opencv/modules/3d/src/undistort.dispatch.cpp
Alexander Alekhin c25f776151 Merge branch 4.x
2022-08-21 15:27:31 +00:00

687 lines
26 KiB
C++

/*M///////////////////////////////////////////////////////////////////////////////////////
//
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
// By downloading, copying, installing or using the software you agree to this license.
// If you do not agree to this license, do not download, install,
// copy or use the software.
//
//
// License Agreement
// For Open Source Computer Vision Library
//
// Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
// Copyright (C) 2009, Willow Garage Inc., all rights reserved.
// Third party copyrights are property of their respective owners.
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
// * Redistribution's of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
//
// * Redistribution's in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other materials provided with the distribution.
//
// * The name of the copyright holders may not be used to endorse or promote products
// derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors "as is" and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/
#include "opencv2/core/types.hpp"
#include "precomp.hpp"
#include "distortion_model.hpp"
#include "undistort.simd.hpp"
#include "undistort.simd_declarations.hpp" // defines CV_CPU_DISPATCH_MODES_ALL=AVX2,...,BASELINE based on CMakeLists.txt content
namespace cv {
Mat getDefaultNewCameraMatrix( InputArray _cameraMatrix, Size imgsize,
bool centerPrincipalPoint )
{
Mat cameraMatrix = _cameraMatrix.getMat();
if( !centerPrincipalPoint && cameraMatrix.type() == CV_64F )
return cameraMatrix;
Mat newCameraMatrix;
cameraMatrix.convertTo(newCameraMatrix, CV_64F);
if( centerPrincipalPoint )
{
newCameraMatrix.ptr<double>()[2] = (imgsize.width-1)*0.5;
newCameraMatrix.ptr<double>()[5] = (imgsize.height-1)*0.5;
}
return newCameraMatrix;
}
static Ptr<ParallelLoopBody> getInitUndistortRectifyMapComputer(Size _size, Mat &_map1, Mat &_map2, int _m1type,
const double* _ir, Matx33d &_matTilt,
double _u0, double _v0, double _fx, double _fy,
double _k1, double _k2, double _p1, double _p2,
double _k3, double _k4, double _k5, double _k6,
double _s1, double _s2, double _s3, double _s4)
{
CV_INSTRUMENT_REGION();
CV_CPU_DISPATCH(getInitUndistortRectifyMapComputer, (_size, _map1, _map2, _m1type, _ir, _matTilt, _u0, _v0, _fx, _fy, _k1, _k2, _p1, _p2, _k3, _k4, _k5, _k6, _s1, _s2, _s3, _s4),
CV_CPU_DISPATCH_MODES_ALL);
}
void initUndistortRectifyMap( InputArray _cameraMatrix, InputArray _distCoeffs,
InputArray _matR, InputArray _newCameraMatrix,
Size size, int m1type, OutputArray _map1, OutputArray _map2 )
{
Mat cameraMatrix = _cameraMatrix.getMat(), distCoeffs = _distCoeffs.getMat();
Mat matR = _matR.getMat(), newCameraMatrix = _newCameraMatrix.getMat();
if( m1type <= 0 )
m1type = CV_16SC2;
CV_Assert( m1type == CV_16SC2 || m1type == CV_32FC1 || m1type == CV_32FC2 );
_map1.create( size, m1type );
