opencv/modules/core/src/umatrix.cpp
2024-03-05 12:15:39 +03:00

1346 lines
37 KiB
C++

/*M///////////////////////////////////////////////////////////////////////////////////////
//
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
// By downloading, copying, installing or using the software you agree to this license.
// If you do not agree to this license, do not download, install,
// copy or use the software.
//
//
// License Agreement
// For Open Source Computer Vision Library
//
// Copyright (C) 2014, Itseez Inc., all rights reserved.
// Third party copyrights are property of their respective owners.
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
// * Redistribution's of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
//
// * Redistribution's in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other materials provided with the distribution.
//
// * The name of the copyright holders may not be used to endorse or promote products
// derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors "as is" and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/
#include "precomp.hpp"
#include "opencl_kernels_core.hpp"
#include "umatrix.hpp"
#include <opencv2/core/utils/tls.hpp>
///////////////////////////////// UMat implementation ///////////////////////////////
namespace cv {
// forward decls, implementation is below in this file
void setSize(UMat& m, int _dims, const int* _sz, const size_t* _steps,
bool autoSteps = false);
void updateContinuityFlag(UMat& m);
void finalizeHdr(UMat& m);
UMatData::UMatData(const MatAllocator* allocator)
{
prevAllocator = currAllocator = allocator;
urefcount = refcount = mapcount = 0;
data = origdata = 0;
size = 0;
flags = static_cast<UMatData::MemoryFlag>(0);
handle = 0;
userdata = 0;
allocatorFlags_ = 0;
originalUMatData = NULL;
}
UMatData::~UMatData()
{
prevAllocator = currAllocator = 0;
urefcount = refcount = 0;
CV_Assert(mapcount == 0);
data = origdata = 0;
size = 0;
bool isAsyncCleanup = !!(flags & UMatData::ASYNC_CLEANUP);
flags = static_cast<UMatData::MemoryFlag>(0);
handle = 0;
userdata = 0;
allocatorFlags_ = 0;
if (originalUMatData)
{
bool showWarn = false;
UMatData* u = originalUMatData;
bool zero_Ref = CV_XADD(&(u->refcount), -1) == 1;
if (zero_Ref)
{
// simulate Mat::deallocate
if (u->mapcount != 0)
{
(u->currAllocator ? u->currAllocator : /* TODO allocator ? allocator :*/ Mat::getDefaultAllocator())->unmap(u);
}
else
{
// we don't do "map", so we can't do "unmap"
}
}
bool zero_URef = CV_XADD(&(u->urefcount), -1) == 1;
if (zero_Ref && !zero_URef)
showWarn = true;
if (zero_Ref && zero_URef) // oops, we need to free resources
{
showWarn = !isAsyncCleanup;
// simulate UMat::deallocate
u->currAllocator->deallocate(u);
}
#ifndef NDEBUG
if (showWarn)
{
static int warn_message_showed = 0;
if (warn_message_showed++ < 100)
{
fflush(stdout);
fprintf(stderr, "\n! OPENCV warning: getUMat()/getMat() call chain possible problem."
"\n! Base object is dead, while nested/derived object is still alive or processed."
"\n! Please check lifetime of UMat/Mat objects!\n");
fflush(stderr);
}
}
#else
CV_UNUSED(showWarn);
#endif
originalUMatData = NULL;
}
}
#ifndef OPENCV_DISABLE_THREAD_SUPPORT
// it should be a prime number for the best hash function
enum { UMAT_NLOCKS = 31 };
static Mutex umatLocks[UMAT_NLOCKS];
static size_t getUMatDataLockIndex(const UMatData* u)
{
size_t idx = ((size_t)(void*)u) % UMAT_NLOCKS;
return idx;
}
void UMatData::lock()
{
size_t idx = getUMatDataLockIndex(this);
//printf("%d lock(%d)\n", cv::utils::getThreadID(), (int)idx);
umatLocks[idx].lock();
}
void UMatData::unlock()
{
size_t idx = getUMatDataLockIndex(this);
//printf("%d unlock(%d)\n", cv::utils::getThreadID(), (int)idx);
umatLocks[idx].unlock();
}
// Do not allow several lock() calls with different UMatData objects.
