( fabs(d-minDisparity) <= FLT_EPSILON )
dptr[x][2] = bigZ;
}
if( dtype == CV_16SC3 )
{
Vec3s* dptr0 = _3dImage.ptr<Vec3s>(y);
for( x = 0; x < cols; x++ )
{
dptr0[x] = dptr[x];
}
}
else if( dtype == CV_32SC3 )
{
Vec3i* dptr0 = _3dImage.ptr<Vec3i>(y);
for( x = 0; x < cols; x++ )
{
dptr0[x] = dptr[x];
}
}
}
}
void stereoRectify( InputArray _cameraMatrix1, InputArray _distCoeffs1,
InputArray _cameraMatrix2, InputArray _distCoeffs2,
Size imageSize, InputArray R, InputArray T,
OutputArray _R1, OutputArray _R2,
OutputArray _P1, OutputArray _P2,
OutputArray _Qmat, int flags,
double alpha, Size newImgSize,
Rect* roi1, Rect* roi2 )
{
Mat matR = Mat_<double>(R.getMat()), matT = Mat_<double>(T.getMat());
Mat om, r_r;
Mat Z = Mat::zeros(3, 1, CV_64F);
double nx = imageSize.width, ny = imageSize.height;
if( matR.rows == 3 && matR.cols == 3 )
Rodrigues(matR, om); // get vector rotation
else
matR.copyTo(om);
om *= -0.5; // get average rotation
Rodrigues(om, r_r);
Mat t = r_r * matT; // rotate cameras to same orientation by averaging
int idx = fabs(t.at<double>(0)) > fabs(t.at<double>(1)) ? 0 : 1;
double c = t.at<double>(idx), nt = norm(t, NORM_L2);
double _uu[3]={0, 0, 0};
_uu[idx] = c > 0 ? 1 : -1;
CV_Assert(nt > 0.0);
// calculate global Z rotation
Mat ww = t.cross(Mat(3, 1, CV_64F, _uu)), wR;
double nw = norm(ww, NORM_L2);
if (nw > 0.0)
ww *= std::acos(fabs(c)/nt)/nw;
Rodrigues(ww, wR);
Mat Ri;
// apply to both views
gemm(wR, r_r, 1, Mat(), 0, Ri, GEMM_2_T);
Ri.copyTo(_R1);
gemm(wR, r_r, 1, Mat(), 0, Ri, 0);
Ri.copyTo(_R2);
t = Ri * matT;
// calculate projection/camera matrices
// these contain the relevant rectified image internal params (fx, fy=fx, cx, cy)
Point2d cc_new[2]={};
newImgSize = newImgSize.width * newImgSize.height != 0 ? newImgSize : imageSize;
const double ratio_x = (double)newImgSize.width / imageSize.width / 2;
const double ratio_y = (double)newImgSize.height / imageSize.height / 2;
const double ratio = idx == 1 ? ratio_x : ratio_y;
Mat cameraMatrix1 = Mat_<double>(_cameraMatrix1.getMat());
Mat cameraMatrix2 = Mat_<double>(_cameraMatrix2.getMat());
Mat distCoeffs1, distCoeffs2;
if (!_distCoeffs1.empty())
distCoeffs1 = Mat_<double>(_distCoeffs1.getMat());
if (!_distCoeffs2.empty())
distCoeffs2 = Mat_<double>(_distCoeffs2.getMat());
double fc_new = (cameraMatrix1.at<double>(idx ^ 1, idx ^ 1) + cameraMatrix2.at<double>(idx ^ 1, idx ^ 1)) * ratio;
for( int k = 0; k < 2; k++ )
{
const Mat& A = k == 0 ? cameraMatrix1 : cameraMatrix2;
const Mat& Dk = k == 0 ? distCoeffs1 : distCoeffs2;
Point2f _pts[4] = {};
Point3f _pts_3[4] = {};
Mat pts(1, 4, CV_32FC2, _pts);
Mat pts_3(1, 4, CV_32FC3, _pts_3);
for( int i = 0; i < 4; i++ )
{
int j = (i<2) ? 0 : 1;
_pts[i].x = (float)((i % 2)*(nx-1));
