mirror of
https://github.com/opencv/opencv.git
synced 2025-01-11 23:18:11 +08:00
a2fa1d49a4
Modified Caffe parser to support the new dnn engine #26208 Now the Caffe parser supports both the old and the new engine. It can be selected using newEngine argument in PopulateNet. All cpu Caffe tests work fine except: - Test_Caffe_nets.Colorization - Test_Caffe_layers.FasterRCNN_Proposal Both these tests doesn't work because of the bug in the new net.forward function. The function takes the name of the desired target last layer, but uses this name as the name of the desired output tensor. Also Colorization test contains a strange model with a Silence layer in the end, so it doesn't have outputs. The old parser just ignored it. I think, the proper solution is to run this model until the (number_of_layers - 2) layer using proper net.forward arguments in the test. ### Pull Request Readiness Checklist See details at https://github.com/opencv/opencv/wiki/How_to_contribute#making-a-good-pull-request - [x] I agree to contribute to the project under Apache 2 License. - [x] To the best of my knowledge, the proposed patch is not based on a code under GPL or another license that is incompatible with OpenCV - [ ] The PR is proposed to the proper branch - [ ] There is a reference to the original bug report and related work - [x] There is accuracy test, performance test and test data in opencv_extra repository, if applicable Patch to opencv_extra has the same branch name. - [x] The feature is well documented and sample code can be built with the project CMake
575 lines
24 KiB
Python
Executable File
575 lines
24 KiB
Python
Executable File
#!/usr/bin/env python
|
|
import os
|
|
import cv2 as cv
|
|
import numpy as np
|
|
|
|
from tests_common import NewOpenCVTests, unittest
|
|
|
|
def normAssert(test, a, b, msg=None, lInf=1e-5):
|
|
test.assertLess(np.max(np.abs(a - b)), lInf, msg)
|
|
|
|
def inter_area(box1, box2):
|
|
x_min, x_max = max(box1[0], box2[0]), min(box1[2], box2[2])
|
|
y_min, y_max = max(box1[1], box2[1]), min(box1[3], box2[3])
|
|
return (x_max - x_min) * (y_max - y_min)
|
|
|
|
def area(box):
|
|
return (box[2] - box[0]) * (box[3] - box[1])
|
|
|
|
def box2str(box):
|
|
left, top = box[0], box[1]
|
|
width, height = box[2] - left, box[3] - top
|
|
return '[%f x %f from (%f, %f)]' % (width, height, left, top)
|
|
|
|
def normAssertDetections(test, refClassIds, refScores, refBoxes, testClassIds, testScores, testBoxes,
|
|
confThreshold=0.0, scores_diff=1e-5, boxes_iou_diff=1e-4):
|
|
matchedRefBoxes = [False] * len(refBoxes)
|
|
errMsg = ''
|
|
for i in range(len(testBoxes)):
|
|
testScore = testScores[i]
|
|
if testScore < confThreshold:
|
|
continue
|
|
|
|
testClassId, testBox = testClassIds[i], testBoxes[i]
|
|
matched = False