struct UMatDataAutoLocker
{
int usage_count;
UMatData* locked_objects[2];
UMatDataAutoLocker() : usage_count(0) { locked_objects[0] = NULL; locked_objects[1] = NULL; }
void lock(UMatData*& u1)
{
bool locked_1 = (u1 == locked_objects[0] || u1 == locked_objects[1]);
if (locked_1)
{
u1 = NULL;
return;
}
CV_Assert(usage_count == 0); // UMatDataAutoLock can't be used multiple times from the same thread
usage_count = 1;
locked_objects[0] = u1;
u1->lock();
}
void lock(UMatData*& u1, UMatData*& u2)
{
bool locked_1 = (u1 == locked_objects[0] || u1 == locked_objects[1]);
bool locked_2 = (u2 == locked_objects[0] || u2 == locked_objects[1]);
if (locked_1)
u1 = NULL;
if (locked_2)
u2 = NULL;
if (locked_1 && locked_2)
return;
CV_Assert(usage_count == 0); // UMatDataAutoLock can't be used multiple times from the same thread
usage_count = 1;
locked_objects[0] = u1;
locked_objects[1] = u2;
if (u1)
u1->lock();
if (u2)
u2->lock();
}
void release(UMatData* u1, UMatData* u2)
{
if (u1 == NULL && u2 == NULL)
return;
CV_Assert(usage_count == 1);
usage_count = 0;
if (u1)
u1->unlock();
if (u2)
u2->unlock();
locked_objects[0] = NULL; locked_objects[1] = NULL;
}
};
static TLSData<UMatDataAutoLocker>& getUMatDataAutoLockerTLS()
{
CV_SINGLETON_LAZY_INIT_REF(TLSData<UMatDataAutoLocker>, new TLSData<UMatDataAutoLocker>());
}
static UMatDataAutoLocker& getUMatDataAutoLocker() { return getUMatDataAutoLockerTLS().getRef(); }
UMatDataAutoLock::UMatDataAutoLock(UMatData* u) : u1(u), u2(NULL)
{
getUMatDataAutoLocker().lock(u1);
}
UMatDataAutoLock::UMatDataAutoLock(UMatData* u1_, UMatData* u2_) : u1(u1_), u2(u2_)
{
if (getUMatDataLockIndex(u1) > getUMatDataLockIndex(u2))
{
std::swap(u1, u2);
}
getUMatDataAutoLocker().lock(u1, u2);
}
UMatDataAutoLock::~UMatDataAutoLock()
{
getUMatDataAutoLocker().release(u1, u2);
}
#else
void UMatData::lock()
{
// nothing in OPENCV_DISABLE_THREAD_SUPPORT mode
}
void UMatData::unlock()
{
// nothing in OPENCV_DISABLE_THREAD_SUPPORT mode
}
UMatDataAutoLock::UMatDataAutoLock(UMatData* u) : u1(u), u2(NULL)
{
// nothing in OPENCV_DISABLE_THREAD_SUPPORT mode
}
UMatDataAutoLock::UMatDataAutoLock(UMatData* u1_, UMatData* u2_) : u1(u1_), u2(u2_)
{
// nothing in OPENCV_DISABLE_THREAD_SUPPORT mode
}
UMatDataAutoLock::~UMatDataAutoLock()
{
// nothing in OPENCV_DISABLE_THREAD_SUPPORT mode
}
#endif // OPENCV_DISABLE_THREAD_SUPPORT
//////////////////////////////// UMat ////////////////////////////////
UMat::UMat(UMatUsageFlags _usageFlags) CV_NOEXCEPT
: flags(MAGIC_VAL), dims(0), rows(0), cols(0), allocator(0), usageFlags(_usageFlags), u(0), offset(0), size(&rows)
{}
UMat::UMat(int _rows, int _cols, int _type, UMatUsageFlags _usageFlags)
: flags(MAGIC_VAL), dims(0), rows(0), cols(0), allocator(0), usageFlags(_usageFlags), u(0), offset(0), size(&rows)
{
create(_rows, _cols, _type);
}
UMat::UMat(int _rows, int _cols, int _type, const Scalar& _s, UMatUsageFlags _usageFlags)
: flags(MAGIC_VAL), dims(0), rows(0), cols(0), allocator(0), usageFlags(_usageFlags), u(0), offset(0), size(&rows)
{
create(_rows, _cols, _type);
*this = _s;
}
UMat::UMat(Size _sz, int _type, UMatUsageFlags _usageFlags)
: flags(MAGIC_VAL), dims(0), rows(0), cols(0), allocator(0), usageFlags(_usageFlags), u(0), offset(0), size(&rows)
{
create( _sz.height, _sz.width, _type );
}
UMat::UMat(Size _sz, int _type, const Scalar& _s, UMatUsageFlags _usageFlags)
: flags(MAGIC_VAL), dims(0), rows(0), cols(0), allocator(0), usageFlags(_usageFlags), u(0), offset(0), size(&rows)
{
create(_sz.height, _sz.width, _type);
*this = _s;
}
UMat::UMat(int _dims, const int* _sz, int _type, UMatUsageFlags _usageFlags)
: flags(MAGIC_VAL), dims(0), rows(0), cols(0), allocator(0), usageFlags(_usageFlags), u(0), offset(0), size(&rows)
{
create(_dims, _sz, _type);
}
UMat::UMat(int _dims, const int* _sz, int _type, const Scalar& _s, UMatUsageFlags _usageFlags)
