opencv/modules/dnn/test/test_tf_importer.cpp
2017-09-12 09:50:55 +03:00

150 lines
3.7 KiB
C++

// This file is part of OpenCV project.
// It is subject to the license terms in the LICENSE file found in the top-level directory
// of this distribution and at http://opencv.org/license.html.
// Copyright (C) 2016, Intel Corporation, all rights reserved.
// Third party copyrights are property of their respective owners.
/*
Test for Tensorflow models loading
*/
#include "test_precomp.hpp"
#include "npy_blob.hpp"
namespace cvtest
{
using namespace cv;
using namespace cv::dnn;
template<typename TString>
static std::string _tf(TString filename)
{
return (getOpenCVExtraDir() + "/dnn/") + filename;
}
TEST(Test_TensorFlow, read_inception)
{
Net net;
{
const string model = findDataFile("dnn/tensorflow_inception_graph.pb", false);
Ptr<Importer> importer = createTensorflowImporter(model);
ASSERT_TRUE(importer != NULL);
importer->populateNet(net);
}
Mat sample = imread(_tf("grace_hopper_227.png"));
ASSERT_TRUE(!sample.empty());
Mat input;
resize(sample, input, Size(224, 224));
input -= 128; // mean sub
Mat inputBlob = blobFromImage(input);
net.setInput(inputBlob, "input");
Mat out = net.forward("softmax2");
std::cout << out.dims << std::endl;
}
TEST(Test_TensorFlow, inception_accuracy)
{
Net net;
{
const string model = findDataFile("dnn/tensorflow_inception_graph.pb", false);
Ptr<Importer> importer = createTensorflowImporter(model);
ASSERT_TRUE(importer != NULL);
importer->populateNet(net);
}
Mat sample = imread(_tf("grace_hopper_227.png"));
ASSERT_TRUE(!sample.empty());
resize(sample, sample, Size(224, 224));
Mat inputBlob = blobFromImage(sample);
net.setInput(inputBlob, "input");
Mat out = net.forward("softmax2");
Mat ref = blobFromNPY(_tf("tf_inception_prob.npy"));
normAssert(ref, out);
}
static std::string path(const std::string& file)
{
return findDataFile("dnn/tensorflow/" + file, false);
}
static void runTensorFlowNet(const std::string& prefix,
double l1 = 1e-5, double lInf = 1e-4)
{
std::string netPath = path(prefix + "_net.pb");
std::string inpPath = path(prefix + "_in.npy");
std::string outPath = path(prefix + "_out.npy");
Net net = readNetFromTensorflow(netPath);
cv::Mat input = blobFromNPY(inpPath);
cv::Mat target = blobFromNPY(outPath);
net.setInput(input);
cv::Mat output = net.forward();
normAssert(target, output, "", l1, lInf);
}
TEST(Test_TensorFlow, single_conv)
{
runTensorFlowNet("single_conv");
}
TEST(Test_TensorFlow, padding)
{
runTensorFlowNet("padding_same");
runTensorFlowNet("padding_valid");
}
TEST(Test_TensorFlow, eltwise_add_mul)
{
runTensorFlowNet("eltwise_add_mul");
}
TEST(Test_TensorFlow, pad_and_concat)
{
runTensorFlowNet("pad_and_concat");
}
TEST(Test_TensorFlow, fused_batch_norm)
{
runTensorFlowNet("fused_batch_norm");
}
TEST(Test_TensorFlow, pooling)
{
runTensorFlowNet("max_pool_even");
runTensorFlowNet("max_pool_odd_valid");
runTensorFlowNet("max_pool_odd_same");
}
TEST(Test_TensorFlow, deconvolution)
{
runTensorFlowNet("deconvolution");
}
TEST(Test_TensorFlow, fp16)
{
const float l1 = 1e-3;
const float lInf = 1e-2;
runTensorFlowNet("fp16_single_conv", l1, lInf);
runTensorFlowNet("fp16_deconvolution", l1, lInf);
runTensorFlowNet("fp16_max_pool_odd_same", l1, lInf);
runTensorFlowNet("fp16_padding_valid", l1, lInf);
runTensorFlowNet("fp16_eltwise_add_mul", l1, lInf);
runTensorFlowNet("fp16_max_pool_odd_valid", l1, lInf);
runTensorFlowNet("fp16_pad_and_concat", l1, lInf);
runTensorFlowNet("fp16_max_pool_even", l1, lInf);
runTensorFlowNet("fp16_padding_same", l1, lInf);
}
}