Installation tutorials rework * Doc: general installation, config reference, linux installation * Doc: addressed review comments * Minor fixes
12 KiB
Transition guide
@prev_tutorial{tutorial_documentation} @next_tutorial{tutorial_cross_referencing}
Original author | Maksim Shabunin |
Compatibility | OpenCV >= 3.0 |
@tableofcontents
Changes overview
This document is intended to software developers who want to migrate their code to OpenCV 3.0.
OpenCV 3.0 introduced many new algorithms and features comparing to version 2.4. Some modules have been rewritten, some have been reorganized. Although most of the algorithms from 2.4 are still present, the interfaces can differ.
This section describes most notable changes in general, all details and examples of transition actions are in the next part of the document.
Contrib repository
https://github.com/opencv/opencv_contrib
This is a place for all new, experimental and non-free algorithms. It does not receive so much attention from the support team comparing to main repository, but the community makes an effort to keep it in a good shape.
To build OpenCV with contrib repository, add the following option to your cmake command: @code{.sh} -DOPENCV_EXTRA_MODULES_PATH=<path-to-opencv_contrib>/modules @endcode
Headers layout
In 2.4 all headers are located in corresponding module subfolder (opencv2/<module>/<module>.hpp), in 3.0 there are top-level module headers containing the most of the module functionality: opencv2/<module>.hpp and all C-style API definitions have been moved to separate headers (for example opencv2/core/core_c.h).
Algorithm interfaces
General algorithm usage pattern has changed: now it must be created on heap wrapped in smart pointer cv::Ptr. Version 2.4 allowed both stack and heap allocations, directly or via smart pointer.
get and set methods have been removed from the cv::Algorithm class along with CV_INIT_ALGORITHM macro. In 3.0 all properties have been converted to the pairs of getProperty/setProperty pure virtual methods. As a result it is not possible to create and use cv::Algorithm instance by name (using generic Algorithm::create(String) method), one should call corresponding factory method explicitly.
Changed modules
- ml module has been rewritten
- highgui module has been split into parts: imgcodecs, videoio and highgui itself
- features2d module have been reorganized (some feature detectors has been moved to opencv_contrib/xfeatures2d module)
- legacy, nonfree modules have been removed. Some algorithms have been moved to different locations and some have been completely rewritten or removed
- CUDA API has been updated (gpu module -> several cuda modules, namespace gpu -> namespace cuda)
- OpenCL API has changed (ocl module has been removed, separate ocl:: implementations -> Transparent API)
- Some other methods and classes have been relocated
Transition hints
This section describes concrete actions with examples.
Prepare 2.4
Some changes made in the latest 2.4.11 OpenCV version allow you to prepare current codebase to migration:
- cv::makePtr function is now available
- opencv2/<module>.hpp headers have been created
New headers layout
Note: Changes intended to ease the migration have been made in OpenCV 3.0, thus the following instructions are not necessary, but recommended.
- Replace inclusions of old module headers: @code{.cpp} // old header #include "opencv2//.hpp" // new header #include "opencv2/.hpp" @endcode
Modern way to use algorithm
-
Algorithm instances must be created with cv::makePtr function or corresponding static factory method if available: @code{.cpp} // good ways Ptr algo = makePtr(...); Ptr algo = SomeAlgo::create(...); @endcode Other ways are deprecated: @code{.cpp} // bad ways Ptr algo = new SomeAlgo(...); SomeAlgo * algo = new SomeAlgo(...); SomeAlgo algo(...); Ptr algo = Algorithm::create("name"); @endcode
-
Algorithm properties should be accessed via corresponding virtual methods, getSomeProperty/setSomeProperty, generic get/set methods have been removed: @code{.cpp} // good way double clipLimit = clahe->getClipLimit(); clahe->setClipLimit(clipLimit); // bad way double clipLimit = clahe->getDouble("clipLimit"); clahe->set("clipLimit", clipLimit); clahe->setDouble("clipLimit", clipLimit); @endcode
-
Remove
initModule_<moduleName>()
calls
Machine learning module
Since this module has been rewritten, it will take some effort to adapt your software to it. All algorithms are located in separate ml namespace along with their base class StatModel. Separate SomeAlgoParams classes have been replaced with a sets of corresponding getProperty/setProperty methods.
