opencv/modules/viz/src/shapes.cpp
2014-01-19 18:38:48 +04:00

1474 lines
56 KiB
C++

/*M///////////////////////////////////////////////////////////////////////////////////////
//
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
// By downloading, copying, installing or using the software you agree to this license.
// If you do not agree to this license, do not download, install,
// copy or use the software.
//
//
// License Agreement
// For Open Source Computer Vision Library
//
// Copyright (C) 2013, OpenCV Foundation, all rights reserved.
// Third party copyrights are property of their respective owners.
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
// * Redistribution's of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
//
// * Redistribution's in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other materials provided with the distribution.
//
// * The name of the copyright holders may not be used to endorse or promote products
// derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors "as is" and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
// Authors:
// * Ozan Tonkal, ozantonkal@gmail.com
// * Anatoly Baksheev, Itseez Inc. myname.mysurname <> mycompany.com
//
//M*/
#include "precomp.hpp"
namespace cv
{
namespace viz
{
template<typename _Tp> Vec<_Tp, 3>* vtkpoints_data(vtkSmartPointer<vtkPoints>& points);
}
}
///////////////////////////////////////////////////////////////////////////////////////////////
/// line widget implementation
cv::viz::WLine::WLine(const Point3f &pt1, const Point3f &pt2, const Color &color)
{
vtkSmartPointer<vtkLineSource> line = vtkSmartPointer<vtkLineSource>::New();
line->SetPoint1(pt1.x, pt1.y, pt1.z);
line->SetPoint2(pt2.x, pt2.y, pt2.z);
vtkSmartPointer<vtkPolyDataMapper> mapper = vtkSmartPointer<vtkPolyDataMapper>::New();
mapper->SetInputConnection(line->GetOutputPort());
vtkSmartPointer<vtkActor> actor = vtkSmartPointer<vtkActor>::New();
actor->SetMapper(mapper);
WidgetAccessor::setProp(*this, actor);
setColor(color);
}
template<> cv::viz::WLine cv::viz::Widget::cast<cv::viz::WLine>()
{
Widget3D widget = this->cast<Widget3D>();
return static_cast<WLine&>(widget);
}
///////////////////////////////////////////////////////////////////////////////////////////////
/// plane widget implementation
namespace cv { namespace viz { namespace
{
struct PlaneUtils
{
template<typename _Tp>
static vtkSmartPointer<vtkTransformPolyDataFilter> setSize(const Vec<_Tp, 3> &center, vtkSmartPointer<vtkAlgorithmOutput> poly_data_port, double size)
{
vtkSmartPointer<vtkTransform> transform = vtkSmartPointer<vtkTransform>::New();
transform->PreMultiply();
transform->Translate(center[0], center[1], center[2]);
transform->Scale(size, size, size);
transform->Translate(-center[0], -center[1], -center[2]);
vtkSmartPointer<vtkTransformPolyDataFilter> transform_filter = vtkSmartPointer<vtkTransformPolyDataFilter>::New();
transform_filter->SetInputConnection(poly_data_port);
transform_filter->SetTransform(transform);
transform_filter->Update();
return transform_filter;
}
};
}}}
cv::viz::WPlane::WPlane(const Vec4f& coefs, float size, const Color &color)
{
vtkSmartPointer<vtkPlaneSource> plane = vtkSmartPointer<vtkPlaneSource>::New();
plane->SetNormal(coefs[0], coefs[1], coefs[2]);
double norm = cv::norm(Vec3f(coefs.val));
plane->Push(-coefs[3] / norm);
Vec3d p_center;
plane->GetOrigin(p_center.val);
vtkSmartPointer<vtkPolyDataMapper> mapper = vtkSmartPointer<vtkPolyDataMapper>::New();
mapper->SetInputConnection(PlaneUtils::setSize(p_center, plane->GetOutputPort(), size)->GetOutputPort());
vtkSmartPointer<vtkActor> actor = vtkSmartPointer<vtkActor>::New();
actor->SetMapper(mapper);
WidgetAccessor::setProp(*this, actor);
setColor(color);
}
cv::viz::WPlane::WPlane(const Vec4f& coefs, const Point3f& pt, float size, const Color &color)
{
vtkSmartPointer<vtkPlaneSource> plane = vtkSmartPointer<vtkPlaneSource>::New();
Point3f coefs3(coefs[0], coefs[1], coefs[2]);
double norm_sqr = 1.0 / coefs3.dot(coefs3);
plane->SetNormal(coefs[0], coefs[1], coefs[2]);
double t = coefs3.dot(pt) + coefs[3];
Vec3f p_center = pt - coefs3 * t * norm_sqr;
plane->SetCenter(p_center[0], p_center[1], p_center[2]);
vtkSmartPointer<vtkPolyDataMapper> mapper = vtkSmartPointer<vtkPolyDataMapper>::New();
mapper->SetInputConnection(PlaneUtils::setSize(p_center, plane->GetOutputPort(), size)->GetOutputPort());
vtkSmartPointer<vtkActor> actor = vtkSmartPointer<vtkActor>::New();
actor->SetMapper(mapper);
WidgetAccessor::setProp(*this, actor);
setColor(color);
}
template<> cv::viz::WPlane cv::viz::Widget::cast<cv::viz::WPlane>()
{
Widget3D widget = this->cast<Widget3D>();
return static_cast<WPlane&>(widget);
}
///////////////////////////////////////////////////////////////////////////////////////////////
/// sphere widget implementation
cv::viz::WSphere::WSphere(const Point3f &center, float radius, int sphere_resolution, const Color &color)
{
vtkSmartPointer<vtkSphereSource> sphere = vtkSmartPointer<vtkSphereSource>::New();
sphere->SetRadius(radius);
sphere->SetCenter(center.x, center.y, center.z);
sphere->SetPhiResolution(sphere_resolution);
sphere->SetThetaResolution(sphere_resolution);
sphere->LatLongTessellationOff();
vtkSmartPointer<vtkPolyDataMapper> mapper = vtkSmartPointer<vtkPolyDataMapper>::New();
mapper->SetInputConnection(sphere->GetOutputPort());
vtkSmartPointer<vtkActor> actor = vtkSmartPointer<vtkActor>::New();
actor->SetMapper(mapper);
WidgetAccessor::setProp(*this, actor);
setColor(color);
}
template<> cv::viz::WSphere cv::viz::Widget::cast<cv::viz::WSphere>()
{
Widget3D widget = this->cast<Widget3D>();
return static_cast<WSphere&>(widget);
}
///////////////////////////////////////////////////////////////////////////////////////////////
/// arrow widget implementation
cv::viz::WArrow::WArrow(const Point3f& pt1, const Point3f& pt2, float thickness, const Color &color)
{
vtkSmartPointer<vtkArrowSource> arrowSource = vtkSmartPointer<vtkArrowSource>::New();
arrowSource->SetShaftRadius(thickness);
// The thickness and radius of the tip are adjusted based on the thickness of the arrow
arrowSource->SetTipRadius(thickness * 3.0);
arrowSource->SetTipLength(thickness * 10.0);
RNG rng = theRNG();
Vec3d arbitrary(rng.uniform(-10.0, 10.0), rng.uniform(-10.0, 10.0), rng.uniform(-10.0, 10.0));
Vec3d startPoint(pt1.x, pt1.y, pt1.z), endPoint(pt2.x, pt2.y, pt2.z);