|
|
for j in range(len(refBoxes)):
|
|
if (not matchedRefBoxes[j]) and testClassId == refClassIds[j] and \
|
|
abs(testScore - refScores[j]) < scores_diff:
|
|
interArea = inter_area(testBox, refBoxes[j])
|
|
iou = interArea / (area(testBox) + area(refBoxes[j]) - interArea)
|
|
if abs(iou - 1.0) < boxes_iou_diff:
|
|
matched = True
|
|
matchedRefBoxes[j] = True
|
|
if not matched:
|
|
errMsg += '\nUnmatched prediction: class %d score %f box %s' % (testClassId, testScore, box2str(testBox))
|
|
|
|
for i in range(len(refBoxes)):
|
|
if (not matchedRefBoxes[i]) and refScores[i] > confThreshold:
|
|
errMsg += '\nUnmatched reference: class %d score %f box %s' % (refClassIds[i], refScores[i], box2str(refBoxes[i]))
|
|
if errMsg:
|
|
test.fail(errMsg)
|
|
|
|
def printParams(backend, target):
|
|
backendNames = {
|
|
cv.dnn.DNN_BACKEND_OPENCV: 'OCV',
|
|
cv.dnn.DNN_BACKEND_INFERENCE_ENGINE: 'DLIE'
|
|
}
|
|
targetNames = {
|
|
cv.dnn.DNN_TARGET_CPU: 'CPU',
|
|
cv.dnn.DNN_TARGET_OPENCL: 'OCL',
|
|
cv.dnn.DNN_TARGET_OPENCL_FP16: 'OCL_FP16',
|
|
cv.dnn.DNN_TARGET_MYRIAD: 'MYRIAD'
|
|
}
|
|
print('%s/%s' % (backendNames[backend], targetNames[target]))
|
|
|
|
def getDefaultThreshold(target):
|
|
if target == cv.dnn.DNN_TARGET_OPENCL_FP16 or target == cv.dnn.DNN_TARGET_MYRIAD:
|
|
return 4e-3
|
|
else:
|
|
return 1e-5
|
|
|
|
testdata_required = bool(os.environ.get('OPENCV_DNN_TEST_REQUIRE_TESTDATA', False))
|
|
|
|
g_dnnBackendsAndTargets = None
|
|
|
|
class dnn_test(NewOpenCVTests):
|
|
|
|
def setUp(self):
|
|
super(dnn_test, self).setUp()
|
|
|
|
global g_dnnBackendsAndTargets
|
|
if g_dnnBackendsAndTargets is None:
|
|
g_dnnBackendsAndTargets = self.initBackendsAndTargets()
|
|
self.dnnBackendsAndTargets = g_dnnBackendsAndTargets
|
|
|
|
def initBackendsAndTargets(self):
|
|
self.dnnBackendsAndTargets = [
|
|
[cv.dnn.DNN_BACKEND_OPENCV, cv.dnn.DNN_TARGET_CPU],
|
|
]
|
|
|
|
if self.checkIETarget(cv.dnn.DNN_BACKEND_INFERENCE_ENGINE, cv.dnn.DNN_TARGET_CPU):
|
|
self.dnnBackendsAndTargets.append([cv.dnn.DNN_BACKEND_INFERENCE_ENGINE, cv.dnn.DNN_TARGET_CPU])
|
|
if self.checkIETarget(cv.dnn.DNN_BACKEND_INFERENCE_ENGINE, cv.dnn.DNN_TARGET_MYRIAD):
|
|
self.dnnBackendsAndTargets.append([cv.dnn.DNN_BACKEND_INFERENCE_ENGINE, cv.dnn.DNN_TARGET_MYRIAD])
|
|
|
|
if cv.ocl.haveOpenCL() and cv.ocl.useOpenCL():
|
|
self.dnnBackendsAndTargets.append([cv.dnn.DNN_BACKEND_OPENCV, cv.dnn.DNN_TARGET_OPENCL])
|
|
self.dnnBackendsAndTargets.append([cv.dnn.DNN_BACKEND_OPENCV, cv.dnn.DNN_TARGET_OPENCL_FP16])
|
|
if cv.ocl_Device.getDefault().isIntel():
|
|
if self.checkIETarget(cv.dnn.DNN_BACKEND_INFERENCE_ENGINE, cv.dnn.DNN_TARGET_OPENCL):
|
|
self.dnnBackendsAndTargets.append([cv.dnn.DNN_BACKEND_INFERENCE_ENGINE, cv.dnn.DNN_TARGET_OPENCL])
|
|