Mat map1 = _map1.getMat(), map2;
if( m1type != CV_32FC2 )
{
_map2.create( size, m1type == CV_16SC2 ? CV_16UC1 : CV_32FC1 );
map2 = _map2.getMat();
}
else
_map2.release();
Mat_<double> R = Mat_<double>::eye(3, 3);
Mat_<double> A = Mat_<double>(cameraMatrix), Ar;
if( !newCameraMatrix.empty() )
Ar = Mat_<double>(newCameraMatrix);
else
Ar = getDefaultNewCameraMatrix( A, size, true );
if( !matR.empty() )
R = Mat_<double>(matR);
if( !distCoeffs.empty() )
distCoeffs = Mat_<double>(distCoeffs);
else
{
distCoeffs.create(14, 1, CV_64F);
distCoeffs = 0.;
}
CV_Assert( A.size() == Size(3,3) && A.size() == R.size() );
CV_Assert( Ar.size() == Size(3,3) || Ar.size() == Size(4, 3));
Mat_<double> iR = (Ar.colRange(0,3)*R).inv(DECOMP_LU);
const double* ir = &iR(0,0);
double u0 = A(0, 2), v0 = A(1, 2);
double fx = A(0, 0), fy = A(1, 1);
CV_Assert( distCoeffs.size() == Size(1, 4) || distCoeffs.size() == Size(4, 1) ||
distCoeffs.size() == Size(1, 5) || distCoeffs.size() == Size(5, 1) ||
distCoeffs.size() == Size(1, 8) || distCoeffs.size() == Size(8, 1) ||
distCoeffs.size() == Size(1, 12) || distCoeffs.size() == Size(12, 1) ||
distCoeffs.size() == Size(1, 14) || distCoeffs.size() == Size(14, 1));
if( distCoeffs.rows != 1 && !distCoeffs.isContinuous() )
distCoeffs = distCoeffs.t();
const double* const distPtr = distCoeffs.ptr<double>();
double k1 = distPtr[0];
double k2 = distPtr[1];
double p1 = distPtr[2];
double p2 = distPtr[3];
double k3 = distCoeffs.cols + distCoeffs.rows - 1 >= 5 ? distPtr[4] : 0.;
double k4 = distCoeffs.cols + distCoeffs.rows - 1 >= 8 ? distPtr[5] : 0.;
double k5 = distCoeffs.cols + distCoeffs.rows - 1 >= 8 ? distPtr[6] : 0.;
double k6 = distCoeffs.cols + distCoeffs.rows - 1 >= 8 ? distPtr[7] : 0.;
double s1 = distCoeffs.cols + distCoeffs.rows - 1 >= 12 ? distPtr[8] : 0.;
double s2 = distCoeffs.cols + distCoeffs.rows - 1 >= 12 ? distPtr[9] : 0.;
double s3 = distCoeffs.cols + distCoeffs.rows - 1 >= 12 ? distPtr[10] : 0.;
double s4 = distCoeffs.cols + distCoeffs.rows - 1 >= 12 ? distPtr[11] : 0.;
double tauX = distCoeffs.cols + distCoeffs.rows - 1 >= 14 ? distPtr[12] : 0.;
double tauY = distCoeffs.cols + distCoeffs.rows - 1 >= 14 ? distPtr[13] : 0.;
// Matrix for trapezoidal distortion of tilted image sensor
Matx33d matTilt = Matx33d::eye();
computeTiltProjectionMatrix(tauX, tauY, &matTilt);
parallel_for_(Range(0, size.height), *getInitUndistortRectifyMapComputer(
size, map1, map2, m1type, ir, matTilt, u0, v0,
fx, fy, k1, k2, p1, p2, k3, k4, k5, k6, s1, s2, s3, s4));
}
void initInverseRectificationMap( InputArray _cameraMatrix, InputArray _distCoeffs,
InputArray _matR, InputArray _newCameraMatrix,
const Size& size, int m1type, OutputArray _map1, OutputArray _map2 )
{
// Parameters
Mat cameraMatrix = _cameraMatrix.getMat(), distCoeffs = _distCoeffs.getMat();
Mat matR = _matR.getMat(), newCameraMatrix = _newCameraMatrix.getMat();
// Check m1type validity
if( m1type <= 0 )
m1type = CV_16SC2;
CV_Assert( m1type == CV_16SC2 || m1type == CV_32FC1 || m1type == CV_32FC2 );