double length = cv::norm(endPoint - startPoint);
Vec3d xvec = normalized(endPoint - startPoint);
Vec3d zvec = normalized(xvec.cross(arbitrary));
Vec3d yvec = zvec.cross(xvec);
Affine3d pose = makeTransformToGlobal(xvec, yvec, zvec);
// Apply the transforms
vtkSmartPointer<vtkTransform> transform = vtkSmartPointer<vtkTransform>::New();
transform->Translate(startPoint.val);
transform->Concatenate(vtkmatrix(pose.matrix));
transform->Scale(length, length, length);
// Transform the polydata
vtkSmartPointer<vtkTransformPolyDataFilter> transformPD = vtkSmartPointer<vtkTransformPolyDataFilter>::New();
transformPD->SetTransform(transform);
transformPD->SetInputConnection(arrowSource->GetOutputPort());
vtkSmartPointer<vtkPolyDataMapper> mapper = vtkSmartPointer<vtkPolyDataMapper>::New();
mapper->SetInputConnection(transformPD->GetOutputPort());
vtkSmartPointer<vtkActor> actor = vtkSmartPointer<vtkActor>::New();
actor->SetMapper(mapper);
WidgetAccessor::setProp(*this, actor);
setColor(color);
}
template<> cv::viz::WArrow cv::viz::Widget::cast<cv::viz::WArrow>()
{
Widget3D widget = this->cast<Widget3D>();
return static_cast<WArrow&>(widget);
}
///////////////////////////////////////////////////////////////////////////////////////////////
/// circle widget implementation
cv::viz::WCircle::WCircle(const Point3f& pt, float radius, float thickness, const Color& color)
{
vtkSmartPointer<vtkDiskSource> disk = vtkSmartPointer<vtkDiskSource>::New();
// Maybe the resolution should be lower e.g. 50 or 25
disk->SetCircumferentialResolution(50);
disk->SetInnerRadius(radius - thickness);
disk->SetOuterRadius(radius + thickness);
// Set the circle origin
vtkSmartPointer<vtkTransform> t = vtkSmartPointer<vtkTransform>::New();
t->Identity();
t->Translate(pt.x, pt.y, pt.z);
vtkSmartPointer<vtkTransformPolyDataFilter> tf = vtkSmartPointer<vtkTransformPolyDataFilter>::New();
tf->SetTransform(t);
tf->SetInputConnection(disk->GetOutputPort());
vtkSmartPointer<vtkPolyDataMapper> mapper = vtkSmartPointer<vtkPolyDataMapper>::New();
mapper->SetInputConnection(tf->GetOutputPort());
vtkSmartPointer<vtkActor> actor = vtkSmartPointer<vtkActor>::New();
actor->SetMapper(mapper);
WidgetAccessor::setProp(*this, actor);
setColor(color);
}
template<> cv::viz::WCircle cv::viz::Widget::cast<cv::viz::WCircle>()
{
Widget3D widget = this->cast<Widget3D>();
return static_cast<WCircle&>(widget);
}
///////////////////////////////////////////////////////////////////////////////////////////////
/// cylinder widget implementation
cv::viz::WCylinder::WCylinder(const Point3f& pt_on_axis, const Point3f& axis_direction, float radius, int numsides, const Color &color)
{
const Point3f pt2 = pt_on_axis + axis_direction;
vtkSmartPointer<vtkLineSource> line = vtkSmartPointer<vtkLineSource>::New();
line->SetPoint1(pt_on_axis.x, pt_on_axis.y, pt_on_axis.z);
line->SetPoint2(pt2.x, pt2.y, pt2.z);
vtkSmartPointer<vtkTubeFilter> tuber = vtkSmartPointer<vtkTubeFilter>::New();
tuber->SetInputConnection(line->GetOutputPort());
tuber->SetRadius(radius);
tuber->SetNumberOfSides(numsides);
vtkSmartPointer<vtkPolyDataMapper> mapper = vtkSmartPointer<vtkPolyDataMapper>::New();
mapper->SetInputConnection(tuber->GetOutputPort());
vtkSmartPointer<vtkActor> actor = vtkSmartPointer<vtkActor>::New();
actor->SetMapper(mapper);
WidgetAccessor::setProp(*this, actor);
setColor(color);
}
template<> cv::viz::WCylinder cv::viz::Widget::cast<cv::viz::WCylinder>()
{
Widget3D widget = this->cast<Widget3D>();
return static_cast<WCylinder&>(widget);
}
///////////////////////////////////////////////////////////////////////////////////////////////
/// cylinder widget implementation
cv::viz::WCube::WCube(const Point3f& pt_min, const Point3f& pt_max, bool wire_frame, const Color &color)
{
vtkSmartPointer<vtkPolyDataMapper> mapper = vtkSmartPointer<vtkPolyDataMapper>::New();
if (wire_frame)
{
vtkSmartPointer<vtkOutlineSource> cube = vtkSmartPointer<vtkOutlineSource>::New();
cube->SetBounds(pt_min.x, pt_max.x, pt_min.y, pt_max.y, pt_min.z, pt_max.z);
mapper->SetInputConnection(cube->GetOutputPort());
}
else
{
vtkSmartPointer<vtkCubeSource> cube = vtkSmartPointer<vtkCubeSource>::New();
cube->SetBounds(pt_min.x, pt_max.x, pt_min.y, pt_max.y, pt_min.z, pt_max.z);
mapper->SetInputConnection(cube->GetOutputPort());
}
vtkSmartPointer<vtkActor> actor = vtkSmartPointer<vtkActor>::New();
actor->SetMapper(mapper);
WidgetAccessor::setProp(*this, actor);
setColor(color);
}
template<> cv::viz::WCube cv::viz::Widget::cast<cv::viz::WCube>()
{
Widget3D widget = this->cast<Widget3D>();
return static_cast<WCube&>(widget);
}
///////////////////////////////////////////////////////////////////////////////////////////////
/// coordinate system widget implementation
cv::viz::WCoordinateSystem::WCoordinateSystem(float scale)
{
vtkSmartPointer<vtkAxes> axes = vtkSmartPointer<vtkAxes>::New();
axes->SetOrigin(0, 0, 0);
axes->SetScaleFactor(scale);
vtkSmartPointer<vtkFloatArray> axes_colors = vtkSmartPointer<vtkFloatArray>::New();
axes_colors->Allocate(6);
axes_colors->InsertNextValue(0.0);
axes_colors->InsertNextValue(0.0);
axes_colors->InsertNextValue(0.5);
axes_colors->InsertNextValue(0.5);
axes_colors->InsertNextValue(1.0);
axes_colors->InsertNextValue(1.0);
vtkSmartPointer<vtkPolyData> axes_data = axes->GetOutput();
#if VTK_MAJOR_VERSION <= 5
axes_data->Update();
#else
axes->Update();
#endif
axes_data->GetPointData()->SetScalars(axes_colors);
vtkSmartPointer<vtkTubeFilter> axes_tubes = vtkSmartPointer<vtkTubeFilter>::New();
#if VTK_MAJOR_VERSION <= 5
axes_tubes->SetInput(axes_data);
#else
axes_tubes->SetInputData(axes_data);
#endif
axes_tubes->SetRadius(axes->GetScaleFactor() / 50.0);
axes_tubes->SetNumberOfSides(6);
vtkSmartPointer<vtkPolyDataMapper> mapper = vtkSmartPointer<vtkPolyDataMapper>::New();
mapper->SetScalarModeToUsePointData();
mapper->SetInputConnection(axes_tubes->GetOutputPort());
vtkSmartPointer<vtkActor> actor = vtkSmartPointer<vtkActor>::New();
actor->SetMapper(mapper);
WidgetAccessor::setProp(*this, actor);
}
template<> cv::viz::WCoordinateSystem cv::viz::Widget::cast<cv::viz::WCoordinateSystem>()
{
Widget3D widget = this->cast<Widget3D>();
return static_cast<WCoordinateSystem&>(widget);
}
///////////////////////////////////////////////////////////////////////////////////////////////
/// polyline widget implementation