if self.checkIETarget(cv.dnn.DNN_BACKEND_INFERENCE_ENGINE, cv.dnn.DNN_TARGET_OPENCL_FP16):
|
|
self.dnnBackendsAndTargets.append([cv.dnn.DNN_BACKEND_INFERENCE_ENGINE, cv.dnn.DNN_TARGET_OPENCL_FP16])
|
|
return self.dnnBackendsAndTargets
|
|
|
|
def find_dnn_file(self, filename, required=True):
|
|
if not required:
|
|
required = testdata_required
|
|
return self.find_file(filename, [os.environ.get('OPENCV_DNN_TEST_DATA_PATH', os.getcwd()),
|
|
os.environ['OPENCV_TEST_DATA_PATH']],
|
|
required=required)
|
|
|
|
def checkIETarget(self, backend, target):
|
|
proto = self.find_dnn_file('dnn/layers/layer_convolution.prototxt')
|
|
model = self.find_dnn_file('dnn/layers/layer_convolution.caffemodel')
|
|
net = cv.dnn.readNet(proto, model, engine=cv.dnn.ENGINE_CLASSIC)
|
|
try:
|
|
net.setPreferableBackend(backend)
|
|
net.setPreferableTarget(target)
|
|
inp = np.random.standard_normal([1, 2, 10, 11]).astype(np.float32)
|
|
net.setInput(inp)
|
|
net.forward()
|
|
except BaseException:
|
|
return False
|
|
return True
|
|
|
|
def test_getAvailableTargets(self):
|
|
targets = cv.dnn.getAvailableTargets(cv.dnn.DNN_BACKEND_OPENCV)
|
|
self.assertTrue(cv.dnn.DNN_TARGET_CPU in targets)
|
|
|
|
def test_blobRectsToImageRects(self):
|
|
paramNet = cv.dnn.Image2BlobParams()
|
|
paramNet.size = (226, 226)
|
|
paramNet.ddepth = cv.CV_32F
|
|
paramNet.mean = [0.485, 0.456, 0.406]
|
|
paramNet.scalefactor = [0.229, 0.224, 0.225]
|
|
paramNet.swapRB = False
|
|
paramNet.datalayout = cv.DATA_LAYOUT_NCHW
|
|
paramNet.paddingmode = cv.dnn.DNN_PMODE_LETTERBOX
|
|
rBlob = np.zeros(shape=(20, 4), dtype=np.int32)
|
|
rImg = paramNet.blobRectsToImageRects(rBlob, (356, 356))
|
|
self.assertTrue(type(rImg[0, 0])==np.int32)
|
|
self.assertTrue(rImg.shape==(20, 4))
|
|
|
|
def test_blobRectToImageRect(self):
|
|
paramNet = cv.dnn.Image2BlobParams()
|
|
paramNet.size = (226, 226)
|
|
paramNet.ddepth = cv.CV_32F
|
|
paramNet.mean = [0.485, 0.456, 0.406]
|
|
paramNet.scalefactor = [0.229, 0.224, 0.225]
|
|
paramNet.swapRB = False
|
|
paramNet.datalayout = cv.DATA_LAYOUT_NCHW
|
|
paramNet.paddingmode = cv.dnn.DNN_PMODE_LETTERBOX
|
|
rBlob = np.zeros(shape=(20, 4), dtype=np.int32)
|
|
rImg = paramNet.blobRectToImageRect((0, 0, 0, 0), (356, 356))
|
|
self.assertTrue(type(rImg[0])==int)
|
|
|
|
|
|
def test_blobFromImage(self):
|
|
np.random.seed(324)
|
|
|
|
width = 6
|
|
height = 7
|
|
scale = 1.0/127.5
|
|
mean = (10, 20, 30)
|
|
|
|
# Test arguments names.
|
|
img = np.random.randint(0, 255, [4, 5, 3]).astype(np.uint8)
|
|
blob = cv.dnn.blobFromImage(img, scale, (width, height), mean, True, False)
|
|
blob_args = cv.dnn.blobFromImage(img, scalefactor=scale, size=(width, height),
|
|
mean=mean, swapRB=True, crop=False)
|
|
normAssert(self, blob, blob_args)