// Init Maps
_map1.create( size, m1type );
Mat map1 = _map1.getMat(), map2;
if( m1type != CV_32FC2 )
{
_map2.create( size, m1type == CV_16SC2 ? CV_16UC1 : CV_32FC1 );
map2 = _map2.getMat();
}
else {
_map2.release();
}
// Init camera intrinsics
Mat_<double> A = Mat_<double>(cameraMatrix), Ar;
if( !newCameraMatrix.empty() )
Ar = Mat_<double>(newCameraMatrix);
else
Ar = getDefaultNewCameraMatrix( A, size, true );
CV_Assert( A.size() == Size(3,3) );
CV_Assert( Ar.size() == Size(3,3) || Ar.size() == Size(4, 3));
// Init rotation matrix
Mat_<double> R = Mat_<double>::eye(3, 3);
if( !matR.empty() )
{
R = Mat_<double>(matR);
//Note, do not inverse
}
CV_Assert( Size(3,3) == R.size() );
// Init distortion vector
if( !distCoeffs.empty() ){
distCoeffs = Mat_<double>(distCoeffs);
// Fix distortion vector orientation
if( distCoeffs.rows != 1 && !distCoeffs.isContinuous() ) {
distCoeffs = distCoeffs.t();
}
}
// Validate distortion vector size
CV_Assert( distCoeffs.empty() || // Empty allows cv::undistortPoints to skip distortion
distCoeffs.size() == Size(1, 4) || distCoeffs.size() == Size(4, 1) ||
distCoeffs.size() == Size(1, 5) || distCoeffs.size() == Size(5, 1) ||
distCoeffs.size() == Size(1, 8) || distCoeffs.size() == Size(8, 1) ||
distCoeffs.size() == Size(1, 12) || distCoeffs.size() == Size(12, 1) ||
distCoeffs.size() == Size(1, 14) || distCoeffs.size() == Size(14, 1));
// Create objectPoints
std::vector<cv::Point2i> p2i_objPoints;
std::vector<cv::Point2f> p2f_objPoints;
for (int r = 0; r < size.height; r++)
{
for (int c = 0; c < size.width; c++)
{
p2i_objPoints.push_back(cv::Point2i(c, r));
p2f_objPoints.push_back(cv::Point2f(static_cast<float>(c), static_cast<float>(r)));
}
}
// Undistort
std::vector<cv::Point2f> p2f_objPoints_undistorted;
undistortPoints(
p2f_objPoints,
p2f_objPoints_undistorted,
A,
distCoeffs,
cv::Mat::eye(cv::Size(3, 3), CV_64FC1), // R
cv::Mat::eye(cv::Size(3, 3), CV_64FC1) // P = New K
);
// Rectify
std::vector<cv::Point2f> p2f_sourcePoints_pinHole;
perspectiveTransform(
p2f_objPoints_undistorted,
p2f_sourcePoints_pinHole,
R
);
// Project points back to camera coordinates.
std::vector<cv::Point2f> p2f_sourcePoints;
undistortPoints(
p2f_sourcePoints_pinHole,
p2f_sourcePoints,
cv::Mat::eye(cv::Size(3, 3), CV_32FC1), // K
cv::Mat::zeros(cv::Size(1, 4), CV_32FC1), // Distortion
cv::Mat::eye(cv::Size(3, 3), CV_32FC1), // R
Ar // New K
);
// Copy to map
if (m1type == CV_16SC2) {
for (size_t i=0; i < p2i_objPoints.size(); i++) {
map1.at<Vec2s>(p2i_objPoints[i].y, p2i_objPoints[i].x) = Vec2s(saturate_cast<short>(p2f_sourcePoints[i].x), saturate_cast<short>(p2f_sourcePoints[i].y));
}
} else if (m1type == CV_32FC2) {
for (size_t i=0; i < p2i_objPoints.size(); i++) {
map1.at<Vec2f>(p2i_objPoints[i].y, p2i_objPoints[i].x) = Vec2f(p2f_sourcePoints[i]);
}
} else { // m1type == CV_32FC1
for (size_t i=0; i < p2i_objPoints.size(); i++) {
map1.at<float>(p2i_objPoints[i].y, p2i_objPoints[i].x) = p2f_sourcePoints[i].x;