: flags(MAGIC_VAL), dims(0), rows(0), cols(0), allocator(0), usageFlags(_usageFlags), u(0), offset(0), size(&rows)
{
create(_dims, _sz, _type);
*this = _s;
}
UMat::UMat(const UMat& m)
: flags(m.flags), dims(m.dims), rows(m.rows), cols(m.cols), allocator(m.allocator),
usageFlags(m.usageFlags), u(m.u), offset(m.offset), size(&rows)
{
addref();
if( m.dims <= 2 )
{
step[0] = m.step[0]; step[1] = m.step[1];
}
else
{
dims = 0;
copySize(m);
}
}
UMat& UMat::operator=(const UMat& m)
{
if( this != &m )
{
const_cast<UMat&>(m).addref();
release();
flags = m.flags;
if( dims <= 2 && m.dims <= 2 )
{
dims = m.dims;
rows = m.rows;
cols = m.cols;
step[0] = m.step[0];
step[1] = m.step[1];
}
else
copySize(m);
allocator = m.allocator;
usageFlags = m.usageFlags;
u = m.u;
offset = m.offset;
}
return *this;
}
UMat UMat::clone() const
{
UMat m;
copyTo(m);
return m;
}
void UMat::assignTo(UMat& m, int _type) const
{
if( _type < 0 )
m = *this;
else
convertTo(m, _type);
}
void UMat::create(int _rows, int _cols, int _type, UMatUsageFlags _usageFlags)
{
int sz[] = {_rows, _cols};
create(2, sz, _type, _usageFlags);
}
void UMat::create(Size _sz, int _type, UMatUsageFlags _usageFlags)
{
create(_sz.height, _sz.width, _type, _usageFlags);
}
void UMat::addref()
{
if( u )
CV_XADD(&(u->urefcount), 1);
}
void UMat::release()
{
if( u && CV_XADD(&(u->urefcount), -1) == 1 )
deallocate();
for(int i = 0; i < dims; i++)
size.p[i] = 0;
u = 0;
}
bool UMat::empty() const
{
return u == 0 || total() == 0 || dims == 0;
}
size_t UMat::total() const
{
if( dims <= 2 )
return (size_t)rows * cols;
size_t p = 1;
for( int i = 0; i < dims; i++ )
p *= size[i];
return p;
}
UMat::UMat(UMat&& m)
: flags(m.flags), dims(m.dims), rows(m.rows), cols(m.cols), allocator(m.allocator),
usageFlags(m.usageFlags), u(m.u), offset(m.offset), size(&rows)
{
if (m.dims <= 2) // move new step/size info
{
step[0] = m.step[0];
step[1] = m.step[1];
}
else
{
CV_DbgAssert(m.step.p != m.step.buf);
step.p = m.step.p;
size.p = m.size.p;
m.step.p = m.step.buf;
m.size.p = &m.rows;
}
m.flags = MAGIC_VAL; m.dims = m.rows = m.cols = 0;
m.allocator = NULL;
m.u = NULL;
m.offset = 0;
}
UMat& UMat::operator=(UMat&& m)
{
if (this == &m)
return *this;
release();
flags = m.flags; dims = m.dims; rows = m.rows; cols = m.cols;
allocator = m.allocator; usageFlags = m.usageFlags;
u = m.u;
offset = m.offset;
if (step.p != step.buf) // release self step/size
{
fastFree(step.p);
step.p = step.buf;
size.p = &rows;
}
if (m.dims <= 2) // move new step/size info
{
step[0] = m.step[0];
step[1] = m.step[1];
}
else
{
CV_DbgAssert(m.step.p != m.step.buf);
step.p = m.step.p;
size.p = m.size.p;
m.step.p = m.step.buf;
m.size.p = &m.rows;
}
m.flags = MAGIC_VAL;
m.usageFlags = USAGE_DEFAULT;
m.dims = m.rows = m.cols = 0;
m.allocator = NULL;
m.u = NULL;
m.offset = 0;
return *this;
}
MatAllocator* UMat::getStdAllocator()
{
#ifdef HAVE_OPENCL
if (ocl::useOpenCL())
return ocl::getOpenCLAllocator();
#endif
return Mat::getDefaultAllocator();
}
void swap( UMat& a, UMat& b )
{
std::swap(a.flags, b.flags);
std::swap(a.dims, b.dims);
std::swap(a.rows, b.rows);
std::swap(a.cols, b.cols);
std::swap(a.allocator, b.allocator);
std::swap(a.u, b.u);
std::swap(a.offset, b.offset);
std::swap(a.size.p, b.size.p);
std::swap(a.step.p, b.step.p);
std::swap(a.step.buf[0], b.step.buf[0]);
std::swap(a.step.buf[1], b.step.buf[1]);
if( a.step.p == b.step.buf )
{
a.step.p = a.step.buf;
a.size.p = &a.rows;
}
if( b.step.p == a.step.buf )
{
b.step.p = b.step.buf;
b.size.p = &b.rows;
}
}
void setSize( UMat& m, int _dims, const int* _sz,
const size_t* _steps, bool autoSteps )
{
CV_Assert( 0 <= _dims && _dims <= CV_MAX_DIM );
if( m.dims != _dims )
{
if( m.step.p != m.step.buf )
{
fastFree(m.step.p);
m.step.p = m.step.buf;
m.size.p = &m.rows;
}
if( _dims > 2 )
{