|
|
|
|
# Test values.
|
|
target = cv.resize(img, (width, height), interpolation=cv.INTER_LINEAR)
|
|
target = target.astype(np.float32)
|
|
target = target[:,:,[2, 1, 0]] # BGR2RGB
|
|
target[:,:,0] -= mean[0]
|
|
target[:,:,1] -= mean[1]
|
|
target[:,:,2] -= mean[2]
|
|
target *= scale
|
|
target = target.transpose(2, 0, 1).reshape(1, 3, height, width) # to NCHW
|
|
normAssert(self, blob, target)
|
|
|
|
def test_blobFromImageWithParams(self):
|
|
np.random.seed(324)
|
|
|
|
width = 6
|
|
height = 7
|
|
stddev = np.array([0.2, 0.3, 0.4])
|
|
scalefactor = 1.0/127.5 * stddev
|
|
mean = (10, 20, 30)
|
|
|
|
# Test arguments names.
|
|
img = np.random.randint(0, 255, [4, 5, 3]).astype(np.uint8)
|
|
|
|
param = cv.dnn.Image2BlobParams()
|
|
param.scalefactor = scalefactor
|
|
param.size = (6, 7)
|
|
param.mean = mean
|
|
param.swapRB=True
|
|
param.datalayout = cv.DATA_LAYOUT_NHWC
|
|
|
|
blob = cv.dnn.blobFromImageWithParams(img, param)
|
|
blob_args = cv.dnn.blobFromImageWithParams(img, cv.dnn.Image2BlobParams(scalefactor=scalefactor, size=(6, 7), mean=mean,
|
|
swapRB=True, datalayout=cv.DATA_LAYOUT_NHWC))
|
|
normAssert(self, blob, blob_args)
|
|
|
|
target2 = cv.resize(img, (width, height), interpolation=cv.INTER_LINEAR).astype(np.float32)
|
|
target2 = target2[:,:,[2, 1, 0]] # BGR2RGB
|
|
target2[:,:,0] -= mean[0]
|
|
target2[:,:,1] -= mean[1]
|
|
target2[:,:,2] -= mean[2]
|
|
|
|
target2[:,:,0] *= scalefactor[0]
|
|
target2[:,:,1] *= scalefactor[1]
|
|
target2[:,:,2] *= scalefactor[2]
|
|
target2 = target2.reshape(1, height, width, 3) # to NHWC
|
|
normAssert(self, blob, target2)
|
|
|
|
def test_model(self):
|
|
img_path = self.find_dnn_file("dnn/street.png")
|
|
weights = self.find_dnn_file("dnn/MobileNetSSD_deploy_19e3ec3.caffemodel", required=False)
|
|
config = self.find_dnn_file("dnn/MobileNetSSD_deploy_19e3ec3.prototxt", required=False)
|
|
if weights is None or config is None:
|
|
raise unittest.SkipTest("Missing DNN test files (dnn/MobileNetSSD_deploy_19e3ec3.{prototxt/caffemodel}). Verify OPENCV_DNN_TEST_DATA_PATH configuration parameter.")
|
|
|
|
frame = cv.imread(img_path)
|
|
model = cv.dnn_DetectionModel(weights, config)
|
|
model.setInputParams(size=(300, 300), mean=(127.5, 127.5, 127.5), scale=1.0/127.5)
|
|
|
|
iouDiff = 0.05
|
|
confThreshold = 0.0001
|
|
nmsThreshold = 0
|
|
scoreDiff = 1e-3
|
|
|
|
classIds, confidences, boxes = model.detect(frame, confThreshold, nmsThreshold)
|
|
|
|
refClassIds = (7, 15)
|
|
refConfidences = (0.9998, 0.8793)
|
|
refBoxes = ((328, 238, 85, 102), (101, 188, 34, 138))
|
|
|
|
normAssertDetections(self, refClassIds, refConfidences, refBoxes,
|
|
classIds, confidences, boxes,confThreshold, scoreDiff, iouDiff)
|
|
|
|
for box in boxes:
|
|
cv.rectangle(frame, box, (0, 255, 0))
|
|
cv.rectangle(frame, np.array(box), (0, 255, 0))
|
|
cv.rectangle(frame, tuple(box), (0, 255, 0))
|
|
cv.rectangle(frame, list(box), (0, 255, 0))
|
|
|
|
|
|
def test_classification_model(self):
|
|
img_path = self.find_dnn_file("dnn/googlenet_0.png")
|
|
weights = self.find_dnn_file("dnn/squeezenet_v1.1.caffemodel", required=False)
|
|
config = self.find_dnn_file("dnn/squeezenet_v1.1.prototxt")
|
|
ref = np.load(self.find_dnn_file("dnn/squeezenet_v1.1_prob.npy"))
|
|
if weights is None or config is None:
|
|
raise unittest.SkipTest("Missing DNN test files (dnn/squeezenet_v1.1.{prototxt/caffemodel}). Verify OPENCV_DNN_TEST_DATA_PATH configuration parameter.")