map2.at<float>(p2i_objPoints[i].y, p2i_objPoints[i].x) = p2f_sourcePoints[i].y;
}
}
}
void undistort( InputArray _src, OutputArray _dst, InputArray _cameraMatrix,
InputArray _distCoeffs, InputArray _newCameraMatrix )
{
CV_INSTRUMENT_REGION();
Mat src = _src.getMat(), cameraMatrix = _cameraMatrix.getMat();
Mat distCoeffs = _distCoeffs.getMat(), newCameraMatrix = _newCameraMatrix.getMat();
_dst.create( src.size(), src.type() );
Mat dst = _dst.getMat();
CV_Assert( dst.data != src.data );
int stripe_size0 = std::min(std::max(1, (1 << 12) / std::max(src.cols, 1)), src.rows);
Mat map1(stripe_size0, src.cols, CV_16SC2), map2(stripe_size0, src.cols, CV_16UC1);
Mat_<double> A, Ar, I = Mat_<double>::eye(3,3);
cameraMatrix.convertTo(A, CV_64F);
if( !distCoeffs.empty() )
distCoeffs = Mat_<double>(distCoeffs);
else
{
distCoeffs.create(5, 1, CV_64F);
distCoeffs = 0.;
}
if( !newCameraMatrix.empty() )
newCameraMatrix.convertTo(Ar, CV_64F);
else
A.copyTo(Ar);
double v0 = Ar(1, 2);
for( int y = 0; y < src.rows; y += stripe_size0 )
{
int stripe_size = std::min( stripe_size0, src.rows - y );
Ar(1, 2) = v0 - y;
Mat map1_part = map1.rowRange(0, stripe_size),
map2_part = map2.rowRange(0, stripe_size),
dst_part = dst.rowRange(y, y + stripe_size);
initUndistortRectifyMap( A, distCoeffs, I, Ar, Size(src.cols, stripe_size),
map1_part.type(), map1_part, map2_part );
remap( src, dst_part, map1_part, map2_part, INTER_LINEAR, BORDER_CONSTANT );
}
}
static void undistortPointsInternal( const Mat& _src, Mat& _dst, const Mat& _cameraMatrix,
const Mat& _distCoeffs, const Mat& matR, const Mat& matP, TermCriteria criteria)
{
CV_Assert(criteria.isValid());
double A[3][3], RR[3][3], k[14]={0,0,0,0,0,0,0,0,0,0,0,0,0,0};
Mat matA(3, 3, CV_64F, A), _Dk;
Mat _RR(3, 3, CV_64F, RR);
cv::Matx33d invMatTilt = cv::Matx33d::eye();
cv::Matx33d matTilt = cv::Matx33d::eye();
bool haveDistCoeffs = !_distCoeffs.empty();
CV_Assert( (_src.rows == 1 || _src.cols == 1) &&
(_dst.rows == 1 || _dst.cols == 1) &&
_src.cols + _src.rows - 1 == _dst.rows + _dst.cols - 1 &&
(_src.type() == CV_32FC2 || _src.type() == CV_64FC2) &&
(_dst.type() == CV_32FC2 || _dst.type() == CV_64FC2));
CV_Assert( _cameraMatrix.rows == 3 && _cameraMatrix.cols == 3 && _cameraMatrix.channels() == 1 );
_cameraMatrix.convertTo(matA, CV_64F);
if( haveDistCoeffs )
{
CV_Assert(
(_distCoeffs.rows == 1 || _distCoeffs.cols == 1) &&
(_distCoeffs.rows*_distCoeffs.cols == 4 ||
_distCoeffs.rows*_distCoeffs.cols == 5 ||
_distCoeffs.rows*_distCoeffs.cols == 8 ||
_distCoeffs.rows*_distCoeffs.cols == 12 ||
_distCoeffs.rows*_distCoeffs.cols == 14));
_Dk = Mat( _distCoeffs.rows, _distCoeffs.cols,
CV_MAKETYPE(CV_64F,_distCoeffs.channels()), k);
_distCoeffs.convertTo(_Dk, CV_64F);
CV_Assert(_Dk.ptr<double>() == k);
if (k[12] != 0 || k[13] != 0)
{
computeTiltProjectionMatrix<double>(k[12], k[13], NULL, NULL, NULL, &invMatTilt);
computeTiltProjectionMatrix<double>(k[12], k[13], &matTilt, NULL, NULL);
}
}
if( !matR.empty() )
{
CV_Assert( matR.rows == 3 && matR.cols == 3 && matR.channels() == 1 );
