opencv/samples/dnn/colorization.cpp
Gursimar Singh 979428d590
Merge pull request #26334 from gursimarsingh:dnn_engine_change
Modify DNN Samples to use ENGINE_CLASSIC for Non-Default Back-end or Target #26334

PR resolves #26325 regarding fall-back to ENGINE_CLASSIC if non-default back-end or target is passed by user.
### Pull Request Readiness Checklist

See details at https://github.com/opencv/opencv/wiki/How_to_contribute#making-a-good-pull-request

- [x] I agree to contribute to the project under Apache 2 License.
- [x] To the best of my knowledge, the proposed patch is not based on a code under GPL or another license that is incompatible with OpenCV
- [x] The PR is proposed to the proper branch
- [x] There is a reference to the original bug report and related work
- [x] There is accuracy test, performance test and test data in opencv_extra repository, if applicable
      Patch to opencv_extra has the same branch name.
- [x] The feature is well documented and sample code can be built with the project CMake
2024-11-08 08:58:35 +03:00

122 lines
4.5 KiB
C++

// This file is part of OpenCV project.
// It is subject to the license terms in the LICENSE file found in the top-level directory
// of this distribution and at http://opencv.org/license.html
// To download the onnx model, see: https://storage.googleapis.com/ailia-models/colorization/colorizer.onnx
#include <opencv2/dnn.hpp>
#include <opencv2/imgproc.hpp>
#include <opencv2/imgcodecs.hpp>
#include "common.hpp"
#include <opencv2/highgui.hpp>
#include <iostream>
using namespace cv;
using namespace std;
using namespace cv::dnn;
int main(int argc, char** argv) {
const string about =
"This sample demonstrates recoloring grayscale images with dnn.\n"
"This program is based on:\n"
" http://richzhang.github.io/colorization\n"
" https://github.com/richzhang/colorization\n"
"To download the onnx model:\n"
" https://storage.googleapis.com/ailia-models/colorization/colorizer.onnx\n";
const string param_keys =
"{ help h | | Print help message. }"
"{ input i | baboon.jpg | Path to the input image }"
"{ onnx_model_path | | Path to the ONNX model. Required. }";
const string backend_keys = format(
"{ backend | 0 | Choose one of computation backends: "
"%d: automatically (by default), "
"%d: Intel's Deep Learning Inference Engine (https://software.intel.com/openvino-toolkit), "
"%d: OpenCV implementation, "
"%d: VKCOM, "
"%d: CUDA, "
"%d: WebNN }",
cv::dnn::DNN_BACKEND_DEFAULT, cv::dnn::DNN_BACKEND_INFERENCE_ENGINE, cv::dnn::DNN_BACKEND_OPENCV,
cv::dnn::DNN_BACKEND_VKCOM, cv::dnn::DNN_BACKEND_CUDA, cv::dnn::DNN_BACKEND_WEBNN);
const string target_keys = format(
"{ target | 0 | Choose one of target computation devices: "
"%d: CPU target (by default), "
"%d: OpenCL, "
"%d: OpenCL fp16 (half-float precision), "
"%d: VPU, "
"%d: Vulkan, "
"%d: CUDA, "
"%d: CUDA fp16 (half-float preprocess) }",
cv::dnn::DNN_TARGET_CPU, cv::dnn::DNN_TARGET_OPENCL, cv::dnn::DNN_TARGET_OPENCL_FP16,
cv::dnn::DNN_TARGET_MYRIAD, cv::dnn::DNN_TARGET_VULKAN, cv::dnn::DNN_TARGET_CUDA,
cv::dnn::DNN_TARGET_CUDA_FP16);
const string keys = param_keys + backend_keys + target_keys;
CommandLineParser parser(argc, argv, keys);
parser.about(about);
if (parser.has("help")) {
parser.printMessage();
return 0;
}
string inputImagePath = parser.get<string>("input");
string onnxModelPath = parser.get<string>("onnx_model_path");
int backendId = parser.get<int>("backend");
int targetId = parser.get<int>("target");
if (onnxModelPath.empty()) {
cerr << "The path to the ONNX model is required!" << endl;
return -1;
}
Mat imgGray = imread(samples::findFile(inputImagePath), IMREAD_GRAYSCALE);
if (imgGray.empty()) {
cerr << "Could not read the image: " << inputImagePath << endl;
return -1;
}
Mat imgL = imgGray;
imgL.convertTo(imgL, CV_32F, 100.0/255.0);
Mat imgLResized;
resize(imgL, imgLResized, Size(256, 256), 0, 0, INTER_CUBIC);
// Prepare the model
EngineType engine = ENGINE_AUTO;
if (backendId != 0 || targetId != 0){
engine = ENGINE_CLASSIC;
}
dnn::Net net = dnn::readNetFromONNX(onnxModelPath, engine);
net.setPreferableBackend(backendId);
net.setPreferableTarget(targetId);
//! [Read and initialize network]
// Create blob from the image
Mat blob = dnn::blobFromImage(imgLResized, 1.0, Size(256, 256), Scalar(), false, false);
net.setInput(blob);
// Run inference
Mat result = net.forward();
Size siz(result.size[2], result.size[3]);
Mat a(siz, CV_32F, result.ptr(0,0));
Mat b(siz, CV_32F, result.ptr(0,1));
resize(a, a, imgGray.size());
resize(b, b, imgGray.size());
// merge, and convert back to BGR
Mat color, chn[] = {imgL, a, b};
// Proc
Mat lab;
merge(chn, 3, lab);
cvtColor(lab, color, COLOR_Lab2BGR);
imshow("input image", imgGray);
imshow("output image", color);
waitKey();
return 0;
}