|
|
|
|
frame = cv.imread(img_path)
|
|
model = cv.dnn_ClassificationModel(config, weights)
|
|
model.setInputSize(227, 227)
|
|
model.setInputCrop(True)
|
|
|
|
out = model.predict(frame)
|
|
normAssert(self, out, ref)
|
|
|
|
|
|
def test_textdetection_model(self):
|
|
img_path = self.find_dnn_file("dnn/text_det_test1.png")
|
|
weights = self.find_dnn_file("dnn/onnx/models/DB_TD500_resnet50.onnx", required=False)
|
|
if weights is None:
|
|
raise unittest.SkipTest("Missing DNN test files (onnx/models/DB_TD500_resnet50.onnx). Verify OPENCV_DNN_TEST_DATA_PATH configuration parameter.")
|
|
|
|
frame = cv.imread(img_path)
|
|
scale = 1.0 / 255.0
|
|
size = (736, 736)
|
|
mean = (122.67891434, 116.66876762, 104.00698793)
|
|
|
|
model = cv.dnn_TextDetectionModel_DB(weights)
|
|
model.setInputParams(scale, size, mean)
|
|
out, _ = model.detect(frame)
|
|
|
|
self.assertTrue(type(out) == tuple, msg='actual type {}'.format(str(type(out))))
|
|
self.assertTrue(np.array(out).shape == (2, 4, 2))
|
|
|
|
|
|
def test_face_detection(self):
|
|
model = self.find_dnn_file('dnn/onnx/models/yunet-202303.onnx', required=False)
|
|
img = self.get_sample('gpu/lbpcascade/er.png')
|
|
|
|
ref = [[1, 339.62445, 35.32416, 30.754604, 40.202126, 0.9302596],
|
|
[1, 140.63962, 255.55545, 32.832615, 41.767395, 0.916015],
|
|
[1, 68.39314, 126.74046, 30.29324, 39.14823, 0.90639645],
|
|
[1, 119.57139, 48.482178, 30.600697, 40.485996, 0.906021],
|
|
[1, 259.0921, 229.30713, 31.088186, 39.74022, 0.90490955],
|
|
[1, 405.69778, 87.28158, 33.393406, 42.96226, 0.8996978]]
|
|
|
|
print('\n')
|
|
for backend, target in self.dnnBackendsAndTargets:
|
|
printParams(backend, target)
|
|
|
|
net = cv.FaceDetectorYN.create(
|
|
model=model,
|
|
config="",
|
|
input_size=img.shape[:2],
|
|
score_threshold=0.3,
|
|
nms_threshold=0.45,
|
|
top_k=5000,
|
|
backend_id=backend,
|
|
target_id=target
|
|
)
|
|
|
|
out = net.detect(img)
|
|
out = out[1]
|
|
out = out.reshape(-1, 15)
|
|
|
|
ref = np.array(ref, np.float32)
|
|
refClassIds, testClassIds = ref[:, 0], np.ones(out.shape[0], np.float32)
|
|
refScores, testScores = ref[:, -1], out[:, -1]
|
|
refBoxes, testBoxes = ref[:, 1:5], out[:, 0:4]
|
|
|
|
normAssertDetections(self, refClassIds, refScores, refBoxes, testClassIds,
|
|
testScores, testBoxes, 0.5)
|
|
|
|
def test_async(self):
|
|
# bug: https://github.com/opencv/opencv/issues/26376
|
|
raise unittest.SkipTest("The new dnn engine does not support async inference")
|
|
|
|
timeout = 10*1000*10**6 # in nanoseconds (10 sec)
|
|
proto = self.find_dnn_file('dnn/layers/layer_convolution.prototxt')
|
|
model = self.find_dnn_file('dnn/layers/layer_convolution.caffemodel')
|
|
if proto is None or model is None:
|
|
raise unittest.SkipTest("Missing DNN test files (dnn/layers/layer_convolution.{prototxt/caffemodel}). Verify OPENCV_DNN_TEST_DATA_PATH configuration parameter.")