matR.convertTo(_RR, CV_64F);
CV_Assert(_RR.ptr<double>() == &RR[0][0]);
}
else
setIdentity(_RR);
if( !matP.empty() )
{
double PP[3][3];
Mat _PP(3, 3, CV_64F, PP);
CV_Assert( matP.rows == 3 && (matP.cols == 3 || matP.cols == 4));
matP.colRange(0, 3).convertTo(_PP, CV_64F);
CV_Assert(_PP.ptr<double>() == &PP[0][0]);
_RR = _PP*_RR;
}
const Point2f* srcf = (const Point2f*)_src.data;
const Point2d* srcd = (const Point2d*)_src.data;
Point2f* dstf = (Point2f*)_dst.data;
Point2d* dstd = (Point2d*)_dst.data;
int stype = _src.type();
int dtype = _dst.type();
int sstep = _src.rows == 1 ? 1 : (int)(_src.step/_src.elemSize());
int dstep = _dst.rows == 1 ? 1 : (int)(_dst.step/_dst.elemSize());
double fx = A[0][0];
double fy = A[1][1];
double ifx = 1./fx;
double ify = 1./fy;
double cx = A[0][2];
double cy = A[1][2];
int n = _src.rows + _src.cols - 1;
for( int i = 0; i < n; i++ )
{
double x, y, x0 = 0, y0 = 0, u, v;
if( stype == CV_32FC2 )
{
x = srcf[i*sstep].x;
y = srcf[i*sstep].y;
}
else
{
x = srcd[i*sstep].x;
y = srcd[i*sstep].y;
}
u = x; v = y;
x = (x - cx)*ifx;
y = (y - cy)*ify;
if( haveDistCoeffs ) {
// compensate tilt distortion
cv::Vec3d vecUntilt = invMatTilt * cv::Vec3d(x, y, 1);
double invProj = vecUntilt(2) ? 1./vecUntilt(2) : 1;
x0 = x = invProj * vecUntilt(0);
y0 = y = invProj * vecUntilt(1);
double error = std::numeric_limits<double>::max();
// compensate distortion iteratively
for( int j = 0; ; j++ )
{
if ((criteria.type & TermCriteria::COUNT) && j >= criteria.maxCount)
break;
if ((criteria.type & TermCriteria::EPS) && error < criteria.epsilon)
break;
double r2 = x*x + y*y;
double icdist = (1 + ((k[7]*r2 + k[6])*r2 + k[5])*r2)/(1 + ((k[4]*r2 + k[1])*r2 + k[0])*r2);
if (icdist < 0) // test: undistortPoints.regression_14583
{
x = (u - cx)*ifx;
y = (v - cy)*ify;
break;
}
double deltaX = 2*k[2]*x*y + k[3]*(r2 + 2*x*x)+ k[8]*r2+k[9]*r2*r2;
double deltaY = k[2]*(r2 + 2*y*y) + 2*k[3]*x*y+ k[10]*r2+k[11]*r2*r2;
x = (x0 - deltaX)*icdist;
y = (y0 - deltaY)*icdist;
if(criteria.type & TermCriteria::EPS)
{
double r4, r6, a1, a2, a3, cdist, icdist2;
double xd, yd, xd0, yd0;
Vec3d vecTilt;
r2 = x*x + y*y;
r4 = r2*r2;
r6 = r4*r2;
a1 = 2*x*y;
a2 = r2 + 2*x*x;
a3 = r2 + 2*y*y;
cdist = 1 + k[0]*r2 + k[1]*r4 + k[4]*r6;
icdist2 = 1./(1 + k[5]*r2 + k[6]*r4 + k[7]*r6);
xd0 = x*cdist*icdist2 + k[2]*a1 + k[3]*a2 + k[8]*r2+k[9]*r4;
yd0 = y*cdist*icdist2 + k[2]*a3 + k[3]*a1 + k[10]*r2+k[11]*r4;
vecTilt = matTilt*cv::Vec3d(xd0, yd0, 1);
invProj = vecTilt(2) ? 1./vecTilt(2) : 1;
xd = invProj * vecTilt(0);
yd = invProj * vecTilt(1);
double x_proj = xd*fx + cx;
double y_proj = yd*fy + cy;
error = sqrt( pow(x_proj - u, 2) + pow(y_proj - v, 2) );
}
}
}
double xx = RR[0][0]*x + RR[0][1]*y + RR[0][2];
double yy = RR[1][0]*x + RR[1][1]*y + RR[1][2];
double ww = 1./(RR[2][0]*x + RR[2][1]*y + RR[2][2]);
x = xx*ww;
y = yy*ww;
if( dtype == CV_32FC2 )
{
dstf[i*dstep].x = (float)x;
dstf[i*dstep].y = (float)y;
}
else
{
dstd[i*dstep].x = x;
dstd[i*dstep].y = y;
}
}
}