_pts[i].y = (float)(j*(ny-1));
}
undistortPoints(pts, pts, A, Dk, Mat(), Mat());
convertPointsToHomogeneous(pts, pts_3);
// Change the camera matrix to have cc=[0,0] and fc = fc_new
double _a_tmp[3][3] = {{fc_new, 0, 0}, {0, fc_new, 0}, {0, 0, 1}};
Mat A_tmp(3, 3, CV_64F, _a_tmp);
projectPoints(pts_3, (k == 0 ? _R1 : _R2), Z, A_tmp, Mat(), pts);
Scalar avg = mean(pts);
cc_new[k].x = (nx-1)/2 - avg.val[0];
cc_new[k].y = (ny-1)/2 - avg.val[1];
}
// vertical focal length must be the same for both images to keep the epipolar constraint
// (for horizontal epipolar lines -- TBD: check for vertical epipolar lines)
// use fy for fx also, for simplicity
// For simplicity, set the principal points for both cameras to be the average
// of the two principal points (either one of or both x- and y- coordinates)
if( flags & STEREO_ZERO_DISPARITY )
{
cc_new[0].x = cc_new[1].x = (cc_new[0].x + cc_new[1].x)*0.5;
cc_new[0].y = cc_new[1].y = (cc_new[0].y + cc_new[1].y)*0.5;
}
else if( idx == 0 ) // horizontal stereo
cc_new[0].y = cc_new[1].y = (cc_new[0].y + cc_new[1].y)*0.5;
else // vertical stereo
cc_new[0].x = cc_new[1].x = (cc_new[0].x + cc_new[1].x)*0.5;
double t_idx = t.at<double>(idx);
Mat pp = Mat::zeros(3, 4, CV_64F);
pp.at<double>(0, 0) = pp.at<double>(1, 1) = fc_new;
pp.at<double>(0, 2) = cc_new[0].x;
pp.at<double>(1, 2) = cc_new[0].y;
pp.at<double>(2, 2) = 1.;
pp.copyTo(_P1);
pp.at<double>(0, 2) = cc_new[1].x;
pp.at<double>(1, 2) = cc_new[1].y;
pp.at<double>(idx, 3) = t_idx*fc_new; // baseline * focal length
pp.copyTo(_P2);
alpha = MIN(alpha, 1.);
cv::Rect_<double> inner1, inner2, outer1, outer2;
getUndistortRectangles(cameraMatrix1, distCoeffs1, _R1, _P1, imageSize, inner1, outer1);
getUndistortRectangles(cameraMatrix2, distCoeffs2, _R2, _P2, imageSize, inner2, outer2);
{
newImgSize = newImgSize.width*newImgSize.height != 0 ? newImgSize : imageSize;
double cx1_0 = cc_new[0].x;
double cy1_0 = cc_new[0].y;
double cx2_0 = cc_new[1].x;
double cy2_0 = cc_new[1].y;
double cx1 = newImgSize.width*cx1_0/imageSize.width;
double cy1 = newImgSize.height*cy1_0/imageSize.height;
double cx2 = newImgSize.width*cx2_0/imageSize.width;
double cy2 = newImgSize.height*cy2_0/imageSize.height;
double s = 1.;
if( alpha >= 0 )
{
double s0 = std::max(std::max(std::max((double)cx1/(cx1_0 - inner1.x), (double)cy1/(cy1_0 - inner1.y)),
(double)(newImgSize.width - 1 - cx1)/(inner1.x + inner1.width - cx1_0)),
(double)(newImgSize.height - 1 - cy1)/(inner1.y + inner1.height - cy1_0));
s0 = std::max(std::max(std::max(std::max((double)cx2/(cx2_0 - inner2.x), (double)cy2/(cy2_0 - inner2.y)),
(double)(newImgSize.width - 1 - cx2)/(inner2.x + inner2.width - cx2_0)),
(double)(newImgSize.height - 1 - cy2)/(inner2.y + inner2.height - cy2_0)),