|
|
|
|
print('\n')
|
|
for backend, target in self.dnnBackendsAndTargets:
|
|
if backend != cv.dnn.DNN_BACKEND_INFERENCE_ENGINE:
|
|
continue
|
|
|
|
printParams(backend, target)
|
|
|
|
netSync = cv.dnn.readNet(proto, model, engine=cv.dnn.ENGINE_CLASSIC)
|
|
netSync.setPreferableBackend(backend)
|
|
netSync.setPreferableTarget(target)
|
|
|
|
netAsync = cv.dnn.readNet(proto, model)
|
|
netAsync.setPreferableBackend(backend)
|
|
netAsync.setPreferableTarget(target)
|
|
|
|
# Generate inputs
|
|
numInputs = 10
|
|
inputs = []
|
|
for _ in range(numInputs):
|
|
inputs.append(np.random.standard_normal([2, 6, 75, 113]).astype(np.float32))
|
|
|
|
# Run synchronously
|
|
refs = []
|
|
for i in range(numInputs):
|
|
netSync.setInput(inputs[i])
|
|
refs.append(netSync.forward())
|
|
|
|
# Run asynchronously. To make test more robust, process inputs in the reversed order.
|
|
outs = []
|
|
for i in reversed(range(numInputs)):
|
|
netAsync.setInput(inputs[i])
|
|
outs.insert(0, netAsync.forwardAsync())
|
|
|
|
for i in reversed(range(numInputs)):
|
|
ret, result = outs[i].get(timeoutNs=float(timeout))
|
|
self.assertTrue(ret)
|
|
normAssert(self, refs[i], result, 'Index: %d' % i, 1e-10)
|
|
|
|
def test_nms(self):
|
|
confs = (1, 1)
|
|
rects = ((0, 0, 0.4, 0.4), (0, 0, 0.2, 0.4)) # 0.5 overlap
|
|
|
|
self.assertTrue(all(cv.dnn.NMSBoxes(rects, confs, 0, 0.6).ravel() == (0, 1)))
|
|
|
|
# BUG: https://github.com/opencv/opencv/issues/26200
|
|
@unittest.skip("custom layers are partially broken with transition to the new dnn engine")
|
|
def test_custom_layer(self):
|
|
class CropLayer(object):
|
|
def __init__(self, params, blobs):
|
|
self.xstart = 0
|
|
self.xend = 0
|
|
self.ystart = 0
|
|
self.yend = 0
|
|
# Our layer receives two inputs. We need to crop the first input blob
|
|
# to match a shape of the second one (keeping batch size and number of channels)
|
|
def getMemoryShapes(self, inputs):
|
|
inputShape, targetShape = inputs[0], inputs[1]
|
|
batchSize, numChannels = inputShape[0], inputShape[1]
|
|
height, width = targetShape[2], targetShape[3]
|
|
self.ystart = (inputShape[2] - targetShape[2]) // 2
|
|
self.xstart = (inputShape[3] - targetShape[3]) // 2
|
|
self.yend = self.ystart + height
|
|
self.xend = self.xstart + width
|
|
return [[batchSize, numChannels, height, width]]
|
|
def forward(self, inputs):
|
|
return [inputs[0][:,:,self.ystart:self.yend,self.xstart:self.xend]]
|
|
|
|
cv.dnn_registerLayer('CropCaffe', CropLayer)
|
|
proto = '''
|
|
name: "TestCrop"
|
|
input: "input"
|
|
input_shape
|
|
{
|
|
dim: 1
|
|
dim: 2
|
|
dim: 5
|
|
dim: 5
|
|
}
|
|
input: "roi"
|
|
input_shape
|
|
{
|
|
dim: 1
|
|
dim: 2
|
|
dim: 3
|
|
dim: 3
|
|
}
|
|
layer {
|
|
name: "Crop"
|
|
type: "CropCaffe"