void undistortPoints(InputArray _src, OutputArray _dst,
InputArray _cameraMatrix,
InputArray _distCoeffs,
InputArray _Rmat,
InputArray _Pmat,
TermCriteria criteria)
{
Mat src = _src.getMat(), cameraMatrix = _cameraMatrix.getMat();
Mat distCoeffs = _distCoeffs.getMat(), R = _Rmat.getMat(), P = _Pmat.getMat();
int npoints = src.checkVector(2), depth = src.depth();
if (npoints < 0)
src = src.t();
npoints = src.checkVector(2);
CV_Assert(npoints >= 0 && src.isContinuous() && (depth == CV_32F || depth == CV_64F));
if (src.cols == 2)
src = src.reshape(2);
_dst.create(npoints, 1, CV_MAKETYPE(depth, 2), -1, true);
Mat dst = _dst.getMat();
undistortPointsInternal(src, dst, cameraMatrix, distCoeffs, R, P, criteria);
}
void undistortImagePoints(InputArray src, OutputArray dst, InputArray cameraMatrix, InputArray distCoeffs, TermCriteria termCriteria)
{
undistortPoints(src, dst, cameraMatrix, distCoeffs, noArray(), cameraMatrix, termCriteria);
}
static Point2f mapPointSpherical(const Point2f& p, float alpha, Vec4d* J, enum UndistortTypes projType)
{
double x = p.x, y = p.y;
double beta = 1 + 2*alpha;
double v = x*x + y*y + 1, iv = 1/v;
double u = std::sqrt(beta*v + alpha*alpha);
double k = (u - alpha)*iv;
double kv = (v*beta/u - (u - alpha)*2)*iv*iv;
double kx = kv*x, ky = kv*y;
if( projType == PROJ_SPHERICAL_ORTHO )
{
if(J)
*J = Vec4d(kx*x + k, kx*y, ky*x, ky*y + k);
return Point2f((float)(x*k), (float)(y*k));
}
if( projType == PROJ_SPHERICAL_EQRECT )
{
// equirectangular
double iR = 1/(alpha + 1);
double x1 = std::max(std::min(x*k*iR, 1.), -1.);
double y1 = std::max(std::min(y*k*iR, 1.), -1.);
if(J)
{
double fx1 = iR/std::sqrt(1 - x1*x1);
double fy1 = iR/std::sqrt(1 - y1*y1);
*J = Vec4d(fx1*(kx*x + k), fx1*ky*x, fy1*kx*y, fy1*(ky*y + k));
}
return Point2f((float)std::asin(x1), (float)std::asin(y1));
}
CV_Error(Error::StsBadArg, "Unknown projection type");
}
static Point2f invMapPointSpherical(Point2f _p, float alpha, enum UndistortTypes projType)
{
double eps = 1e-12;
Vec2d p(_p.x, _p.y), q(_p.x, _p.y), err;
Vec4d J;
int i, maxiter = 5;
for( i = 0; i < maxiter; i++ )
{
Point2f p1 = mapPointSpherical(Point2f((float)q[0], (float)q[1]), alpha, &J, projType);
err = Vec2d(p1.x, p1.y) - p;
if( err[0]*err[0] + err[1]*err[1] < eps )
break;
Vec4d JtJ(J[0]*J[0] + J[2]*J[2], J[0]*J[1] + J[2]*J[3],
J[0]*J[1] + J[2]*J[3], J[1]*J[1] + J[3]*J[3]);
double d = JtJ[0]*JtJ[3] - JtJ[1]*JtJ[2];
d = d ? 1./d : 0;
Vec4d iJtJ(JtJ[3]*d, -JtJ[1]*d, -JtJ[2]*d, JtJ[0]*d);
Vec2d JtErr(J[0]*err[0] + J[2]*err[1], J[1]*err[0] + J[3]*err[1]);
q -= Vec2d(iJtJ[0]*JtErr[0] + iJtJ[1]*JtErr[1], iJtJ[2]*JtErr[0] + iJtJ[3]*JtErr[1]);
//Matx22d J(kx*x + k, kx*y, ky*x, ky*y + k);
//q -= Vec2d((J.t()*J).inv()*(J.t()*err));
}
return i < maxiter ? Point2f((float)q[0], (float)q[1]) : Point2f(-FLT_MAX, -FLT_MAX);
}
float initWideAngleProjMap(InputArray _cameraMatrix0, InputArray _distCoeffs0,
Size imageSize, int destImageWidth, int m1type,
OutputArray _map1, OutputArray _map2,
enum UndistortTypes projType, double _alpha)