namespace cv { namespace viz { namespace
{
struct PolyLineUtils
{
template<typename _Tp>
static void copy(const Mat& source, Vec<_Tp, 3> *output, vtkSmartPointer<vtkPolyLine> polyLine)
{
int s_chs = source.channels();
for (int y = 0, id = 0; y < source.rows; ++y)
{
const _Tp* srow = source.ptr<_Tp>(y);
for (int x = 0; x < source.cols; ++x, srow += s_chs, ++id)
{
*output++ = Vec<_Tp, 3>(srow);
polyLine->GetPointIds()->SetId(id,id);
}
}
}
};
}}}
cv::viz::WPolyLine::WPolyLine(InputArray _pointData, const Color &color)
{
Mat pointData = _pointData.getMat();
CV_Assert(pointData.type() == CV_32FC3 || pointData.type() == CV_32FC4 || pointData.type() == CV_64FC3 || pointData.type() == CV_64FC4);
vtkIdType nr_points = pointData.total();
vtkSmartPointer<vtkPoints> points = vtkSmartPointer<vtkPoints>::New();
vtkSmartPointer<vtkPolyData> polyData = vtkSmartPointer<vtkPolyData>::New();
vtkSmartPointer<vtkPolyLine> polyLine = vtkSmartPointer<vtkPolyLine>::New();
if (pointData.depth() == CV_32F)
points->SetDataTypeToFloat();
else
points->SetDataTypeToDouble();
points->SetNumberOfPoints(nr_points);
polyLine->GetPointIds()->SetNumberOfIds(nr_points);
if (pointData.depth() == CV_32F)
{
// Get a pointer to the beginning of the data array
Vec3f *data_beg = vtkpoints_data<float>(points);
PolyLineUtils::copy(pointData, data_beg, polyLine);
}
else if (pointData.depth() == CV_64F)
{
// Get a pointer to the beginning of the data array
Vec3d *data_beg = vtkpoints_data<double>(points);
PolyLineUtils::copy(pointData, data_beg, polyLine);
}
vtkSmartPointer<vtkCellArray> cells = vtkSmartPointer<vtkCellArray>::New();
cells->InsertNextCell(polyLine);
polyData->SetPoints(points);
polyData->SetLines(cells);
vtkSmartPointer<vtkPolyDataMapper> mapper = vtkSmartPointer<vtkPolyDataMapper>::New();
#if VTK_MAJOR_VERSION <= 5
mapper->SetInput(polyData);
#else
mapper->SetInputData(polyData);
#endif
vtkSmartPointer<vtkActor> actor = vtkSmartPointer<vtkActor>::New();
actor->SetMapper(mapper);
WidgetAccessor::setProp(*this, actor);
setColor(color);
}
template<> cv::viz::WPolyLine cv::viz::Widget::cast<cv::viz::WPolyLine>()
{
Widget3D widget = this->cast<Widget3D>();
return static_cast<WPolyLine&>(widget);
}
///////////////////////////////////////////////////////////////////////////////////////////////
/// grid widget implementation
namespace cv { namespace viz { namespace
{
struct GridUtils
{
static vtkSmartPointer<vtkPolyData> createGrid(const Vec2i &dimensions, const Vec2f &spacing)
{
// Create the grid using image data
vtkSmartPointer<vtkImageData> grid = vtkSmartPointer<vtkImageData>::New();
// Add 1 to dimensions because in ImageData dimensions is the number of lines
// - however here it means number of cells
grid->SetDimensions(dimensions[0]+1, dimensions[1]+1, 1);
grid->SetSpacing(spacing[0], spacing[1], 0.);
// Set origin of the grid to be the middle of the grid
grid->SetOrigin(dimensions[0] * spacing[0] * (-0.5), dimensions[1] * spacing[1] * (-0.5), 0);
// Extract the edges so we have the grid
vtkSmartPointer<vtkExtractEdges> filter = vtkSmartPointer<vtkExtractEdges>::New();
#if VTK_MAJOR_VERSION <= 5
filter->SetInputConnection(grid->GetProducerPort());
#else
filter->SetInputData(grid);
#endif
filter->Update();
return filter->GetOutput();
}
};
}}}
cv::viz::WGrid::WGrid(const Vec2i &dimensions, const Vec2f &spacing, const Color &color)
{
vtkSmartPointer<vtkPolyData> grid = GridUtils::createGrid(dimensions, spacing);
vtkSmartPointer<vtkPolyDataMapper> mapper = vtkSmartPointer<vtkPolyDataMapper>::New();
#if VTK_MAJOR_VERSION <= 5
mapper->SetInputConnection(grid->GetProducerPort());
#else
mapper->SetInputData(grid);
#endif
vtkSmartPointer<vtkActor> actor = vtkSmartPointer<vtkActor>::New();
actor->SetMapper(mapper);
WidgetAccessor::setProp(*this, actor);
setColor(color);
}
cv::viz::WGrid::WGrid(const Vec4f &coefs, const Vec2i &dimensions, const Vec2f &spacing, const Color &color)
{
vtkSmartPointer<vtkPolyData> grid = GridUtils::createGrid(dimensions, spacing);
// Estimate the transform to set the normal based on the coefficients
Vec3d normal(coefs[0], coefs[1], coefs[2]);
Vec3d up_vector(0.0, 1.0, 0.0); // Just set as default
double push_distance = -coefs[3]/cv::norm(Vec3f(coefs.val));
Vec3d n = normalize(normal);
Vec3d u = normalize(up_vector.cross(n));
Vec3d v = n.cross(u);
Affine3d pose = makeTransformToGlobal(u, v, n, n * push_distance);
vtkSmartPointer<vtkTransform> transform = vtkSmartPointer<vtkTransform>::New();
transform->PreMultiply();
transform->SetMatrix(vtkmatrix(pose.matrix));
vtkSmartPointer<vtkTransformPolyDataFilter> transform_filter = vtkSmartPointer<vtkTransformPolyDataFilter>::New();
transform_filter->SetTransform(transform);
#if VTK_MAJOR_VERSION <= 5
transform_filter->SetInputConnection(grid->GetProducerPort());
#else
transform_filter->SetInputData(grid);
#endif
transform_filter->Update();
vtkSmartPointer<vtkPolyDataMapper> mapper = vtkSmartPointer<vtkPolyDataMapper>::New();
mapper->SetInputConnection(transform_filter->GetOutputPort());
vtkSmartPointer<vtkActor> actor = vtkSmartPointer<vtkActor>::New();
actor->SetMapper(mapper);
WidgetAccessor::setProp(*this, actor);
setColor(color);
}
template<> cv::viz::WGrid cv::viz::Widget::cast<cv::viz::WGrid>()
{
Widget3D widget = this->cast<Widget3D>();
return static_cast<WGrid&>(widget);
}
///////////////////////////////////////////////////////////////////////////////////////////////
/// text3D widget implementation
cv::viz::WText3D::WText3D(const String &text, const Point3f &position, float text_scale, bool face_camera, const Color &color)
{
vtkSmartPointer<vtkVectorText> textSource = vtkSmartPointer<vtkVectorText>::New();
textSource->SetText(text.c_str());
textSource->Update();
vtkSmartPointer<vtkPolyDataMapper> mapper = vtkSmartPointer<vtkPolyDataMapper>::New();
mapper->SetInputConnection(textSource->GetOutputPort());
if (face_camera)
{
vtkSmartPointer<vtkFollower> actor = vtkSmartPointer<vtkFollower>::New();
actor->SetMapper(mapper);
actor->SetPosition(position.x, position.y, position.z);
actor->SetScale(text_scale);
WidgetAccessor::setProp(*this, actor);
}
else
{
vtkSmartPointer<vtkActor> actor = vtkSmartPointer<vtkActor>::New();
actor->SetMapper(mapper);
actor->SetPosition(position.x, position.y, position.z);
actor->SetScale(text_scale);
WidgetAccessor::setProp(*this, actor);
}
setColor(color);
}
void cv::viz::WText3D::setText(const String &text)