m.step.p = (size_t*)fastMalloc(_dims*sizeof(m.step.p[0]) + (_dims+1)*sizeof(m.size.p[0]));
m.size.p = (int*)(m.step.p + _dims) + 1;
m.size.p[-1] = _dims;
m.rows = m.cols = -1;
}
}
m.dims = _dims;
if( !_sz )
return;
size_t esz = CV_ELEM_SIZE(m.flags), total = esz;
int i;
for( i = _dims-1; i >= 0; i-- )
{
int s = _sz[i];
CV_Assert( s >= 0 );
m.size.p[i] = s;
if( _steps )
m.step.p[i] = i < _dims-1 ? _steps[i] : esz;
else if( autoSteps )
{
m.step.p[i] = total;
int64 total1 = (int64)total*s;
if( (uint64)total1 != (size_t)total1 )
CV_Error( cv::Error::StsOutOfRange, "The total matrix size does not fit to \"size_t\" type" );
total = (size_t)total1;
}
}
if( _dims == 1 )
{
m.dims = 2;
m.cols = 1;
m.step[1] = esz;
}
}
void UMat::updateContinuityFlag()
{
flags = cv::updateContinuityFlag(flags, dims, size.p, step.p);
}
void finalizeHdr(UMat& m)
{
m.updateContinuityFlag();
int d = m.dims;
if( d > 2 )
m.rows = m.cols = -1;
}
UMat Mat::getUMat(AccessFlag accessFlags, UMatUsageFlags usageFlags) const
{
UMat hdr;
if(!data)
return hdr;
if (data != datastart)
{
Size wholeSize;
Point ofs;
locateROI(wholeSize, ofs);
Size sz(cols, rows);
if (ofs.x != 0 || ofs.y != 0)
{
Mat src = *this;
int dtop = ofs.y;
int dbottom = wholeSize.height - src.rows - ofs.y;
int dleft = ofs.x;
int dright = wholeSize.width - src.cols - ofs.x;
src.adjustROI(dtop, dbottom, dleft, dright);
return src.getUMat(accessFlags, usageFlags)(cv::Rect(ofs.x, ofs.y, sz.width, sz.height));
}
}
CV_Assert(data == datastart);
accessFlags |= ACCESS_RW;
UMatData* new_u = NULL;
{
MatAllocator *a = allocator, *a0 = getDefaultAllocator();
if(!a)
a = a0;
new_u = a->allocate(dims, size.p, type(), data, step.p, accessFlags, usageFlags);
new_u->originalUMatData = u;
}
bool allocated = false;
try
{
allocated = UMat::getStdAllocator()->allocate(new_u, accessFlags, usageFlags);
}
catch (const cv::Exception& e)
{
fprintf(stderr, "Exception: %s\n", e.what());
}
if (!allocated)
{
allocated = getDefaultAllocator()->allocate(new_u, accessFlags, usageFlags);
CV_Assert(allocated);
}
if (u != NULL)
{
#ifdef HAVE_OPENCL
if (ocl::useOpenCL() && new_u->currAllocator == ocl::getOpenCLAllocator())
{
CV_Assert(new_u->tempUMat());
}
#endif
CV_XADD(&(u->refcount), 1);
CV_XADD(&(u->urefcount), 1);
}
try
{
hdr.flags = flags;
hdr.usageFlags = usageFlags;
setSize(hdr, dims, size.p, step.p);
finalizeHdr(hdr);
hdr.u = new_u;
hdr.offset = 0; //data - datastart;
hdr.addref();
return hdr;
}
catch(...)
{
if (u != NULL)
{
CV_XADD(&(u->refcount), -1);
CV_XADD(&(u->urefcount), -1);
}
new_u->currAllocator->deallocate(new_u);
throw;
}
}
void UMat::create(int d, const int* _sizes, int _type, UMatUsageFlags _usageFlags)
{
int i;
CV_Assert(0 <= d && d <= CV_MAX_DIM && _sizes);
_type = CV_MAT_TYPE(_type);
// if param value is USAGE_DEFAULT by implicit default param value -or- explicit value
// ...then don't change the existing usageFlags
// it is not possible to change usage from non-default to USAGE_DEFAULT through create()
// ...instead must construct UMat()
if (_usageFlags == cv::USAGE_DEFAULT)
{
_usageFlags = usageFlags;
}
if( u && (d == dims || (d == 1 && dims <= 2)) && _type == type() && _usageFlags == usageFlags )
{
for( i = 0; i < d; i++ )
if( size[i] != _sizes[i] )
break;
if( i == d && (d > 1 || size[1] == 1))
return;
}
int _sizes_backup[CV_MAX_DIM]; // #5991
if (_sizes == (this->size.p))
{
for(i = 0; i < d; i++ )
_sizes_backup[i] = _sizes[i];
_sizes = _sizes_backup;
}
release();
usageFlags = _usageFlags;
if( d == 0 )
return;
flags = (_type & CV_MAT_TYPE_MASK) | MAGIC_VAL;
setSize(*this, d, _sizes, 0, true);
offset = 0;
if( total() > 0 )
{
MatAllocator *a = allocator, *a0 = getStdAllocator();
if (!a)
{
a = a0;
a0 = Mat::getDefaultAllocator();
}
try
{
u = a->allocate(dims, size, _type, 0, step.p, ACCESS_RW /* ignored */, usageFlags);
CV_Assert(u != 0);
}
catch(...)