The following table illustrates correspondence between 2.4 and 3.0 machine learning classes.
2.4 | 3.0 |
---|---|
CvStatModel | cv::ml::StatModel |
CvNormalBayesClassifier | cv::ml::NormalBayesClassifier |
CvKNearest | cv::ml::KNearest |
CvSVM | cv::ml::SVM |
CvDTree | cv::ml::DTrees |
CvBoost | cv::ml::Boost |
CvGBTrees | Not implemented |
CvRTrees | cv::ml::RTrees |
CvERTrees | Not implemented |
EM | cv::ml::EM |
CvANN_MLP | cv::ml::ANN_MLP |
Not implemented | cv::ml::LogisticRegression |
CvMLData | cv::ml::TrainData |
Although rewritten ml algorithms in 3.0 allow you to load old trained models from xml/yml file, deviations in prediction process are possible.
The following code snippets from the points_classifier.cpp
example illustrate differences in model training process:
@code{.cpp}
using namespace cv;
// ======== version 2.4 ========
Mat trainSamples, trainClasses;
prepare_train_data( trainSamples, trainClasses );
CvBoost boost;
Mat var_types( 1, trainSamples.cols + 1, CV_8UC1, Scalar(CV_VAR_ORDERED) );
var_types.at( trainSamples.cols ) = CV_VAR_CATEGORICAL;
CvBoostParams params( CvBoost::DISCRETE, // boost_type
100, // weak_count
0.95, // weight_trim_rate
2, // max_depth
false, //use_surrogates
0 // priors
);
boost.train( trainSamples, CV_ROW_SAMPLE, trainClasses, Mat(), Mat(), var_types, Mat(), params );
// ======== version 3.0 ======== Ptr boost = Boost::create(); boost->setBoostType(Boost::DISCRETE); boost->setWeakCount(100); boost->setWeightTrimRate(0.95); boost->setMaxDepth(2); boost->setUseSurrogates(false); boost->setPriors(Mat()); boost->train(prepare_train_data()); // 'prepare_train_data' returns an instance of ml::TrainData class @endcode
Features detect
Some algorithms (FREAK, BRIEF, SIFT, SURF) has been moved to opencv_contrib repository, to xfeatures2d module, xfeatures2d namespace. Their interface has been also changed (inherit from cv::Feature2D
base class).
List of xfeatures2d module classes:
- cv::xfeatures2d::BriefDescriptorExtractor - Class for computing BRIEF descriptors (2.4 location: features2d)
- cv::xfeatures2d::FREAK - Class implementing the FREAK (Fast Retina Keypoint) keypoint descriptor (2.4 location: features2d)
- cv::xfeatures2d::StarDetector - The class implements the CenSurE detector (2.4 location: features2d)
- cv::xfeatures2d::SIFT - Class for extracting keypoints and computing descriptors using the Scale Invariant Feature Transform (SIFT) algorithm (2.4 location: nonfree)
- cv::xfeatures2d::SURF - Class for extracting Speeded Up Robust Features from an image (2.4 location: nonfree)
Following steps are needed:
- Add opencv_contrib to compilation process
- Include
opencv2/xfeatures2d.h
header - Use namespace
xfeatures2d
- Replace
operator()
calls withdetect
,compute
ordetectAndCompute
if needed
Some classes now use general methods detect
, compute
or detectAndCompute
provided by Feature2D
base class instead of custom operator()
Following code snippets illustrate the difference (from video_homography.cpp
example):
@code{.cpp}
using namespace cv;
// ====== 2.4 =======
#include "opencv2/features2d/features2d.hpp"
BriefDescriptorExtractor brief(32);
GridAdaptedFeatureDetector detector(new FastFeatureDetector(10, true), DESIRED_FTRS, 4, 4);
// ...