{
vtkFollower *actor = vtkFollower::SafeDownCast(WidgetAccessor::getProp(*this));
CV_Assert("This widget does not support text." && actor);
// Update text source
vtkPolyDataMapper *mapper = vtkPolyDataMapper::SafeDownCast(actor->GetMapper());
vtkVectorText * textSource = vtkVectorText::SafeDownCast(mapper->GetInputConnection(0,0)->GetProducer());
CV_Assert("This widget does not support text." && textSource);
textSource->SetText(text.c_str());
textSource->Update();
}
cv::String cv::viz::WText3D::getText() const
{
vtkFollower *actor = vtkFollower::SafeDownCast(WidgetAccessor::getProp(*this));
CV_Assert("This widget does not support text." && actor);
vtkPolyDataMapper *mapper = vtkPolyDataMapper::SafeDownCast(actor->GetMapper());
vtkVectorText * textSource = vtkVectorText::SafeDownCast(mapper->GetInputConnection(0,0)->GetProducer());
CV_Assert("This widget does not support text." && textSource);
return textSource->GetText();
}
template<> cv::viz::WText3D cv::viz::Widget::cast<cv::viz::WText3D>()
{
Widget3D widget = this->cast<Widget3D>();
return static_cast<WText3D&>(widget);
}
///////////////////////////////////////////////////////////////////////////////////////////////
/// text widget implementation
cv::viz::WText::WText(const String &text, const Point2i &pos, int font_size, const Color &color)
{
vtkSmartPointer<vtkTextActor> actor = vtkSmartPointer<vtkTextActor>::New();
actor->SetPosition(pos.x, pos.y);
actor->SetInput(text.c_str());
vtkSmartPointer<vtkTextProperty> tprop = actor->GetTextProperty();
tprop->SetFontSize(font_size);
tprop->SetFontFamilyToArial();
tprop->SetJustificationToLeft();
tprop->BoldOn();
Color c = vtkcolor(color);
tprop->SetColor(c.val);
WidgetAccessor::setProp(*this, actor);
}
template<> cv::viz::WText cv::viz::Widget::cast<cv::viz::WText>()
{
Widget2D widget = this->cast<Widget2D>();
return static_cast<WText&>(widget);
}
void cv::viz::WText::setText(const String &text)
{
vtkTextActor *actor = vtkTextActor::SafeDownCast(WidgetAccessor::getProp(*this));
CV_Assert("This widget does not support text." && actor);
actor->SetInput(text.c_str());
}
cv::String cv::viz::WText::getText() const
{
vtkTextActor *actor = vtkTextActor::SafeDownCast(WidgetAccessor::getProp(*this));
CV_Assert("This widget does not support text." && actor);
return actor->GetInput();
}
///////////////////////////////////////////////////////////////////////////////////////////////
/// image overlay widget implementation
cv::viz::WImageOverlay::WImageOverlay(const Mat &image, const Rect &rect)
{
CV_Assert(!image.empty() && image.depth() == CV_8U);
// Create the vtk image and set its parameters based on input image
vtkSmartPointer<vtkImageData> vtk_image = vtkSmartPointer<vtkImageData>::New();
ConvertToVtkImage::convert(image, vtk_image);
// Need to flip the image as the coordinates are different in OpenCV and VTK
vtkSmartPointer<vtkImageFlip> flipFilter = vtkSmartPointer<vtkImageFlip>::New();
flipFilter->SetFilteredAxis(1); // Vertical flip
#if VTK_MAJOR_VERSION <= 5
flipFilter->SetInputConnection(vtk_image->GetProducerPort());
#else
flipFilter->SetInputData(vtk_image);
#endif
flipFilter->Update();
// Scale the image based on the Rect
vtkSmartPointer<vtkTransform> transform = vtkSmartPointer<vtkTransform>::New();
transform->Scale(double(image.cols)/rect.width,double(image.rows)/rect.height,1.0);
vtkSmartPointer<vtkImageReslice> image_reslice = vtkSmartPointer<vtkImageReslice>::New();
image_reslice->SetResliceTransform(transform);
image_reslice->SetInputConnection(flipFilter->GetOutputPort());
image_reslice->SetOutputDimensionality(2);
image_reslice->InterpolateOn();
image_reslice->AutoCropOutputOn();
vtkSmartPointer<vtkImageMapper> imageMapper = vtkSmartPointer<vtkImageMapper>::New();
imageMapper->SetInputConnection(image_reslice->GetOutputPort());
imageMapper->SetColorWindow(255); // OpenCV color
imageMapper->SetColorLevel(127.5);
vtkSmartPointer<vtkActor2D> actor = vtkSmartPointer<vtkActor2D>::New();
actor->SetMapper(imageMapper);
actor->SetPosition(rect.x, rect.y);
WidgetAccessor::setProp(*this, actor);
}
void cv::viz::WImageOverlay::setImage(const Mat &image)
{
CV_Assert(!image.empty() && image.depth() == CV_8U);
vtkActor2D *actor = vtkActor2D::SafeDownCast(WidgetAccessor::getProp(*this));
CV_Assert("This widget does not support overlay image." && actor);
vtkImageMapper *mapper = vtkImageMapper::SafeDownCast(actor->GetMapper());
CV_Assert("This widget does not support overlay image." && mapper);
// Create the vtk image and set its parameters based on input image
vtkSmartPointer<vtkImageData> vtk_image = vtkSmartPointer<vtkImageData>::New();
ConvertToVtkImage::convert(image, vtk_image);
// Need to flip the image as the coordinates are different in OpenCV and VTK
vtkSmartPointer<vtkImageFlip> flipFilter = vtkSmartPointer<vtkImageFlip>::New();
flipFilter->SetFilteredAxis(1); // Vertical flip
#if VTK_MAJOR_VERSION <= 5
flipFilter->SetInputConnection(vtk_image->GetProducerPort());
#else
flipFilter->SetInputData(vtk_image);
#endif
flipFilter->Update();
mapper->SetInputConnection(flipFilter->GetOutputPort());
}
template<> cv::viz::WImageOverlay cv::viz::Widget::cast<cv::viz::WImageOverlay>()
{
Widget2D widget = this->cast<Widget2D>();
return static_cast<WImageOverlay&>(widget);
}
///////////////////////////////////////////////////////////////////////////////////////////////
/// image 3D widget implementation
cv::viz::WImage3D::WImage3D(const Mat &image, const Size &size)
{
CV_Assert(!image.empty() && image.depth() == CV_8U);
// Create the vtk image and set its parameters based on input image
vtkSmartPointer<vtkImageData> vtk_image = vtkSmartPointer<vtkImageData>::New();
ConvertToVtkImage::convert(image, vtk_image);
// Need to flip the image as the coordinates are different in OpenCV and VTK
vtkSmartPointer<vtkImageFlip> flipFilter = vtkSmartPointer<vtkImageFlip>::New();
flipFilter->SetFilteredAxis(1); // Vertical flip
#if VTK_MAJOR_VERSION <= 5
flipFilter->SetInputConnection(vtk_image->GetProducerPort());
#else
flipFilter->SetInputData(vtk_image);
#endif
flipFilter->Update();
Vec3d plane_center(size.width * 0.5, size.height * 0.5, 0.0);
vtkSmartPointer<vtkPlaneSource> plane = vtkSmartPointer<vtkPlaneSource>::New();
plane->SetCenter(plane_center[0], plane_center[1], plane_center[2]);
plane->SetNormal(0.0, 0.0, 1.0);