{
if(a != a0)
u = a0->allocate(dims, size, _type, 0, step.p, ACCESS_RW /* ignored */, usageFlags);
CV_Assert(u != 0);
}
CV_Assert( step[dims-1] == (size_t)CV_ELEM_SIZE(flags) );
}
finalizeHdr(*this);
addref();
}
void UMat::create(const std::vector<int>& _sizes, int _type, UMatUsageFlags _usageFlags)
{
create((int)_sizes.size(), _sizes.data(), _type, _usageFlags);
}
void UMat::copySize(const UMat& m)
{
setSize(*this, m.dims, 0, 0);
for( int i = 0; i < dims; i++ )
{
size[i] = m.size[i];
step[i] = m.step[i];
}
}
UMat::~UMat()
{
release();
if( step.p != step.buf )
fastFree(step.p);
}
void UMat::deallocate()
{
UMatData* u_ = u;
u = NULL;
u_->currAllocator->deallocate(u_);
}
UMat::UMat(const UMat& m, const Range& _rowRange, const Range& _colRange)
: flags(MAGIC_VAL), dims(0), rows(0), cols(0), allocator(0), usageFlags(USAGE_DEFAULT), u(0), offset(0), size(&rows)
{
CV_Assert( m.dims >= 2 );
if( m.dims > 2 )
{
AutoBuffer<Range> rs(m.dims);
rs[0] = _rowRange;
rs[1] = _colRange;
for( int i = 2; i < m.dims; i++ )
rs[i] = Range::all();
*this = m(rs.data());
return;
}
*this = m;
if( _rowRange != Range::all() && _rowRange != Range(0,rows) )
{
CV_Assert( 0 <= _rowRange.start && _rowRange.start <= _rowRange.end && _rowRange.end <= m.rows );
rows = _rowRange.size();
offset += step*_rowRange.start;
flags |= SUBMATRIX_FLAG;
}
if( _colRange != Range::all() && _colRange != Range(0,cols) )
{
CV_Assert( 0 <= _colRange.start && _colRange.start <= _colRange.end && _colRange.end <= m.cols );
cols = _colRange.size();
offset += _colRange.start*elemSize();
flags |= SUBMATRIX_FLAG;
}
updateContinuityFlag();
if( rows <= 0 || cols <= 0 )
{
release();
rows = cols = 0;
}
}
UMat::UMat(const UMat& m, const Rect& roi)
: flags(m.flags), dims(2), rows(roi.height), cols(roi.width),
allocator(m.allocator), usageFlags(m.usageFlags), u(m.u), offset(m.offset + roi.y*m.step[0]), size(&rows)
{
CV_Assert( m.dims <= 2 );
size_t esz = CV_ELEM_SIZE(flags);
offset += roi.x*esz;
CV_Assert( 0 <= roi.x && 0 <= roi.width && roi.x + roi.width <= m.cols &&
0 <= roi.y && 0 <= roi.height && roi.y + roi.height <= m.rows );
if( roi.width < m.cols || roi.height < m.rows )
flags |= SUBMATRIX_FLAG;
step[0] = m.step[0]; step[1] = esz;
updateContinuityFlag();
addref();
if( rows <= 0 || cols <= 0 )
{
rows = cols = 0;
release();
}
}
UMat::UMat(const UMat& m, const Range* ranges)
: flags(MAGIC_VAL), dims(0), rows(0), cols(0), allocator(0), usageFlags(USAGE_DEFAULT), u(0), offset(0), size(&rows)
{
int i, d = m.dims;
CV_Assert(ranges);
for( i = 0; i < d; i++ )
{
Range r = ranges[i];
CV_Assert( r == Range::all() || (0 <= r.start && r.start < r.end && r.end <= m.size[i]) );
}
*this = m;
for( i = 0; i < d; i++ )
{
Range r = ranges[i];
if( r != Range::all() && r != Range(0, size.p[i]))
{
size.p[i] = r.end - r.start;
offset += r.start*step.p[i];
flags |= SUBMATRIX_FLAG;
}
}
updateContinuityFlag();
}
UMat::UMat(const UMat& m, const std::vector<Range>& ranges)
: flags(MAGIC_VAL), dims(0), rows(0), cols(0), allocator(0), usageFlags(USAGE_DEFAULT), u(0), offset(0), size(&rows)
{
int i, d = m.dims;
CV_Assert((int)ranges.size() == d);
for (i = 0; i < d; i++)
{
Range r = ranges[i];
CV_Assert(r == Range::all() || (0 <= r.start && r.start < r.end && r.end <= m.size[i]));
}
*this = m;
for (i = 0; i < d; i++)
{
Range r = ranges[i];
if (r != Range::all() && r != Range(0, size.p[i]))
{
size.p[i] = r.end - r.start;
offset += r.start*step.p[i];
flags |= SUBMATRIX_FLAG;
}
}
updateContinuityFlag();
}
UMat UMat::diag(int d) const
{
CV_Assert( dims <= 2 );
UMat m = *this;
size_t esz = elemSize();
int len;
if( d >= 0 )
{
len = std::min(cols - d, rows);
m.offset += esz*d;
}
else
{
len = std::min(rows + d, cols);
m.offset -= step[0]*d;
}
CV_DbgAssert( len > 0 );