s0);
double s1 = std::min(std::min(std::min((double)cx1/(cx1_0 - outer1.x), (double)cy1/(cy1_0 - outer1.y)),
(double)(newImgSize.width - 1 - cx1)/(outer1.x + outer1.width - cx1_0)),
(double)(newImgSize.height - 1 - cy1)/(outer1.y + outer1.height - cy1_0));
s1 = std::min(std::min(std::min(std::min((double)cx2/(cx2_0 - outer2.x), (double)cy2/(cy2_0 - outer2.y)),
(double)(newImgSize.width - 1 - cx2)/(outer2.x + outer2.width - cx2_0)),
(double)(newImgSize.height - 1 - cy2)/(outer2.y + outer2.height - cy2_0)),
s1);
s = s0*(1 - alpha) + s1*alpha;
}
fc_new *= s;
cc_new[0] = Point2d(cx1, cy1);
cc_new[1] = Point2d(cx2, cy2);
pp.at<double>(0, 0) = pp.at<double>(1, 1) = fc_new;
pp.at<double>(0, 2) = cx2;
pp.at<double>(1, 2) = cy2;
pp.at<double>(idx, 3) *= s;
pp.copyTo(_P2);
pp.at<double>(0, 2) = cx1;
pp.at<double>(1, 2) = cy1;
pp.at<double>(idx, 3) = 0.;
pp.copyTo(_P1);
if(roi1)
{
*roi1 =
cv::Rect(cvCeil((inner1.x - cx1_0)*s + cx1),
cvCeil((inner1.y - cy1_0)*s + cy1),
cvFloor(inner1.width*s), cvFloor(inner1.height*s))
& cv::Rect(0, 0, newImgSize.width, newImgSize.height)
;
}
if(roi2)
{
*roi2 =
cv::Rect(cvCeil((inner2.x - cx2_0)*s + cx2),
cvCeil((inner2.y - cy2_0)*s + cy2),
cvFloor(inner2.width*s), cvFloor(inner2.height*s))
& cv::Rect(0, 0, newImgSize.width, newImgSize.height)
;
}
}
if( _Qmat.needed() )
{
double q[] =
{
1, 0, 0, -cc_new[0].x,
0, 1, 0, -cc_new[0].y,
0, 0, 0, fc_new,
0, 0, -1./t_idx,
(idx == 0 ? cc_new[0].x - cc_new[1].x : cc_new[0].y - cc_new[1].y)/t_idx
};
Mat Q(4, 4, CV_64F, q);
Q.copyTo(_Qmat);
}
}
/*
CV_IMPL int cvStereoRectifyUncalibrated(
const CvMat* _points1, const CvMat* _points2,
const CvMat* F0, CvSize imgSize,
CvMat* _H1, CvMat* _H2, double threshold )
*/
bool stereoRectifyUncalibrated( InputArray _points1, InputArray _points2,
InputArray _Fmat, Size imgSize,
OutputArray _Hmat1, OutputArray _Hmat2, double threshold )
{
Mat points1 = _points1.getMat(), points2 = _points2.getMat();
CV_Assert( points1.size() == points2.size() );
int npoints = points1.checkVector(2);
CV_Assert(npoints > 0);
Mat _m1, _m2;
points1.convertTo(_m1, CV_64F);
points2.convertTo(_m2, CV_64F);
_m1 = _m1.reshape(2, 1);
_m2 = _m2.reshape(2, 1);
Mat F0 = _Fmat.getMat(), F, Wdiag, U, Vt;
F0.convertTo(F, CV_64F);
SVDecomp(F, Wdiag, U, Vt, 0);
Wdiag.at<double>(2) = 0.;
Mat W = Mat::diag(Wdiag), UW;
gemm(U, W, 1, Mat(), 0, UW);
gemm(UW, Vt, 1, Mat(), 0, F);
double cx = cvRound( (imgSize.width-1)*0.5 );
double cy = cvRound( (imgSize.height-1)*0.5 );
if( threshold > 0 )
{
Mat _lines1, _lines2;
computeCorrespondEpilines(_m1, 1, F, _lines1);
computeCorrespondEpilines(_m2, 2, F, _lines2);
CV_Assert(_m1.isContinuous() && _m2.isContinuous() &&
_lines1.isContinuous() && _lines2.isContinuous());