vtkSmartPointer<vtkTransform> transform = vtkSmartPointer<vtkTransform>::New();
transform->PreMultiply();
transform->Translate(plane_center[0], plane_center[1], plane_center[2]);
transform->Scale(size.width, size.height, 1.0);
transform->Translate(-plane_center[0], -plane_center[1], -plane_center[2]);
vtkSmartPointer<vtkTransformPolyDataFilter> transform_filter = vtkSmartPointer<vtkTransformPolyDataFilter>::New();
transform_filter->SetTransform(transform);
transform_filter->SetInputConnection(plane->GetOutputPort());
transform_filter->Update();
// Apply the texture
vtkSmartPointer<vtkTexture> texture = vtkSmartPointer<vtkTexture>::New();
texture->SetInputConnection(flipFilter->GetOutputPort());
vtkSmartPointer<vtkTextureMapToPlane> texturePlane = vtkSmartPointer<vtkTextureMapToPlane>::New();
texturePlane->SetInputConnection(transform_filter->GetOutputPort());
vtkSmartPointer<vtkPolyDataMapper> planeMapper = vtkSmartPointer<vtkPolyDataMapper>::New();
planeMapper->SetInputConnection(texturePlane->GetOutputPort());
vtkSmartPointer<vtkActor> actor = vtkSmartPointer<vtkActor>::New();
actor->SetMapper(planeMapper);
actor->SetTexture(texture);
WidgetAccessor::setProp(*this, actor);
}
cv::viz::WImage3D::WImage3D(const Vec3f &position, const Vec3f &normal, const Vec3f &up_vector, const Mat &image, const Size &size)
{
CV_Assert(!image.empty() && image.depth() == CV_8U);
// Create the vtk image and set its parameters based on input image
vtkSmartPointer<vtkImageData> vtk_image = vtkSmartPointer<vtkImageData>::New();
ConvertToVtkImage::convert(image, vtk_image);
// Need to flip the image as the coordinates are different in OpenCV and VTK
vtkSmartPointer<vtkImageFlip> flipFilter = vtkSmartPointer<vtkImageFlip>::New();
flipFilter->SetFilteredAxis(1); // Vertical flip
#if VTK_MAJOR_VERSION <= 5
flipFilter->SetInputConnection(vtk_image->GetProducerPort());
#else
flipFilter->SetInputData(vtk_image);
#endif
flipFilter->Update();
vtkSmartPointer<vtkPlaneSource> plane = vtkSmartPointer<vtkPlaneSource>::New();
plane->SetCenter(0.0, 0.0, 0.0);
plane->SetNormal(0.0, 0.0, 1.0);
// Compute the transformation matrix for drawing the camera frame in a scene
Vec3d n = normalize(normal);
Vec3d u = normalize(up_vector.cross(n));
Vec3d v = n.cross(u);
Affine3d pose = makeTransformToGlobal(u, v, n, position);
// Apply the texture
vtkSmartPointer<vtkTexture> texture = vtkSmartPointer<vtkTexture>::New();
texture->SetInputConnection(flipFilter->GetOutputPort());
vtkSmartPointer<vtkTextureMapToPlane> texturePlane = vtkSmartPointer<vtkTextureMapToPlane>::New();
texturePlane->SetInputConnection(plane->GetOutputPort());
// Apply the transform after texture mapping
vtkSmartPointer<vtkTransform> transform = vtkSmartPointer<vtkTransform>::New();
transform->PreMultiply();
transform->SetMatrix(vtkmatrix(pose));
transform->Scale(size.width, size.height, 1.0);
vtkSmartPointer<vtkTransformPolyDataFilter> transform_filter = vtkSmartPointer<vtkTransformPolyDataFilter>::New();
transform_filter->SetTransform(transform);
transform_filter->SetInputConnection(texturePlane->GetOutputPort());
transform_filter->Update();
vtkSmartPointer<vtkPolyDataMapper> planeMapper = vtkSmartPointer<vtkPolyDataMapper>::New();
planeMapper->SetInputConnection(transform_filter->GetOutputPort());
vtkSmartPointer<vtkActor> actor = vtkSmartPointer<vtkActor>::New();
actor->SetMapper(planeMapper);
actor->SetTexture(texture);
WidgetAccessor::setProp(*this, actor);
}
void cv::viz::WImage3D::setImage(const Mat &image)
{
CV_Assert(!image.empty() && image.depth() == CV_8U);
vtkActor *actor = vtkActor::SafeDownCast(WidgetAccessor::getProp(*this));
CV_Assert("This widget does not support 3D image." && actor);
// Create the vtk image and set its parameters based on input image
vtkSmartPointer<vtkImageData> vtk_image = vtkSmartPointer<vtkImageData>::New();
ConvertToVtkImage::convert(image, vtk_image);
// Need to flip the image as the coordinates are different in OpenCV and VTK
vtkSmartPointer<vtkImageFlip> flipFilter = vtkSmartPointer<vtkImageFlip>::New();
flipFilter->SetFilteredAxis(1); // Vertical flip
#if VTK_MAJOR_VERSION <= 5
flipFilter->SetInputConnection(vtk_image->GetProducerPort());
#else
flipFilter->SetInputData(vtk_image);
#endif
flipFilter->Update();
// Apply the texture
vtkSmartPointer<vtkTexture> texture = vtkSmartPointer<vtkTexture>::New();
texture->SetInputConnection(flipFilter->GetOutputPort());
actor->SetTexture(texture);
}
template<> cv::viz::WImage3D cv::viz::Widget::cast<cv::viz::WImage3D>()
{
Widget3D widget = this->cast<Widget3D>();
return static_cast<WImage3D&>(widget);
}
///////////////////////////////////////////////////////////////////////////////////////////////
/// camera position widget implementation
namespace cv { namespace viz { namespace
{
struct CameraPositionUtils
{
static void projectImage(float fovy, float far_end_height, const Mat &image,
double scale, const Color &color, vtkSmartPointer<vtkActor> actor)
{
// Create a camera
vtkSmartPointer<vtkCamera> camera = vtkSmartPointer<vtkCamera>::New();
float aspect_ratio = float(image.cols)/float(image.rows);
// Create the vtk image
vtkSmartPointer<vtkImageData> vtk_image = vtkSmartPointer<vtkImageData>::New();
ConvertToVtkImage::convert(image, vtk_image);
// Adjust a pixel of the vtk_image
vtk_image->SetScalarComponentFromDouble(0, image.rows-1, 0, 0, color[2]);
vtk_image->SetScalarComponentFromDouble(0, image.rows-1, 0, 1, color[1]);
vtk_image->SetScalarComponentFromDouble(0, image.rows-1, 0, 2, color[0]);
// Need to flip the image as the coordinates are different in OpenCV and VTK
vtkSmartPointer<vtkImageFlip> flipFilter = vtkSmartPointer<vtkImageFlip>::New();
flipFilter->SetFilteredAxis(1); // Vertical flip
#if VTK_MAJOR_VERSION <= 5
flipFilter->SetInputConnection(vtk_image->GetProducerPort());
#else
flipFilter->SetInputData(vtk_image);
#endif
flipFilter->Update();
Vec3d plane_center(0.0, 0.0, scale);
vtkSmartPointer<vtkPlaneSource> plane = vtkSmartPointer<vtkPlaneSource>::New();
plane->SetCenter(plane_center[0], plane_center[1], plane_center[2]);
plane->SetNormal(0.0, 0.0, 1.0);
vtkSmartPointer<vtkTransform> transform = vtkSmartPointer<vtkTransform>::New();
transform->PreMultiply();
transform->Translate(plane_center[0], plane_center[1], plane_center[2]);
transform->Scale(far_end_height*aspect_ratio, far_end_height, 1.0);
transform->RotateY(180.0);