m.size[0] = m.rows = len;
m.size[1] = m.cols = 1;
m.step[0] += (len > 1 ? esz : 0);
m.updateContinuityFlag();
if( size() != Size(1,1) )
m.flags |= SUBMATRIX_FLAG;
return m;
}
void UMat::locateROI( Size& wholeSize, Point& ofs ) const
{
CV_Assert( dims <= 2 && step[0] > 0 );
size_t esz = elemSize(), minstep;
ptrdiff_t delta1 = (ptrdiff_t)offset, delta2 = (ptrdiff_t)u->size;
if( delta1 == 0 )
ofs.x = ofs.y = 0;
else
{
ofs.y = (int)(delta1/step[0]);
ofs.x = (int)((delta1 - step[0]*ofs.y)/esz);
CV_DbgAssert( offset == (size_t)(ofs.y*step[0] + ofs.x*esz) );
}
minstep = (ofs.x + cols)*esz;
wholeSize.height = (int)((delta2 - minstep)/step[0] + 1);
wholeSize.height = std::max(wholeSize.height, ofs.y + rows);
wholeSize.width = (int)((delta2 - step*(wholeSize.height-1))/esz);
wholeSize.width = std::max(wholeSize.width, ofs.x + cols);
}
UMat& UMat::adjustROI( int dtop, int dbottom, int dleft, int dright )
{
CV_Assert( dims <= 2 && step[0] > 0 );
Size wholeSize; Point ofs;
size_t esz = elemSize();
locateROI( wholeSize, ofs );
int row1 = std::min(std::max(ofs.y - dtop, 0), wholeSize.height), row2 = std::max(0, std::min(ofs.y + rows + dbottom, wholeSize.height));
int col1 = std::min(std::max(ofs.x - dleft, 0), wholeSize.width), col2 = std::max(0, std::min(ofs.x + cols + dright, wholeSize.width));
if(row1 > row2)
std::swap(row1, row2);
if(col1 > col2)
std::swap(col1, col2);
offset += (row1 - ofs.y)*step + (col1 - ofs.x)*esz;
rows = row2 - row1; cols = col2 - col1;
size.p[0] = rows; size.p[1] = cols;
updateContinuityFlag();
return *this;
}
UMat UMat::reshape(int new_cn, int new_rows) const
{
int cn = channels();
UMat hdr = *this;
if( dims > 2 && new_rows == 0 && new_cn != 0 && size[dims-1]*cn % new_cn == 0 )
{
hdr.flags = (hdr.flags & ~CV_MAT_CN_MASK) | ((new_cn-1) << CV_CN_SHIFT);
hdr.step[dims-1] = CV_ELEM_SIZE(hdr.flags);
hdr.size[dims-1] = hdr.size[dims-1]*cn / new_cn;
return hdr;
}
CV_Assert( dims <= 2 );
if( new_cn == 0 )
new_cn = cn;
int total_width = cols * cn;
if( (new_cn > total_width || total_width % new_cn != 0) && new_rows == 0 )
new_rows = rows * total_width / new_cn;
if( new_rows != 0 && new_rows != rows )
{
int total_size = total_width * rows;
if( !isContinuous() )
CV_Error( cv::Error::BadStep,
"The matrix is not continuous, thus its number of rows can not be changed" );
if( (unsigned)new_rows > (unsigned)total_size )
CV_Error( cv::Error::StsOutOfRange, "Bad new number of rows" );
total_width = total_size / new_rows;
if( total_width * new_rows != total_size )
CV_Error( cv::Error::StsBadArg, "The total number of matrix elements "
"is not divisible by the new number of rows" );
hdr.rows = new_rows;
hdr.step[0] = total_width * elemSize1();
}
int new_width = total_width / new_cn;
if( new_width * new_cn != total_width )
CV_Error( cv::Error::BadNumChannels,
"The total width is not divisible by the new number of channels" );
hdr.cols = new_width;
hdr.flags = (hdr.flags & ~CV_MAT_CN_MASK) | ((new_cn-1) << CV_CN_SHIFT);
hdr.step[1] = CV_ELEM_SIZE(hdr.flags);
return hdr;
}
UMat UMat::diag(const UMat& d, UMatUsageFlags usageFlags)
{
CV_Assert( d.cols == 1 || d.rows == 1 );
int len = d.rows + d.cols - 1;
UMat m(len, len, d.type(), Scalar(0), usageFlags);
UMat md = m.diag();
if( d.cols == 1 )
d.copyTo(md);
else
transpose(d, md);
return m;
}
int UMat::checkVector(int _elemChannels, int _depth, bool _requireContinuous) const
{
return (depth() == _depth || _depth <= 0) &&
(isContinuous() || !_requireContinuous) &&
((dims == 2 && (((rows == 1 || cols == 1) && channels() == _elemChannels) ||
(cols == _elemChannels && channels() == 1))) ||
(dims == 3 && channels() == 1 && size.p[2] == _elemChannels && (size.p[0] == 1 || size.p[1] == 1) &&
(isContinuous() || step.p[1] == step.p[2]*size.p[2])))