|
|
bottom: "input"
|
|
bottom: "roi"
|
|
top: "Crop"
|
|
}'''
|
|
|
|
net = cv.dnn.readNetFromCaffe(bytearray(proto.encode()))
|
|
for backend, target in self.dnnBackendsAndTargets:
|
|
if backend != cv.dnn.DNN_BACKEND_OPENCV:
|
|
continue
|
|
|
|
printParams(backend, target)
|
|
|
|
net.setPreferableBackend(backend)
|
|
net.setPreferableTarget(target)
|
|
src_shape = [1, 2, 5, 5]
|
|
dst_shape = [1, 2, 3, 3]
|
|
inp = np.arange(0, np.prod(src_shape), dtype=np.float32).reshape(src_shape)
|
|
roi = np.empty(dst_shape, dtype=np.float32)
|
|
net.setInput(inp, "input")
|
|
net.setInput(roi, "roi")
|
|
out = net.forward()
|
|
ref = inp[:, :, 1:4, 1:4]
|
|
normAssert(self, out, ref)
|
|
|
|
cv.dnn_unregisterLayer('CropCaffe')
|
|
|
|
# check that dnn module can work with 3D tensor as input for network
|
|
def test_input_3d(self):
|
|
model = self.find_dnn_file('dnn/onnx/models/hidden_lstm.onnx')
|
|
input_file = self.find_dnn_file('dnn/onnx/data/input_hidden_lstm.npy')
|
|
output_file = self.find_dnn_file('dnn/onnx/data/output_hidden_lstm.npy')
|
|
if model is None:
|
|
raise unittest.SkipTest("Missing DNN test files (dnn/onnx/models/hidden_lstm.onnx). "
|
|
"Verify OPENCV_DNN_TEST_DATA_PATH configuration parameter.")
|
|
if input_file is None or output_file is None:
|
|
raise unittest.SkipTest("Missing DNN test files (dnn/onnx/data/{input/output}_hidden_lstm.npy). "
|
|
"Verify OPENCV_DNN_TEST_DATA_PATH configuration parameter.")
|
|
|
|
input = np.load(input_file)
|
|
gold_output = np.load(output_file)
|
|
|
|
for backend, target in self.dnnBackendsAndTargets:
|
|
printParams(backend, target)
|
|
|
|
net = cv.dnn.readNet(model, engine=cv.dnn.ENGINE_CLASSIC)
|
|
|
|
net.setPreferableBackend(backend)
|
|
net.setPreferableTarget(target)
|
|
|
|
# Check whether 3d shape is parsed correctly for setInput
|
|
net.setInput(input)
|
|
|
|
# Case 0: test API `forward(const String& outputName = String()`
|
|
real_output = net.forward() # Retval is a np.array of shape [2, 5, 3]
|
|
normAssert(self, real_output, gold_output, "Case 1", getDefaultThreshold(target))
|
|
|
|
'''
|
|
Pre-allocate output memory with correct shape.
|
|
Normally Python users do not use in this way,
|
|
but we have to test it since we design API in this way
|
|
'''
|
|
# Case 1: a np.array with a string of output name.
|
|
# It tests API `forward(OutputArrayOfArrays outputBlobs, const String& outputName = String()`
|
|
# when outputBlobs is a np.array and we expect it to be the only output.
|
|
real_output = np.empty([2, 5, 3], dtype=np.float32)
|
|
real_output = net.forward(real_output, "237") # Retval is a tuple with a np.array of shape [2, 5, 3]
|
|
normAssert(self, real_output, gold_output, "Case 1", getDefaultThreshold(target))