transform->Translate(-plane_center[0], -plane_center[1], -plane_center[2]);
// Apply the texture
vtkSmartPointer<vtkTexture> texture = vtkSmartPointer<vtkTexture>::New();
texture->SetInputConnection(flipFilter->GetOutputPort());
vtkSmartPointer<vtkTextureMapToPlane> texturePlane = vtkSmartPointer<vtkTextureMapToPlane>::New();
texturePlane->SetInputConnection(plane->GetOutputPort());
vtkSmartPointer<vtkTransformPolyDataFilter> transform_filter = vtkSmartPointer<vtkTransformPolyDataFilter>::New();
transform_filter->SetTransform(transform);
transform_filter->SetInputConnection(texturePlane->GetOutputPort());
transform_filter->Update();
// Create frustum
camera->SetViewAngle(fovy);
camera->SetPosition(0.0,0.0,0.0);
camera->SetViewUp(0.0,1.0,0.0);
camera->SetFocalPoint(0.0,0.0,1.0);
camera->SetClippingRange(0.01, scale);
double planesArray[24];
camera->GetFrustumPlanes(aspect_ratio, planesArray);
vtkSmartPointer<vtkPlanes> planes = vtkSmartPointer<vtkPlanes>::New();
planes->SetFrustumPlanes(planesArray);
vtkSmartPointer<vtkFrustumSource> frustumSource =
vtkSmartPointer<vtkFrustumSource>::New();
frustumSource->SetPlanes(planes);
frustumSource->Update();
vtkSmartPointer<vtkExtractEdges> filter = vtkSmartPointer<vtkExtractEdges>::New();
filter->SetInputConnection(frustumSource->GetOutputPort());
filter->Update();
// Frustum needs to be textured or else it can't be combined with image
vtkSmartPointer<vtkTextureMapToPlane> frustum_texture = vtkSmartPointer<vtkTextureMapToPlane>::New();
frustum_texture->SetInputConnection(filter->GetOutputPort());
// Texture mapping with only one pixel from the image to have constant color
frustum_texture->SetSRange(0.0, 0.0);
frustum_texture->SetTRange(0.0, 0.0);
vtkSmartPointer<vtkAppendPolyData> appendFilter = vtkSmartPointer<vtkAppendPolyData>::New();
appendFilter->AddInputConnection(frustum_texture->GetOutputPort());
appendFilter->AddInputConnection(transform_filter->GetOutputPort());
vtkSmartPointer<vtkPolyDataMapper> planeMapper = vtkSmartPointer<vtkPolyDataMapper>::New();
planeMapper->SetInputConnection(appendFilter->GetOutputPort());
actor->SetMapper(planeMapper);
actor->SetTexture(texture);
}
};
}}}
cv::viz::WCameraPosition::WCameraPosition(float scale)
{
vtkSmartPointer<vtkAxes> axes = vtkSmartPointer<vtkAxes>::New();
axes->SetOrigin(0, 0, 0);
axes->SetScaleFactor(scale);
vtkSmartPointer<vtkFloatArray> axes_colors = vtkSmartPointer<vtkFloatArray>::New();
axes_colors->Allocate(6);
axes_colors->InsertNextValue(0.0);
axes_colors->InsertNextValue(0.0);
axes_colors->InsertNextValue(0.5);
axes_colors->InsertNextValue(0.5);
axes_colors->InsertNextValue(1.0);
axes_colors->InsertNextValue(1.0);
vtkSmartPointer<vtkPolyData> axes_data = axes->GetOutput();
#if VTK_MAJOR_VERSION <= 5
axes_data->Update();
#else
axes->Update();
#endif
axes_data->GetPointData()->SetScalars(axes_colors);
vtkSmartPointer<vtkTubeFilter> axes_tubes = vtkSmartPointer<vtkTubeFilter>::New();
#if VTK_MAJOR_VERSION <= 5
axes_tubes->SetInput(axes_data);
#else
axes_tubes->SetInputData(axes_data);
#endif
axes_tubes->SetRadius(axes->GetScaleFactor() / 50.0);
axes_tubes->SetNumberOfSides(6);
vtkSmartPointer<vtkPolyDataMapper> mapper = vtkSmartPointer<vtkPolyDataMapper>::New();
mapper->SetScalarModeToUsePointData();
mapper->SetInputConnection(axes_tubes->GetOutputPort());
vtkSmartPointer<vtkActor> actor = vtkSmartPointer<vtkActor>::New();
actor->SetMapper(mapper);
WidgetAccessor::setProp(*this, actor);
}
cv::viz::WCameraPosition::WCameraPosition(const Matx33f &K, float scale, const Color &color)
{
vtkSmartPointer<vtkCamera> camera = vtkSmartPointer<vtkCamera>::New();
float f_x = K(0,0);
float f_y = K(1,1);
float c_y = K(1,2);
float aspect_ratio = f_y / f_x;
// Assuming that this is an ideal camera (c_y and c_x are at the center of the image)
float fovy = 2.0f * atan2(c_y,f_y) * 180 / CV_PI;
camera->SetViewAngle(fovy);
camera->SetPosition(0.0,0.0,0.0);
camera->SetViewUp(0.0,1.0,0.0);
camera->SetFocalPoint(0.0,0.0,1.0);
camera->SetClippingRange(0.01, scale);
double planesArray[24];
camera->GetFrustumPlanes(aspect_ratio, planesArray);
vtkSmartPointer<vtkPlanes> planes = vtkSmartPointer<vtkPlanes>::New();
planes->SetFrustumPlanes(planesArray);
vtkSmartPointer<vtkFrustumSource> frustumSource =
vtkSmartPointer<vtkFrustumSource>::New();
frustumSource->SetPlanes(planes);
frustumSource->Update();
vtkSmartPointer<vtkExtractEdges> filter = vtkSmartPointer<vtkExtractEdges>::New();
filter->SetInputConnection(frustumSource->GetOutputPort());
filter->Update();
vtkSmartPointer<vtkPolyDataMapper> mapper = vtkSmartPointer<vtkPolyDataMapper>::New();
mapper->SetInputConnection(filter->GetOutputPort());
vtkSmartPointer<vtkActor> actor = vtkSmartPointer<vtkActor>::New();
actor->SetMapper(mapper);
WidgetAccessor::setProp(*this, actor);
setColor(color);
}
cv::viz::WCameraPosition::WCameraPosition(const Vec2f &fov, float scale, const Color &color)
{
vtkSmartPointer<vtkCamera> camera = vtkSmartPointer<vtkCamera>::New();
camera->SetViewAngle(fov[1] * 180 / CV_PI); // Vertical field of view
camera->SetPosition(0.0,0.0,0.0);
camera->SetViewUp(0.0,1.0,0.0);
camera->SetFocalPoint(0.0,0.0,1.0);
camera->SetClippingRange(0.01, scale);
double aspect_ratio = tan(fov[0] * 0.5) / tan(fov[1] * 0.5);
double planesArray[24];
camera->GetFrustumPlanes(aspect_ratio, planesArray);
vtkSmartPointer<vtkPlanes> planes = vtkSmartPointer<vtkPlanes>::New();
planes->SetFrustumPlanes(planesArray);
vtkSmartPointer<vtkFrustumSource> frustumSource =
vtkSmartPointer<vtkFrustumSource>::New();
frustumSource->SetPlanes(planes);
frustumSource->Update();
// Extract the edges so we have the grid
vtkSmartPointer<vtkExtractEdges> filter = vtkSmartPointer<vtkExtractEdges>::New();
filter->SetInputConnection(frustumSource->GetOutputPort());
filter->Update();
vtkSmartPointer<vtkPolyDataMapper> mapper = vtkSmartPointer<vtkPolyDataMapper>::New();
mapper->SetInputConnection(filter->GetOutputPort());
vtkSmartPointer<vtkActor> actor = vtkSmartPointer<vtkActor>::New();
actor->SetMapper(mapper);
WidgetAccessor::setProp(*this, actor);
setColor(color);
}
cv::viz::WCameraPosition::WCameraPosition(const Matx33f &K, const Mat &image, float scale, const Color &color)
{
CV_Assert(!image.empty() && image.depth() == CV_8U);
float f_y = K(1,1);
float c_y = K(1,2);
// Assuming that this is an ideal camera (c_y and c_x are at the center of the image)