? (int)(total()*channels()/_elemChannels) : -1;
}
UMat UMat::reshape(int _cn, int _newndims, const int* _newsz) const
{
if(_newndims == dims)
{
if(_newsz == 0)
return reshape(_cn);
if(_newndims == 2)
return reshape(_cn, _newsz[0]);
}
if (isContinuous())
{
CV_Assert(_cn >= 0 && _newndims > 0 && _newndims <= CV_MAX_DIM && _newsz);
if (_cn == 0)
_cn = this->channels();
else
CV_Assert(_cn <= CV_CN_MAX);
size_t total_elem1_ref = this->total() * this->channels();
size_t total_elem1 = _cn;
AutoBuffer<int, 4> newsz_buf( (size_t)_newndims );
for (int i = 0; i < _newndims; i++)
{
CV_Assert(_newsz[i] >= 0);
if (_newsz[i] > 0)
newsz_buf[i] = _newsz[i];
else if (i < dims)
newsz_buf[i] = this->size[i];
else
CV_Error(cv::Error::StsOutOfRange, "Copy dimension (which has zero size) is not present in source matrix");
total_elem1 *= (size_t)newsz_buf[i];
}
if (total_elem1 != total_elem1_ref)
CV_Error(cv::Error::StsUnmatchedSizes, "Requested and source matrices have different count of elements");
UMat hdr = *this;
hdr.flags = (hdr.flags & ~CV_MAT_CN_MASK) | ((_cn-1) << CV_CN_SHIFT);
setSize(hdr, _newndims, newsz_buf.data(), NULL, true);
return hdr;
}
CV_Error(cv::Error::StsNotImplemented, "Reshaping of n-dimensional non-continuous matrices is not supported yet");
}
Mat UMat::getMat(AccessFlag accessFlags) const
{
if(!u)
return Mat();
// TODO Support ACCESS_READ (ACCESS_WRITE) without unnecessary data transfers
accessFlags |= ACCESS_RW;
UMatDataAutoLock autolock(u);
try
{
if(CV_XADD(&u->refcount, 1) == 0)
u->currAllocator->map(u, accessFlags);
if (u->data != 0)
{
Mat hdr(dims, size.p, type(), u->data + offset, step.p);
hdr.flags = flags;
hdr.u = u;
hdr.datastart = u->data;
hdr.data = u->data + offset;
hdr.datalimit = hdr.dataend = u->data + u->size;
return hdr;
}
}
catch(...)
{
CV_XADD(&u->refcount, -1);
throw;
}
CV_XADD(&u->refcount, -1);
CV_Assert(u->data != 0 && "Error mapping of UMat to host memory.");
return Mat();
}
void* UMat::handle(AccessFlag accessFlags) const
{
if( !u )
return 0;
CV_Assert(u->refcount == 0);
CV_Assert(!u->deviceCopyObsolete() || u->copyOnMap());
if (u->deviceCopyObsolete())
{
u->currAllocator->unmap(u);
}
if (!!(accessFlags & ACCESS_WRITE))
u->markHostCopyObsolete(true);
return u->handle;
}
void UMat::ndoffset(size_t* ofs) const
{
// offset = step[0]*ofs[0] + step[1]*ofs[1] + step[2]*ofs[2] + ...;
size_t val = offset;
for( int i = 0; i < dims; i++ )
{
size_t s = step.p[i];
ofs[i] = val / s;
val -= ofs[i]*s;
}
}
void UMat::copyTo(OutputArray _dst) const
{
CV_INSTRUMENT_REGION();
#ifdef HAVE_CUDA
if (_dst.isGpuMat())
{
_dst.getGpuMat().upload(*this);
return;
}
#endif
int dtype = _dst.type();
if( _dst.fixedType() && dtype != type() )
{
CV_Assert( channels() == CV_MAT_CN(dtype) );
convertTo( _dst, dtype );
return;
}
if( empty() )
{
_dst.release();
return;
}
size_t i, sz[CV_MAX_DIM] = {0}, srcofs[CV_MAX_DIM], dstofs[CV_MAX_DIM], esz = elemSize();
for( i = 0; i < (size_t)dims; i++ )
sz[i] = size.p[i];
sz[dims-1] *= esz;
ndoffset(srcofs);
srcofs[dims-1] *= esz;
_dst.create( dims, size.p, type() );
if( _dst.isUMat() )
{
UMat dst = _dst.getUMat();
CV_Assert(dst.u);
if( u == dst.u && dst.offset == offset )
return;
if (u->currAllocator == dst.u->currAllocator)
{
dst.ndoffset(dstofs);
dstofs[dims-1] *= esz;
u->currAllocator->copy(u, dst.u, dims, sz, srcofs, step.p, dstofs, dst.step.p, false);
return;
}
}
Mat dst = _dst.getMat();
u->currAllocator->download(u, dst.ptr(), dims, sz, srcofs, step.p, dst.step.p);
}
void UMat::copyTo(OutputArray _dst, InputArray _mask) const
{
CV_INSTRUMENT_REGION();
if( _mask.empty() )
{
copyTo(_dst);
return;
}
#ifdef HAVE_OPENCL
int cn = channels(), mtype = _mask.type(), mdepth = CV_MAT_DEPTH(mtype), mcn = CV_MAT_CN(mtype);