Point2d* m1 = (Point2d*)_m1.data;
Point2d* m2 = (Point2d*)_m2.data;
Point3d* lines1 = (Point3d*)_lines1.data;
Point3d* lines2 = (Point3d*)_lines2.data;
// measure distance from points to the corresponding epilines, mark outliers
int i, j;
for( i = j = 0; i < npoints; i++ )
{
if( fabs(m1[i].x*lines2[i].x +
m1[i].y*lines2[i].y +
lines2[i].z) <= threshold &&
fabs(m2[i].x*lines1[i].x +
m2[i].y*lines1[i].y +
lines1[i].z) <= threshold )
{
if( j < i )
{
m1[j] = m1[i];
m2[j] = m2[i];
}
j++;
}
}
npoints = j;
if( npoints == 0 )
return false;
_m1.cols = _m2.cols = npoints;
}
Mat E2 = U.col(2).clone();
if (E2.at<double>(2) < 0)
E2 *= -1.0;
double t[] =
{
1, 0, -cx,
0, 1, -cy,
0, 0, 1
};
Mat T(3, 3, CV_64F, t);
E2 = T*E2;
double* e2 = (double*)E2.data;
int mirror = e2[0] < 0;
double d = std::sqrt(e2[0]*e2[0] + e2[1]*e2[1]);
d = MAX(d, DBL_EPSILON);
double alpha = e2[0]/d;
double beta = e2[1]/d;
double r[] =
{
alpha, beta, 0,
-beta, alpha, 0,
0, 0, 1
};
Mat R(3, 3, CV_64F, r);
T = R*T;
E2 = R*E2;
double invf = fabs(e2[2]) < 1e-6*fabs(e2[0]) ? 0 : -e2[2]/e2[0];
double k[] =
{
1, 0, 0,
0, 1, 0,
invf, 0, 1
};
Mat K(3, 3, CV_64F, k);
Mat H2 = K*T;
E2 = K*E2;
double it[] =
{
1, 0, cx,
0, 1, cy,
0, 0, 1
};
Mat iT( 3, 3, CV_64F, it );
H2 = iT*H2;
U.col(2).copyTo(E2);
if (E2.at<double>(2) < 0)
E2 *= -1.0;
double e2_x[] =
{
0, -e2[2], e2[1],
e2[2], 0, -e2[0],
-e2[1], e2[0], 0
};
double e2_111[] =
{
e2[0], e2[0], e2[0],
e2[1], e2[1], e2[1],
e2[2], e2[2], e2[2],
};
Mat E2_x(3, 3, CV_64F, e2_x);
Mat E2_111(3, 3, CV_64F, e2_111);
Mat H0 = E2_x*F + E2_111;
H0 = H2*H0;
Mat E1(3, 1, CV_64F, (double*)Vt.data+6);
E1 = H0*E1;
perspectiveTransform( _m1, _m1, H0 );
perspectiveTransform( _m2, _m2, H2 );
Mat A, X;
convertPointsToHomogeneous(_m1, A, CV_64F);
A = A.reshape(1, npoints);
Mat BxBy = _m2.reshape(1, npoints);
Mat B = BxBy.col(0);
solve(A, B, X, DECOMP_SVD);
CV_Assert(X.isContinuous());
double* x = X.ptr<double>();
double ha[] =
{
x[0], x[1], x[2],
0, 1, 0,
0, 0, 1
};
Mat Ha(3, 3, CV_64F, ha);
Mat H1 = Ha*H0;
perspectiveTransform( _m1, _m1, Ha );
if( mirror )
{
double mm[] = { -1, 0, cx*2, 0, -1, cy*2, 0, 0, 1 };
Mat MM(3, 3, CV_64F, mm);
H1 = MM*H1;
H2 = MM*H2;
}
H1.copyTo(_Hmat1);
H2.copyTo(_Hmat2);
return true;
}
static void adjust3rdMatrix(InputArrayOfArrays _imgpt1_0,
InputArrayOfArrays _imgpt3_0,
const Mat& cameraMatrix1, const Mat& distCoeffs1,
const Mat& cameraMatrix3, const Mat& distCoeffs3,
const Mat& R1, const Mat& R3, const Mat& P1, Mat& P3 )
{
size_t n1 = _imgpt1_0.total(), n3 = _imgpt3_0.total();
std::vector<Point2f> imgpt1, imgpt3;
for( int i = 0; i < (int)std::min(n1, n3); i++ )
{
Mat pt1 = _imgpt1_0.getMat(i), pt3 = _imgpt3_0.getMat(i);
int ni1 = pt1.checkVector(2, CV_32F), ni3 = pt3.checkVector(2, CV_32F);
