opencv/modules/gapi/misc/python/test/test_gapi_imgproc.py
Anatoliy Talamanov eb82ba36a3
Merge pull request #19322 from TolyaTalamanov:at/python-callbacks
[G-API] Introduce cv.gin/cv.descr_of for python

* Implement cv.gin/cv.descr_of

* Fix macos build

* Fix gcomputation tests

* Add test

* Add using to a void exceeded length for windows build

* Add using to a void exceeded length for windows build

* Fix comments to review

* Fix comments to review

* Update from latest master

* Avoid graph compilation to obtain in/out info

* Fix indentation

* Fix comments to review

* Avoid using default in switches

* Post output meta for giebackend
2021-03-01 15:52:11 +00:00

107 lines
3.5 KiB
Python

#!/usr/bin/env python
import numpy as np
import cv2 as cv
import os
from tests_common import NewOpenCVTests
# Plaidml is an optional backend
pkgs = [
('ocl' , cv.gapi.core.ocl.kernels()),
('cpu' , cv.gapi.core.cpu.kernels()),
('fluid' , cv.gapi.core.fluid.kernels())
# ('plaidml', cv.gapi.core.plaidml.kernels())
]
class gapi_imgproc_test(NewOpenCVTests):
def test_good_features_to_track(self):
# TODO: Extend to use any type and size here
img_path = self.find_file('cv/face/david2.jpg', [os.environ.get('OPENCV_TEST_DATA_PATH')])
in1 = cv.cvtColor(cv.imread(img_path), cv.COLOR_RGB2GRAY)
# NB: goodFeaturesToTrack configuration
max_corners = 50
quality_lvl = 0.01
min_distance = 10
block_sz = 3
use_harris_detector = True
k = 0.04
mask = None
# OpenCV
expected = cv.goodFeaturesToTrack(in1, max_corners, quality_lvl,
min_distance, mask=mask,
blockSize=block_sz, useHarrisDetector=use_harris_detector, k=k)
# G-API
g_in = cv.GMat()
g_out = cv.gapi.goodFeaturesToTrack(g_in, max_corners, quality_lvl,
min_distance, mask, block_sz, use_harris_detector, k)
comp = cv.GComputation(cv.GIn(g_in), cv.GOut(g_out))
for pkg_name, pkg in pkgs:
actual = comp.apply(cv.gin(in1), args=cv.compile_args(pkg))
# NB: OpenCV & G-API have different output shapes:
# OpenCV - (num_points, 1, 2)
# G-API - (num_points, 2)
# Comparison
self.assertEqual(0.0, cv.norm(expected.flatten(),
np.array(actual, dtype=np.float32).flatten(),
cv.NORM_INF),
'Failed on ' + pkg_name + ' backend')
def test_rgb2gray(self):
# TODO: Extend to use any type and size here
img_path = self.find_file('cv/face/david2.jpg', [os.environ.get('OPENCV_TEST_DATA_PATH')])
in1 = cv.imread(img_path)
# OpenCV
expected = cv.cvtColor(in1, cv.COLOR_RGB2GRAY)
# G-API
g_in = cv.GMat()
g_out = cv.gapi.RGB2Gray(g_in)
comp = cv.GComputation(cv.GIn(g_in), cv.GOut(g_out))
for pkg_name, pkg in pkgs:
actual = comp.apply(cv.gin(in1), args=cv.compile_args(pkg))
# Comparison
self.assertEqual(0.0, cv.norm(expected, actual, cv.NORM_INF),
'Failed on ' + pkg_name + ' backend')
def test_bounding_rect(self):
sz = 1280
fscale = 256
def sample_value(fscale):
return np.random.uniform(0, 255 * fscale) / fscale
points = np.array([(sample_value(fscale), sample_value(fscale)) for _ in range(1280)], np.float32)
# OpenCV
expected = cv.boundingRect(points)
# G-API
g_in = cv.GMat()
g_out = cv.gapi.boundingRect(g_in)
comp = cv.GComputation(cv.GIn(g_in), cv.GOut(g_out))
for pkg_name, pkg in pkgs:
actual = comp.apply(cv.gin(points), args=cv.compile_args(pkg))
# Comparison
self.assertEqual(0.0, cv.norm(expected, actual, cv.NORM_INF),
'Failed on ' + pkg_name + ' backend')
if __name__ == '__main__':
NewOpenCVTests.bootstrap()