|
|
|
|
# Case 2: a tuple of np.array with a string of output name.
|
|
# It tests API `forward(OutputArrayOfArrays outputBlobs, const String& outputName = String()`
|
|
# when outputBlobs is a container of several np.array and we expect to save all outputs accordingly.
|
|
real_output = tuple(np.empty([2, 5, 3], dtype=np.float32))
|
|
real_output = net.forward(real_output, "237") # Retval is a tuple with a np.array of shape [2, 5, 3]
|
|
normAssert(self, real_output, gold_output, "Case 2", getDefaultThreshold(target))
|
|
|
|
# Case 3: a tuple of np.array with a string of output name.
|
|
# It tests API `forward(OutputArrayOfArrays outputBlobs, const std::vector<String>& outBlobNames)`
|
|
real_output = tuple(np.empty([2, 5, 3], dtype=np.float32))
|
|
# Note that it does not support parsing a list , e.g. ["237"]
|
|
real_output = net.forward(real_output, ("237")) # Retval is a tuple with a np.array of shape [2, 5, 3]
|
|
normAssert(self, real_output, gold_output, "Case 3", getDefaultThreshold(target))
|
|
|
|
def test_set_param_3d(self):
|
|
model_path = self.find_dnn_file('dnn/onnx/models/matmul_3d_init.onnx')
|
|
input_file = self.find_dnn_file('dnn/onnx/data/input_matmul_3d_init.npy')
|
|
output_file = self.find_dnn_file('dnn/onnx/data/output_matmul_3d_init.npy')
|
|
|
|
input = np.load(input_file)
|
|
output = np.load(output_file)
|
|
|
|
for backend, target in self.dnnBackendsAndTargets:
|
|
printParams(backend, target)
|
|
|
|
net = cv.dnn.readNet(model_path, "", "", engine=cv.dnn.ENGINE_CLASSIC)
|
|
|
|
node_name = net.getLayerNames()[0]
|
|
w = net.getParam(node_name, 0) # returns the original tensor of three-dimensional shape
|
|
net.setParam(node_name, 0, w) # set param once again to see whether tensor is converted with correct shape
|
|
|
|
net.setPreferableBackend(backend)
|
|
net.setPreferableTarget(target)
|
|
|
|
net.setInput(input)
|
|
res_output = net.forward()
|
|
|
|
normAssert(self, output, res_output, "", getDefaultThreshold(target))
|
|
|
|
def test_scalefactor_assign(self):
|
|
params = cv.dnn.Image2BlobParams()
|
|
self.assertEqual(params.scalefactor, (1.0, 1.0, 1.0, 1.0))
|
|
params.scalefactor = 2.0
|
|
self.assertEqual(params.scalefactor, (2.0, 0.0, 0.0, 0.0))
|
|
|
|
def test_net_builder(self):
|
|
net = cv.dnn.Net()
|
|
params = {
|
|
"kernel_w": 3,
|
|
"kernel_h": 3,
|
|
"stride_w": 3,
|
|
"stride_h": 3,
|
|
"pool": "max",
|
|
}
|
|
net.addLayerToPrev("pool", "Pooling", cv.CV_32F, params)
|
|
|
|
inp = np.random.standard_normal([1, 2, 9, 12]).astype(np.float32)
|
|
net.setInput(inp)
|
|
out = net.forward()
|
|
self.assertEqual(out.shape, (1, 2, 3, 4))
|
|
|
|
def test_bool_operator(self):
|
|
n = self.find_dnn_file('dnn/onnx/models/and_op.onnx')
|
|
|
|
x = np.random.randint(0, 2, [5], dtype=np.bool_)
|
|
y = np.random.randint(0, 2, [5], dtype=np.bool_)
|
|
o = x & y
|
|
|
|
net = cv.dnn.readNet(n)
|
|
|
|
names = ["x", "y"]
|
|
net.setInputsNames(names)
|
|
net.setInput(x, names[0])
|
|
net.setInput(y, names[1])
|
|
|
|
out = net.forward()
|
|
|
|
self.assertTrue(np.all(out == o))
|
|
|
|
|
|
if __name__ == '__main__':
|
|
NewOpenCVTests.bootstrap()
|