CV_Assert( ni1 > 0 && ni1 == ni3 );
const Point2f* pt1data = pt1.ptr<Point2f>();
const Point2f* pt3data = pt3.ptr<Point2f>();
std::copy(pt1data, pt1data + ni1, std::back_inserter(imgpt1));
std::copy(pt3data, pt3data + ni3, std::back_inserter(imgpt3));
}
undistortPoints(imgpt1, imgpt1, cameraMatrix1, distCoeffs1, R1, P1);
undistortPoints(imgpt3, imgpt3, cameraMatrix3, distCoeffs3, R3, P3);
double y1_ = 0, y2_ = 0, y1y1_ = 0, y1y2_ = 0;
size_t n = imgpt1.size();
CV_DbgAssert(n > 0);
for( size_t i = 0; i < n; i++ )
{
double y1 = imgpt3[i].y, y2 = imgpt1[i].y;
y1_ += y1; y2_ += y2;
y1y1_ += y1*y1; y1y2_ += y1*y2;
}
y1_ /= n;
y2_ /= n;
y1y1_ /= n;
y1y2_ /= n;
double a = (y1y2_ - y1_*y2_)/(y1y1_ - y1_*y1_);
double b = y2_ - a*y1_;
P3.at<double>(0,0) *= a;
P3.at<double>(1,1) *= a;
P3.at<double>(0,2) = P3.at<double>(0,2)*a;
P3.at<double>(1,2) = P3.at<double>(1,2)*a + b;
P3.at<double>(0,3) *= a;
P3.at<double>(1,3) *= a;
}
float rectify3Collinear( InputArray _cameraMatrix1, InputArray _distCoeffs1,
InputArray _cameraMatrix2, InputArray _distCoeffs2,
InputArray _cameraMatrix3, InputArray _distCoeffs3,
InputArrayOfArrays _imgpt1,
InputArrayOfArrays _imgpt3,
Size imageSize, InputArray _Rmat12, InputArray _Tmat12,
InputArray _Rmat13, InputArray _Tmat13,
OutputArray _Rmat1, OutputArray _Rmat2, OutputArray _Rmat3,
OutputArray _Pmat1, OutputArray _Pmat2, OutputArray _Pmat3,
OutputArray _Qmat,
double alpha, Size newImgSize,
Rect* roi1, Rect* roi2, int flags )
{
// first, rectify the 1-2 stereo pair
stereoRectify( _cameraMatrix1, _distCoeffs1, _cameraMatrix2, _distCoeffs2,
imageSize, _Rmat12, _Tmat12, _Rmat1, _Rmat2, _Pmat1, _Pmat2, _Qmat,
flags, alpha, newImgSize, roi1, roi2 );
Mat R12 = _Rmat12.getMat(), R13 = _Rmat13.getMat(), T12 = _Tmat12.getMat(), T13 = _Tmat13.getMat();
_Rmat3.create(3, 3, CV_64F);
_Pmat3.create(3, 4, CV_64F);
Mat P1 = _Pmat1.getMat(), P2 = _Pmat2.getMat();
Mat R3 = _Rmat3.getMat(), P3 = _Pmat3.getMat();
// recompute rectification transforms for cameras 1 & 2.
Mat om, r_r, r_r13;
if( R13.size() != Size(3,3) )
Rodrigues(R13, r_r13);
else
R13.copyTo(r_r13);
if( R12.size() == Size(3,3) )
Rodrigues(R12, om);
else
R12.copyTo(om);
om *= -0.5;
Rodrigues(om, r_r); // rotate cameras to same orientation by averaging
Mat_<double> t12 = r_r * T12;
int idx = fabs(t12(0,0)) > fabs(t12(1,0)) ? 0 : 1;
double c = t12(idx,0), nt = norm(t12, NORM_L2);
CV_Assert(fabs(nt) > 0);
Mat_<double> uu = Mat_<double>::zeros(3,1);
uu(idx, 0) = c > 0 ? 1 : -1;
// calculate global Z rotation
Mat_<double> ww = t12.cross(uu), wR;
double nw = norm(ww, NORM_L2);
CV_Assert(fabs(nw) > 0);
ww *= std::acos(fabs(c)/nt)/nw;
Rodrigues(ww, wR);
// now rotate camera 3 to make its optical axis parallel to cameras 1 and 2.
