opencv/modules/dnn/src/layers/gather_layer.cpp
2024-05-02 14:37:40 +03:00

144 lines
5.0 KiB
C++

// This file is part of OpenCV project.
// It is subject to the license terms in the LICENSE file found in the top-level directory
// of this distribution and at http://opencv.org/license.html.
#include "../precomp.hpp"
#include "../op_inf_engine.hpp"
#include "../ie_ngraph.hpp"
#include "layers_common.hpp"
namespace cv { namespace dnn {
class GatherLayerImpl CV_FINAL : public GatherLayer
{
public:
GatherLayerImpl(const LayerParams& params)
{
setParamsFrom(params);
m_axis = params.get<int>("axis", 0);
m_real_ndims = params.get<int>("real_ndims", -1);
}
virtual bool supportBackend(int backendId) CV_OVERRIDE
{
return backendId == DNN_BACKEND_OPENCV ||
backendId == DNN_BACKEND_INFERENCE_ENGINE_NGRAPH;
}
virtual bool getMemoryShapes(const std::vector<MatShape> &inputs,
const int requiredOutputs,
std::vector<MatShape> &outputs,
std::vector<MatShape> &internals) const CV_OVERRIDE
{
CV_CheckEQ(inputs.size(), 2ull, "");
MatShape inpShape = inputs[0];
const int axis = normalize_axis(m_axis, inpShape);
inpShape.erase(inpShape.begin() + axis);
auto end = m_real_ndims == -1 ? inputs[1].end() : inputs[1].begin() + m_real_ndims;
inpShape.insert(inpShape.begin() + axis, inputs[1].begin(), end);
outputs.assign(1, inpShape);
return false;
}
void forward(InputArrayOfArrays inputs_arr, OutputArrayOfArrays outputs_arr, OutputArrayOfArrays internals_arr) CV_OVERRIDE
{
CV_TRACE_FUNCTION();
CV_TRACE_ARG_VALUE(name, "name", name.c_str());
// FP16 fallback is not needed as we handle FP16 below
std::vector<Mat> inputs, outputs;
inputs_arr.getMatVector(inputs);
outputs_arr.getMatVector(outputs);
CV_CheckEQ(inputs.size(), (size_t)2, "");
CV_CheckEQ(outputs.size(), (size_t)1, "");
const Mat& inp = inputs[0];
int indicesType = inputs[1].type();
CV_CheckType(indicesType, indicesType == CV_32FC1 || indicesType == CV_16FC1, "");
Mat indices32S;
if (indicesType == CV_16F/*FP16*/)
{
Mat indicesF32;
inputs[1].convertTo(indicesF32, CV_32F);
indicesF32.convertTo(indices32S, CV_32S);
}
else
{
inputs[1].convertTo(indices32S, CV_32S);
}
const size_t indices_total = indices32S.total();
indices32S = indices32S.reshape(1, indices_total);
Mat& out = outputs[0];
CV_CheckTypeEQ(inp.type(), out.type(), "");
CV_CheckTypeEQ(indices32S.type(), CV_32SC1, "");
const int axis = normalize_axis(m_axis, shape(inp));
// FIXIT: why should we work with non-normalized input? it should be handled in importer or layers's output generator
const int axis_size = (int)inp.size[axis];
for (size_t j = 0 ; j < indices_total; ++j)
{
int& idx = indices32S.at<int>(j);
idx = normalize_axis(idx, axis_size); // validate and normalize indices
}
const size_t outer_size = axis == 0 ? inp.total() : inp.step1(axis - 1);
const size_t outer_dims = inp.total() / outer_size;
const size_t inner_size = inp.step1(axis);
const int* idx = indices32S.ptr<int>();
const char* src = inp.ptr<const char>();
char* dst = out.ptr<char>();
CV_CheckEQ(out.total(), outer_dims * indices_total * inner_size, "");
const size_t es = inp.elemSize1();
// TODO: optimize through switch (inner_size * es)
const size_t inner_bytes = inner_size * es;
for (size_t i = 0; i < outer_dims; ++i)
{
const size_t src_offset = i * outer_size;
for (size_t j = 0 ; j < indices_total; ++j)
{
const int index = idx[j];
CV_DbgCheck(index, index >= 0 && index < axis_size, "");
const size_t new_offset = src_offset + index * inner_size;
std::memcpy(dst, src + new_offset * es, inner_bytes);
dst += inner_bytes;
}
}
}
#ifdef HAVE_DNN_NGRAPH
virtual Ptr<BackendNode> initNgraph(const std::vector<Ptr<BackendWrapper> >& inputs,
const std::vector<Ptr<BackendNode> >& nodes) CV_OVERRIDE
{
auto axisNode = std::make_shared<ov::op::v0::Constant>(ov::element::i32, ov::Shape{}, &m_axis);
auto gather = std::make_shared<ov::op::v8::Gather>(
nodes[0].dynamicCast<InfEngineNgraphNode>()->node,
std::make_shared<ov::op::v0::Convert>(nodes[1].dynamicCast<InfEngineNgraphNode>()->node, ov::element::i32),
axisNode);
return Ptr<BackendNode>(new InfEngineNgraphNode(gather));
}
#endif // HAVE_DNN_NGRAPH
private:
// The axis to gather along
int m_axis;
int m_real_ndims;
};
Ptr<GatherLayer> GatherLayer::create(const LayerParams& params)
{
return makePtr<GatherLayerImpl>(params);
}
}} // namespace cv::dnn