detector.detect(gray, query_kpts); //Find interest points
brief.compute(gray, query_kpts, query_desc); //Compute brief descriptors at each keypoint location
// ====== 3.0 =======
#include "opencv2/features2d.hpp"
#include "opencv2/xfeatures2d.hpp"
using namespace cv::xfeatures2d;
Ptr brief = BriefDescriptorExtractor::create(32);
Ptr detector = FastFeatureDetector::create(10, true);
// ...
detector->detect(gray, query_kpts); //Find interest points
brief->compute(gray, query_kpts, query_desc); //Compute brief descriptors at each keypoint location
@endcode
OpenCL
All specialized ocl
implementations has been hidden behind general C++ algorithm interface. Now the function execution path can be selected dynamically at runtime: CPU or OpenCL; this mechanism is also called "Transparent API".
New class cv::UMat is intended to hide data exchange with OpenCL device in a convenient way.
Following example illustrate API modifications (from OpenCV site):
- OpenCL-aware code OpenCV-2.x @code{.cpp} // initialization VideoCapture vcap(...); ocl::OclCascadeClassifier fd("haar_ff.xml"); ocl::oclMat frame, frameGray; Mat frameCpu; vector faces; for(;;){ // processing loop vcap >> frameCpu; frame = frameCpu; ocl::cvtColor(frame, frameGray, BGR2GRAY); ocl::equalizeHist(frameGray, frameGray); fd.detectMultiScale(frameGray, faces, ...); // draw rectangles … // show image … } @endcode
- OpenCL-aware code OpenCV-3.x @code{.cpp} // initialization VideoCapture vcap(...); CascadeClassifier fd("haar_ff.xml"); UMat frame, frameGray; // the only change from plain CPU version vector faces; for(;;){ // processing loop vcap >> frame; cvtColor(frame, frameGray, BGR2GRAY); equalizeHist(frameGray, frameGray); fd.detectMultiScale(frameGray, faces, ...); // draw rectangles … // show image … } @endcode
CUDA
CUDA modules has been moved into opencv_contrib repository.
@cond CUDA_MODULES
- cuda - @ref cuda
- cudaarithm - @ref cudaarithm
- cudabgsegm - @ref cudabgsegm
- cudacodec - @ref cudacodec
- cudafeatures2d - @ref cudafeatures2d
- cudafilters - @ref cudafilters
- cudaimgproc - @ref cudaimgproc
- cudalegacy - @ref cudalegacy
- cudaoptflow - @ref cudaoptflow
- cudastereo - @ref cudastereo
- cudawarping - @ref cudawarping
- cudev - @ref cudev @endcond
Documentation format
Documentation has been converted to Doxygen format. You can find updated documentation writing guide in Tutorials section of OpenCV reference documentation (@ref tutorial_documentation).
Support both versions
In some cases it is possible to support both versions of OpenCV.
Source code
To check library major version in your application source code, the following method should be used: @code{.cpp} #include "opencv2/core/version.hpp" #if CV_MAJOR_VERSION == 2 // do opencv 2 code #elif CV_MAJOR_VERSION == 3 // do opencv 3 code #endif @endcode
@note Do not use CV_VERSION_MAJOR, it has different meaning for 2.4 and 3.x branches!
Build system
It is possible to link different modules or enable/disable some of the features in your application by checking library version in the build system. Standard cmake or pkg-config variables can be used for this:
OpenCV_VERSION
for cmake will contain full version: "2.4.11" or "3.0.0" for exampleOpenCV_VERSION_MAJOR
for cmake will contain only major version number: 2 or 3- pkg-config file has standard field
Version
Example: @code{.cmake} if(OpenCV_VERSION VERSION_LESS "3.0")
use 2.4 modules
else()
use 3.x modules
endif() @endcode