R3 = wR*r_r.t()*r_r13.t();
Mat_<double> t13 = R3 * T13;
P2.copyTo(P3);
Mat t = P3.col(3);
t13.copyTo(t);
P3.at<double>(0,3) *= P3.at<double>(0,0);
P3.at<double>(1,3) *= P3.at<double>(1,1);
if( !_imgpt1.empty() && !_imgpt3.empty() )
adjust3rdMatrix(_imgpt1, _imgpt3, _cameraMatrix1.getMat(), _distCoeffs1.getMat(),
_cameraMatrix3.getMat(), _distCoeffs3.getMat(), _Rmat1.getMat(), R3, P1, P3);
return (float)((P3.at<double>(idx,3)/P3.at<double>(idx,idx))/
(P2.at<double>(idx,3)/P2.at<double>(idx,idx)));
}
void cv::fisheye::stereoRectify( InputArray K1, InputArray D1, InputArray K2, InputArray D2, const Size& imageSize,
InputArray _R, InputArray _tvec, OutputArray R1, OutputArray R2, OutputArray P1, OutputArray P2,
OutputArray Q, int flags, const Size& newImageSize, double balance, double fov_scale)
{
CV_INSTRUMENT_REGION();
CV_Assert((_R.size() == Size(3, 3) || _R.total() * _R.channels() == 3) && (_R.depth() == CV_32F || _R.depth() == CV_64F));
CV_Assert(_tvec.total() * _tvec.channels() == 3 && (_tvec.depth() == CV_32F || _tvec.depth() == CV_64F));
Mat aaa = _tvec.getMat().reshape(3, 1);
Vec3d rvec; // Rodrigues vector
if (_R.size() == Size(3, 3))
{
Matx33d rmat;
_R.getMat().convertTo(rmat, CV_64F);
rvec = Affine3d(rmat).rvec();
}
else if (_R.total() * _R.channels() == 3)
_R.getMat().convertTo(rvec, CV_64F);
Vec3d tvec;
_tvec.getMat().convertTo(tvec, CV_64F);
// rectification algorithm
rvec *= -0.5; // get average rotation
Matx33d r_r;
Rodrigues(rvec, r_r); // rotate cameras to same orientation by averaging
Vec3d t = r_r * tvec;
Vec3d uu(t[0] > 0 ? 1 : -1, 0, 0);
// calculate global Z rotation
Vec3d ww = t.cross(uu);
double nw = norm(ww);
if (nw > 0.0)
ww *= std::acos(fabs(t[0])/cv::norm(t))/nw;
Matx33d wr;
Rodrigues(ww, wr);
// apply to both views
Matx33d ri1 = wr * r_r.t();
Mat(ri1, false).convertTo(R1, R1.empty() ? CV_64F : R1.type());
Matx33d ri2 = wr * r_r;
Mat(ri2, false).convertTo(R2, R2.empty() ? CV_64F : R2.type());
Vec3d tnew = ri2 * tvec;
// calculate projection/camera matrices. these contain the relevant rectified image internal params (fx, fy=fx, cx, cy)
Matx33d newK1, newK2;
fisheye::estimateNewCameraMatrixForUndistortRectify(K1, D1, imageSize, R1, newK1, balance, newImageSize, fov_scale);
fisheye::estimateNewCameraMatrixForUndistortRectify(K2, D2, imageSize, R2, newK2, balance, newImageSize, fov_scale);
double fc_new = std::min(newK1(1,1), newK2(1,1));
Point2d cc_new[2] = { Vec2d(newK1(0, 2), newK1(1, 2)), Vec2d(newK2(0, 2), newK2(1, 2)) };
// Vertical focal length must be the same for both images to keep the epipolar constraint use fy for fx also.
// For simplicity, set the principal points for both cameras to be the average
// of the two principal points (either one of or both x- and y- coordinates)
if( flags & STEREO_ZERO_DISPARITY )
cc_new[0] = cc_new[1] = (cc_new[0] + cc_new[1]) * 0.5;
else
cc_new[0].y = cc_new[1].y = (cc_new[0].y + cc_new[1].y)*0.5;
Mat(Matx34d(fc_new, 0, cc_new[0].x, 0,
0, fc_new, cc_new[0].y, 0,
0, 0, 1, 0), false).convertTo(P1, P1.empty() ? CV_64F : P1.type());
Mat(Matx34d(fc_new, 0, cc_new[1].x, tnew[0]*fc_new, // baseline * focal length;,
0, fc_new, cc_new[1].y, 0,
0, 0, 1, 0), false).convertTo(P2, P2.empty() ? CV_64F : P2.type());
if (Q.needed())
Mat(Matx44d(1, 0, 0, -cc_new[0].x,
0, 1, 0, -cc_new[0].y,
0, 0, 0, fc_new,
0, 0, -1./tnew[0], (cc_new[0].x - cc_new[1].x)/tnew[0]), false).convertTo(Q, Q.empty() ? CV_64F : Q.depth());
}
}