CV_Assert( mdepth == CV_8U && (mcn == 1 || mcn == cn) );
if (ocl::useOpenCL() && _dst.isUMat() && dims <= 2)
{
UMatData * prevu = _dst.getUMat().u;
_dst.create( dims, size, type() );
UMat dst = _dst.getUMat();
bool haveDstUninit = false;
if( prevu != dst.u ) // do not leave dst uninitialized
haveDstUninit = true;
String opts = format("-D COPY_TO_MASK -D T1=%s -D scn=%d -D mcn=%d%s",
ocl::memopTypeToStr(depth()), cn, mcn,
haveDstUninit ? " -D HAVE_DST_UNINIT" : "");
ocl::Kernel k("copyToMask", ocl::core::copyset_oclsrc, opts);
if (!k.empty())
{
k.args(ocl::KernelArg::ReadOnlyNoSize(*this),
ocl::KernelArg::ReadOnlyNoSize(_mask.getUMat()),
haveDstUninit ? ocl::KernelArg::WriteOnly(dst) :
ocl::KernelArg::ReadWrite(dst));
size_t globalsize[2] = { (size_t)cols, (size_t)rows };
if (k.run(2, globalsize, NULL, false))
{
CV_IMPL_ADD(CV_IMPL_OCL);
return;
}
}
}
#endif
Mat src = getMat(ACCESS_READ);
src.copyTo(_dst, _mask);
}
//
// void UMat::convertTo moved to convert.dispatch.cpp
//
UMat& UMat::setTo(InputArray _value, InputArray _mask)
{
CV_INSTRUMENT_REGION();
bool haveMask = !_mask.empty();
#ifdef HAVE_OPENCL
int tp = type(), cn = CV_MAT_CN(tp), d = CV_MAT_DEPTH(tp);
if( dims <= 2 && cn <= 4 && CV_MAT_DEPTH(tp) < CV_64F && ocl::useOpenCL() )
{
Mat value = _value.getMat();
CV_Assert( checkScalar(value, type(), _value.kind(), _InputArray::UMAT) );
int kercn = haveMask || cn == 3 ? cn : std::max(cn, ocl::predictOptimalVectorWidth(*this)),
kertp = CV_MAKE_TYPE(d, kercn);
double buf[16] = { 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0 };
convertAndUnrollScalar(value, tp, (uchar *)buf, kercn / cn);
int scalarcn = kercn == 3 ? 4 : kercn, rowsPerWI = ocl::Device::getDefault().isIntel() ? 4 : 1;
String opts = format("-D dstT=%s -D rowsPerWI=%d -D dstST=%s -D dstT1=%s -D cn=%d",
ocl::memopTypeToStr(kertp), rowsPerWI,
ocl::memopTypeToStr(CV_MAKETYPE(d, scalarcn)),
ocl::memopTypeToStr(d), kercn);
ocl::Kernel setK(haveMask ? "setMask" : "set", ocl::core::copyset_oclsrc, opts);
if( !setK.empty() )
{
ocl::KernelArg scalararg(ocl::KernelArg::CONSTANT, 0, 0, 0, buf, CV_ELEM_SIZE(d) * scalarcn);
UMat mask;
if( haveMask )
{
mask = _mask.getUMat();
CV_Assert( mask.size() == size() && mask.type() == CV_8UC1 );
ocl::KernelArg maskarg = ocl::KernelArg::ReadOnlyNoSize(mask),
dstarg = ocl::KernelArg::ReadWrite(*this);
setK.args(maskarg, dstarg, scalararg);
}
else
{
ocl::KernelArg dstarg = ocl::KernelArg::WriteOnly(*this, cn, kercn);
setK.args(dstarg, scalararg);
}
size_t globalsize[] = { (size_t)cols * cn / kercn, ((size_t)rows + rowsPerWI - 1) / rowsPerWI };
if( setK.run(2, globalsize, NULL, false) )
{
CV_IMPL_ADD(CV_IMPL_OCL);
return *this;
}
}
}
#endif
Mat m = getMat(haveMask ? ACCESS_RW : ACCESS_WRITE);
m.setTo(_value, _mask);
return *this;
}
UMat& UMat::operator = (const Scalar& s)
{
setTo(s);
return *this;
}
UMat UMat::t() const
{
UMat m;
transpose(*this, m);
return m;
}
UMat UMat::zeros(int rows, int cols, int type, UMatUsageFlags usageFlags)
{
return UMat(rows, cols, type, Scalar::all(0), usageFlags);
}
UMat UMat::zeros(Size size, int type, UMatUsageFlags usageFlags)
{
return UMat(size, type, Scalar::all(0), usageFlags);
}
UMat UMat::zeros(int ndims, const int* sz, int type, UMatUsageFlags usageFlags)
{
return UMat(ndims, sz, type, Scalar::all(0), usageFlags);
}
UMat UMat::ones(int rows, int cols, int type, UMatUsageFlags usageFlags)
{
return UMat(rows, cols, type, Scalar(1), usageFlags);
}
UMat UMat::ones(Size size, int type, UMatUsageFlags usageFlags)
{
return UMat(size, type, Scalar(1), usageFlags);
}
UMat UMat::ones(int ndims, const int* sz, int type, UMatUsageFlags usageFlags)
{
return UMat(ndims, sz, type, Scalar(1), usageFlags);
}
}
/* End of file. */