float fovy = 2.0f * atan2(c_y,f_y) * 180.0f / CV_PI;
float far_end_height = 2.0f * c_y * scale / f_y;
vtkSmartPointer<vtkActor> actor = vtkSmartPointer<vtkActor>::New();
CameraPositionUtils::projectImage(fovy, far_end_height, image, scale, color, actor);
WidgetAccessor::setProp(*this, actor);
}
cv::viz::WCameraPosition::WCameraPosition(const Vec2f &fov, const Mat &image, float scale, const Color &color)
{
CV_Assert(!image.empty() && image.depth() == CV_8U);
float fovy = fov[1] * 180.0f / CV_PI;
float far_end_height = 2.0 * scale * tan(fov[1] * 0.5);
vtkSmartPointer<vtkActor> actor = vtkSmartPointer<vtkActor>::New();
CameraPositionUtils::projectImage(fovy, far_end_height, image, scale, color, actor);
WidgetAccessor::setProp(*this, actor);
}
template<> cv::viz::WCameraPosition cv::viz::Widget::cast<cv::viz::WCameraPosition>()
{
Widget3D widget = this->cast<Widget3D>();
return static_cast<WCameraPosition&>(widget);
}
///////////////////////////////////////////////////////////////////////////////////////////////
/// trajectory widget implementation
namespace cv { namespace viz { namespace
{
struct TrajectoryUtils
{
static void applyPath(vtkSmartPointer<vtkPolyData> poly_data, vtkSmartPointer<vtkAppendPolyData> append_filter, const std::vector<Affine3d> &path)
{
vtkIdType nr_points = path.size();
for (vtkIdType i = 0; i < nr_points; ++i)
{
vtkSmartPointer<vtkPolyData> new_data = vtkSmartPointer<vtkPolyData>::New();
new_data->DeepCopy(poly_data);
// Transform the default coordinate frame
vtkSmartPointer<vtkTransform> transform = vtkSmartPointer<vtkTransform>::New();
transform->PreMultiply();
vtkSmartPointer<vtkMatrix4x4> mat_trans = vtkSmartPointer<vtkMatrix4x4>::New();
mat_trans = vtkmatrix(path[i].matrix);
transform->SetMatrix(mat_trans);
vtkSmartPointer<vtkTransformPolyDataFilter> filter = vtkSmartPointer<vtkTransformPolyDataFilter>::New();
#if VTK_MAJOR_VERSION <= 5
filter->SetInput(new_data);
#else
filter->SetInputData(new_data);
#endif
filter->SetTransform(transform);
filter->Update();
append_filter->AddInputConnection(filter->GetOutputPort());
}
}
};
}}}
cv::viz::WTrajectory::WTrajectory(InputArray _path, int display_mode, float scale, const Color &color)
{
CV_Assert(_path.kind() == _InputArray::STD_VECTOR || _path.kind() == _InputArray::MAT);
CV_Assert(_path.type() == CV_32FC(16) || _path.type() == CV_64FC(16));
const Affine3d* dpath = _path.getMat().ptr<Affine3d>(), *dend = dpath + _path.total();
const Affine3f* fpath = _path.getMat().ptr<Affine3f>(), *fend = fpath + _path.total();
std::vector<Affine3d> path;
if (_path.depth() == CV_32F)
path.assign(fpath, fend);
if (_path.depth() == CV_64F)
path.assign(dpath, dend);
vtkSmartPointer<vtkAppendPolyData> appendFilter = vtkSmartPointer<vtkAppendPolyData>::New();
// Bitwise and with 3 in order to limit the domain to 2 bits
if ((~display_mode & 3) ^ WTrajectory::PATH)
{
// Create a poly line along the path
vtkIdType nr_points = path.size();
vtkSmartPointer<vtkPoints> points = vtkSmartPointer<vtkPoints>::New();
points->SetDataTypeToFloat();
points->SetNumberOfPoints(nr_points);
vtkSmartPointer<vtkPolyData> polyData = vtkSmartPointer<vtkPolyData>::New();
vtkSmartPointer<vtkPolyLine> polyLine = vtkSmartPointer<vtkPolyLine>::New();
polyLine->GetPointIds()->SetNumberOfIds(nr_points);
Vec3f *data_beg = vtkpoints_data<float>(points);
for (vtkIdType i = 0; i < nr_points; ++i)
{
Vec3f cam_pose = path[i].translation();
*data_beg++ = cam_pose;
polyLine->GetPointIds()->SetId(i,i);
}
vtkSmartPointer<vtkCellArray> cells = vtkSmartPointer<vtkCellArray>::New();
cells->InsertNextCell(polyLine);
polyData->SetPoints(points);
polyData->SetLines(cells);
// Set the color for polyData
vtkSmartPointer<vtkUnsignedCharArray> colors = vtkSmartPointer<vtkUnsignedCharArray>::New();
colors->SetNumberOfComponents(3);
colors->SetNumberOfTuples(nr_points);
colors->FillComponent(0, color[2]);
colors->FillComponent(1, color[1]);
colors->FillComponent(2, color[0]);
polyData->GetPointData()->SetScalars(colors);
#if VTK_MAJOR_VERSION <= 5
appendFilter->AddInputConnection(polyData->GetProducerPort());
#else
appendFilter->AddInputData(polyData);
#endif
}
if ((~display_mode & 3) ^ WTrajectory::FRAMES)
{
// Create frames and transform along the path
vtkSmartPointer<vtkAxes> axes = vtkSmartPointer<vtkAxes>::New();
axes->SetOrigin(0, 0, 0);
axes->SetScaleFactor(scale);
vtkSmartPointer<vtkUnsignedCharArray> axes_colors = vtkSmartPointer<vtkUnsignedCharArray>::New();
axes_colors->SetNumberOfComponents(3);
axes_colors->InsertNextTuple3(255,0,0);
axes_colors->InsertNextTuple3(255,0,0);
axes_colors->InsertNextTuple3(0,255,0);
axes_colors->InsertNextTuple3(0,255,0);
axes_colors->InsertNextTuple3(0,0,255);
axes_colors->InsertNextTuple3(0,0,255);
vtkSmartPointer<vtkPolyData> axes_data = axes->GetOutput();
#if VTK_MAJOR_VERSION <= 5
axes_data->Update();
#else
axes->Update();
#endif
axes_data->GetPointData()->SetScalars(axes_colors);
vtkSmartPointer<vtkTubeFilter> axes_tubes = vtkSmartPointer<vtkTubeFilter>::New();
#if VTK_MAJOR_VERSION <= 5
axes_tubes->SetInput(axes_data);
#else
axes_tubes->SetInputData(axes_data);
#endif
axes_tubes->SetRadius(axes->GetScaleFactor() / 50.0);
axes_tubes->SetNumberOfSides(6);
axes_tubes->Update();
TrajectoryUtils::applyPath(axes_tubes->GetOutput(), appendFilter, path);
}
vtkSmartPointer<vtkPolyDataMapper> mapper = vtkSmartPointer<vtkPolyDataMapper>::New();
mapper->SetScalarModeToUsePointData();
mapper->SetInputConnection(appendFilter->GetOutputPort());
vtkSmartPointer<vtkActor> actor = vtkSmartPointer<vtkActor>::New();
actor->SetMapper(mapper);
WidgetAccessor::setProp(*this, actor);
}
template<> cv::viz::WTrajectory cv::viz::Widget::cast<cv::viz::WTrajectory>()
{
Widget3D widget = this->cast<Widget3D>();
return static_cast<WTrajectory&>(widget);
}
///////////////////////////////////////////////////////////////////////////////////////////////
/// WTrajectoryFrustums widget implementation
cv::viz::WTrajectoryFrustums::WTrajectoryFrustums(const std::vector<Affine3d> &path, const Matx33f &K, float scale, const Color &color)
{
vtkSmartPointer<vtkCamera> camera = vtkSmartPointer<vtkCamera>::New();
float f_x = K(0,0);
float f_y = K(1,1);
float c_y = K(1,2);
float aspect_ratio = f_y / f_x;
// Assuming that this is an ideal camera (c_y and c_x are at the center of the image)
float fovy = 2.0f * atan2(c_y,f_y) * 180 / CV_PI;
camera->SetViewAngle(fovy);