{
Mat cameraMatrix0 = _cameraMatrix0.getMat(), distCoeffs0 = _distCoeffs0.getMat();
double k[14] = {0,0,0,0,0,0,0,0,0,0,0,0,0,0}, M[9]={0,0,0,0,0,0,0,0,0};
Mat distCoeffs(distCoeffs0.rows, distCoeffs0.cols, CV_MAKETYPE(CV_64F,distCoeffs0.channels()), k);
Mat cameraMatrix(3,3,CV_64F,M);
Point2f scenter((float)cameraMatrix.at<double>(0,2), (float)cameraMatrix.at<double>(1,2));
Point2f dcenter((destImageWidth-1)*0.5f, 0.f);
float xmin = FLT_MAX, xmax = -FLT_MAX, ymin = FLT_MAX, ymax = -FLT_MAX;
int N = 9;
std::vector<Point2f> uvec(1), vvec(1);
Mat I = Mat::eye(3,3,CV_64F);
float alpha = (float)_alpha;
int ndcoeffs = distCoeffs0.cols*distCoeffs0.rows*distCoeffs0.channels();
CV_Assert((distCoeffs0.cols == 1 || distCoeffs0.rows == 1) &&
(ndcoeffs == 4 || ndcoeffs == 5 || ndcoeffs == 8 || ndcoeffs == 12 || ndcoeffs == 14));
CV_Assert(cameraMatrix0.size() == Size(3,3));
distCoeffs0.convertTo(distCoeffs,CV_64F);
cameraMatrix0.convertTo(cameraMatrix,CV_64F);
alpha = std::min(alpha, 0.999f);
for( int i = 0; i < N; i++ )
for( int j = 0; j < N; j++ )
{
Point2f p((float)j*imageSize.width/(N-1), (float)i*imageSize.height/(N-1));
uvec[0] = p;
undistortPoints(uvec, vvec, cameraMatrix, distCoeffs, I, I);
Point2f q = mapPointSpherical(vvec[0], alpha, 0, projType);
if( xmin > q.x ) xmin = q.x;
if( xmax < q.x ) xmax = q.x;
if( ymin > q.y ) ymin = q.y;
if( ymax < q.y ) ymax = q.y;
}
float scale = (float)std::min(dcenter.x/fabs(xmax), dcenter.x/fabs(xmin));
Size dsize(destImageWidth, cvCeil(std::max(scale*fabs(ymin)*2, scale*fabs(ymax)*2)));
dcenter.y = (dsize.height - 1)*0.5f;
Mat mapxy(dsize, CV_32FC2);
double k1 = k[0], k2 = k[1], k3 = k[2], p1 = k[3], p2 = k[4], k4 = k[5], k5 = k[6], k6 = k[7], s1 = k[8], s2 = k[9], s3 = k[10], s4 = k[11];
double fx = cameraMatrix.at<double>(0,0), fy = cameraMatrix.at<double>(1,1), cx = scenter.x, cy = scenter.y;
Matx33d matTilt;
computeTiltProjectionMatrix(k[12], k[13], &matTilt);
for( int y = 0; y < dsize.height; y++ )
{
Point2f* mxy = mapxy.ptr<Point2f>(y);
for( int x = 0; x < dsize.width; x++ )
{
Point2f p = (Point2f((float)x, (float)y) - dcenter)*(1.f/scale);
Point2f q = invMapPointSpherical(p, alpha, projType);
if( q.x <= -FLT_MAX && q.y <= -FLT_MAX )
{
mxy[x] = Point2f(-1.f, -1.f);
continue;
}
double x2 = q.x*q.x, y2 = q.y*q.y;
double r2 = x2 + y2, _2xy = 2*q.x*q.y;
double kr = 1 + ((k3*r2 + k2)*r2 + k1)*r2/(1 + ((k6*r2 + k5)*r2 + k4)*r2);
double xd = (q.x*kr + p1*_2xy + p2*(r2 + 2*x2) + s1*r2+ s2*r2*r2);
double yd = (q.y*kr + p1*(r2 + 2*y2) + p2*_2xy + s3*r2+ s4*r2*r2);
cv::Vec3d vecTilt = matTilt*cv::Vec3d(xd, yd, 1);
double invProj = vecTilt(2) ? 1./vecTilt(2) : 1;
double u = fx*invProj*vecTilt(0) + cx;
double v = fy*invProj*vecTilt(1) + cy;
mxy[x] = Point2f((float)u, (float)v);
}
}
if(m1type == CV_32FC2)
{
_map1.create(mapxy.size(), mapxy.type());
Mat map1 = _map1.getMat();
mapxy.copyTo(map1);
_map2.release();
}
else
convertMaps(mapxy, Mat(), _map1, _map2, m1type, false);
return scale;
}
}
/* End of file */