camera->SetPosition(0.0,0.0,0.0);
camera->SetViewUp(0.0,1.0,0.0);
camera->SetFocalPoint(0.0,0.0,1.0);
camera->SetClippingRange(0.01, scale);
double planesArray[24];
camera->GetFrustumPlanes(aspect_ratio, planesArray);
vtkSmartPointer<vtkPlanes> planes = vtkSmartPointer<vtkPlanes>::New();
planes->SetFrustumPlanes(planesArray);
vtkSmartPointer<vtkFrustumSource> frustumSource = vtkSmartPointer<vtkFrustumSource>::New();
frustumSource->SetPlanes(planes);
frustumSource->Update();
// Extract the edges
vtkSmartPointer<vtkExtractEdges> filter = vtkSmartPointer<vtkExtractEdges>::New();
filter->SetInputConnection(frustumSource->GetOutputPort());
filter->Update();
vtkSmartPointer<vtkAppendPolyData> appendFilter = vtkSmartPointer<vtkAppendPolyData>::New();
TrajectoryUtils::applyPath(filter->GetOutput(), appendFilter, path);
vtkSmartPointer<vtkPolyDataMapper> mapper = vtkSmartPointer<vtkPolyDataMapper>::New();
mapper->SetInputConnection(appendFilter->GetOutputPort());
vtkSmartPointer<vtkActor> actor = vtkSmartPointer<vtkActor>::New();
actor->SetMapper(mapper);
WidgetAccessor::setProp(*this, actor);
setColor(color);
}
cv::viz::WTrajectoryFrustums::WTrajectoryFrustums(const std::vector<Affine3d> &path, const Vec2f &fov, float scale, const Color &color)
{
vtkSmartPointer<vtkCamera> camera = vtkSmartPointer<vtkCamera>::New();
camera->SetViewAngle(fov[1] * 180 / CV_PI); // Vertical field of view
camera->SetPosition(0.0,0.0,0.0);
camera->SetViewUp(0.0,1.0,0.0);
camera->SetFocalPoint(0.0,0.0,1.0);
camera->SetClippingRange(0.01, scale);
double aspect_ratio = tan(fov[0] * 0.5) / tan(fov[1] * 0.5);
double planesArray[24];
camera->GetFrustumPlanes(aspect_ratio, planesArray);
vtkSmartPointer<vtkPlanes> planes = vtkSmartPointer<vtkPlanes>::New();
planes->SetFrustumPlanes(planesArray);
vtkSmartPointer<vtkFrustumSource> frustumSource = vtkSmartPointer<vtkFrustumSource>::New();
frustumSource->SetPlanes(planes);
frustumSource->Update();
// Extract the edges
vtkSmartPointer<vtkExtractEdges> filter = vtkSmartPointer<vtkExtractEdges>::New();
filter->SetInputConnection(frustumSource->GetOutputPort());
filter->Update();
vtkSmartPointer<vtkAppendPolyData> appendFilter = vtkSmartPointer<vtkAppendPolyData>::New();
TrajectoryUtils::applyPath(filter->GetOutput(), appendFilter, path);
vtkSmartPointer<vtkPolyDataMapper> mapper = vtkSmartPointer<vtkPolyDataMapper>::New();
mapper->SetInputConnection(appendFilter->GetOutputPort());
vtkSmartPointer<vtkActor> actor = vtkSmartPointer<vtkActor>::New();
actor->SetMapper(mapper);
WidgetAccessor::setProp(*this, actor);
setColor(color);
}
template<> cv::viz::WTrajectoryFrustums cv::viz::Widget::cast<cv::viz::WTrajectoryFrustums>()
{
Widget3D widget = this->cast<Widget3D>();
return static_cast<WTrajectoryFrustums&>(widget);
}
///////////////////////////////////////////////////////////////////////////////////////////////
/// WTrajectorySpheres widget implementation
cv::viz::WTrajectorySpheres::WTrajectorySpheres(const std::vector<Affine3d> &path, float line_length, float init_sphere_radius, float sphere_radius,
const Color &line_color, const Color &sphere_color)
{
vtkSmartPointer<vtkAppendPolyData> appendFilter = vtkSmartPointer<vtkAppendPolyData>::New();
vtkIdType nr_poses = path.size();
// Create color arrays
vtkSmartPointer<vtkUnsignedCharArray> line_scalars = vtkSmartPointer<vtkUnsignedCharArray>::New();
line_scalars->SetNumberOfComponents(3);
line_scalars->InsertNextTuple3(line_color[2], line_color[1], line_color[0]);
// Create color array for sphere
vtkSphereSource * dummy_sphere = vtkSphereSource::New();
// Create the array for big sphere
dummy_sphere->SetRadius(init_sphere_radius);
dummy_sphere->Update();
vtkIdType nr_points = dummy_sphere->GetOutput()->GetNumberOfCells();
vtkSmartPointer<vtkUnsignedCharArray> sphere_scalars_init = vtkSmartPointer<vtkUnsignedCharArray>::New();
sphere_scalars_init->SetNumberOfComponents(3);
sphere_scalars_init->SetNumberOfTuples(nr_points);
sphere_scalars_init->FillComponent(0, sphere_color[2]);
sphere_scalars_init->FillComponent(1, sphere_color[1]);
sphere_scalars_init->FillComponent(2, sphere_color[0]);
// Create the array for small sphere
dummy_sphere->SetRadius(sphere_radius);
dummy_sphere->Update();
nr_points = dummy_sphere->GetOutput()->GetNumberOfCells();
vtkSmartPointer<vtkUnsignedCharArray> sphere_scalars = vtkSmartPointer<vtkUnsignedCharArray>::New();
sphere_scalars->SetNumberOfComponents(3);
sphere_scalars->SetNumberOfTuples(nr_points);
sphere_scalars->FillComponent(0, sphere_color[2]);
sphere_scalars->FillComponent(1, sphere_color[1]);
sphere_scalars->FillComponent(2, sphere_color[0]);
dummy_sphere->Delete();
for (vtkIdType i = 0; i < nr_poses; ++i)
{
Point3f new_pos = path[i].translation();
vtkSmartPointer<vtkSphereSource> sphere_source = vtkSmartPointer<vtkSphereSource>::New();
sphere_source->SetCenter(new_pos.x, new_pos.y, new_pos.z);
if (i == 0)
{
sphere_source->SetRadius(init_sphere_radius);
sphere_source->Update();
sphere_source->GetOutput()->GetCellData()->SetScalars(sphere_scalars_init);
appendFilter->AddInputConnection(sphere_source->GetOutputPort());
continue;
}
else
{
sphere_source->SetRadius(sphere_radius);
sphere_source->Update();
sphere_source->GetOutput()->GetCellData()->SetScalars(sphere_scalars);
appendFilter->AddInputConnection(sphere_source->GetOutputPort());
}
Affine3d relativeAffine = path[i].inv() * path[i-1];
Vec3d v = path[i].rotation() * relativeAffine.translation();
v = normalize(v) * line_length;
vtkSmartPointer<vtkLineSource> line_source = vtkSmartPointer<vtkLineSource>::New();
line_source->SetPoint1(new_pos.x + v[0], new_pos.y + v[1], new_pos.z + v[2]);
line_source->SetPoint2(new_pos.x, new_pos.y, new_pos.z);
line_source->Update();
line_source->GetOutput()->GetCellData()->SetScalars(line_scalars);
appendFilter->AddInputConnection(line_source->GetOutputPort());
}
vtkSmartPointer<vtkPolyDataMapper> mapper = vtkSmartPointer<vtkPolyDataMapper>::New();
mapper->SetScalarModeToUseCellData();
mapper->SetInputConnection(appendFilter->GetOutputPort());
vtkSmartPointer<vtkActor> actor = vtkSmartPointer<vtkActor>::New();
actor->SetMapper(mapper);
WidgetAccessor::setProp(*this, actor);
}
template<> cv::viz::WTrajectorySpheres cv::viz::Widget::cast<cv::viz::WTrajectorySpheres>()
{
Widget3D widget = this->cast<Widget3D>();
return static_cast<WTrajectorySpheres&>(widget);
}