opencv/modules/imgproc/src/hough.cpp
Rostislav Vasilikhin 397b57dd72 Merge pull request #10041 from savuor:RevHoughWorks
HoughCircles rewritten (PR #7434 updated) (#10041)

* initial version of renewed HoughCircles done

* fixed compilation

* fixed SIMD ability & compilation warning

* fixed accumulator nonmax comparison

* common Mutex for all invokers

* nzLocal is std::vector

* nz is std::vector

* SSE2 -> SIMD128

* centers is now std::vector

* circles is std::vector

* estimateRadius updated

* accum calculation w/o mutex

* less deprecated code

* several bugs fixed

* back to mutex, TLS gathering doesn't work

* extra code removed

* little refactoring

* docs note updated

* a little speedup

* warning fixed
2017-11-21 14:18:47 +03:00

1691 lines
56 KiB
C++

/*M///////////////////////////////////////////////////////////////////////////////////////
//
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
// By downloading, copying, installing or using the software you agree to this license.
// If you do not agree to this license, do not download, install,
// copy or use the software.
//
//
// License Agreement
// For Open Source Computer Vision Library
//
// Copyright (C) 2000, Intel Corporation, all rights reserved.
// Copyright (C) 2013, OpenCV Foundation, all rights reserved.
// Copyright (C) 2014, Itseez, Inc, all rights reserved.
// Third party copyrights are property of their respective owners.
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
// * Redistribution's of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
//
// * Redistribution's in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other materials provided with the distribution.
//
// * The name of the copyright holders may not be used to endorse or promote products
// derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors "as is" and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/
#include "precomp.hpp"
#include "opencl_kernels_imgproc.hpp"
#include "opencv2/core/hal/intrin.hpp"
namespace cv
{
// Classical Hough Transform
struct LinePolar
{
float rho;
float angle;
};
struct hough_cmp_gt
{
hough_cmp_gt(const int* _aux) : aux(_aux) {}
inline bool operator()(int l1, int l2) const
{
return aux[l1] > aux[l2] || (aux[l1] == aux[l2] && l1 < l2);
}
const int* aux;
};
/*
Here image is an input raster;
step is it's step; size characterizes it's ROI;
rho and theta are discretization steps (in pixels and radians correspondingly).
threshold is the minimum number of pixels in the feature for it
to be a candidate for line. lines is the output
array of (rho, theta) pairs. linesMax is the buffer size (number of pairs).
Functions return the actual number of found lines.
*/
static void
HoughLinesStandard( const Mat& img, float rho, float theta,
int threshold, std::vector<Vec2f>& lines, int linesMax,
double min_theta, double max_theta )
{
int i, j;
float irho = 1 / rho;
CV_Assert( img.type() == CV_8UC1 );
const uchar* image = img.ptr();
int step = (int)img.step;
int width = img.cols;
int height = img.rows;
if (max_theta < min_theta ) {
CV_Error( CV_StsBadArg, "max_theta must be greater than min_theta" );
}
int numangle = cvRound((max_theta - min_theta) / theta);
int numrho = cvRound(((width + height) * 2 + 1) / rho);
#if defined HAVE_IPP && IPP_VERSION_X100 >= 810 && !IPP_DISABLE_HOUGH
CV_IPP_CHECK()
{
IppiSize srcSize = { width, height };
IppPointPolar delta = { rho, theta };
IppPointPolar dstRoi[2] = {{(Ipp32f) -(width + height), (Ipp32f) min_theta},{(Ipp32f) (width + height), (Ipp32f) max_theta}};
int bufferSize;
int nz = countNonZero(img);
int ipp_linesMax = std::min(linesMax, nz*numangle/threshold);
int linesCount = 0;
lines.resize(ipp_linesMax);
IppStatus ok = ippiHoughLineGetSize_8u_C1R(srcSize, delta, ipp_linesMax, &bufferSize);
Ipp8u* buffer = ippsMalloc_8u_L(bufferSize);
if (ok >= 0) {ok = CV_INSTRUMENT_FUN_IPP(ippiHoughLine_Region_8u32f_C1R, image, step, srcSize, (IppPointPolar*) &lines[0], dstRoi, ipp_linesMax, &linesCount, delta, threshold, buffer);};
ippsFree(buffer);
if (ok >= 0)
{
lines.resize(linesCount);
CV_IMPL_ADD(CV_IMPL_IPP);
return;
}
lines.clear();
setIppErrorStatus();
}
#endif
AutoBuffer<int> _accum((numangle+2) * (numrho+2));
std::vector<int> _sort_buf;
AutoBuffer<float> _tabSin(numangle);
AutoBuffer<float> _tabCos(numangle);
int *accum = _accum;
float *tabSin = _tabSin, *tabCos = _tabCos;
memset( accum, 0, sizeof(accum[0]) * (numangle+2) * (numrho+2) );
float ang = static_cast<float>(min_theta);
for(int n = 0; n < numangle; ang += theta, n++ )
{
tabSin[n] = (float)(sin((double)ang) * irho);
tabCos[n] = (float)(cos((double)ang) * irho);
}
// stage 1. fill accumulator
for( i = 0; i < height; i++ )
for( j = 0; j < width; j++ )
{
if( image[i * step + j] != 0 )
for(int n = 0; n < numangle; n++ )
{
int r = cvRound( j * tabCos[n] + i * tabSin[n] );
r += (numrho - 1) / 2;
accum[(n+1) * (numrho+2) + r+1]++;
}
}
// stage 2. find local maximums
for(int r = 0; r < numrho; r++ )
for(int n = 0; n < numangle; n++ )
{
int base = (n+1) * (numrho+2) + r+1;
if( accum[base] > threshold &&
accum[base] > accum[base - 1] && accum[base] >= accum[base + 1] &&
accum[base] > accum[base - numrho - 2] && accum[base] >= accum[base + numrho + 2] )
_sort_buf.push_back(base);
}
// stage 3. sort the detected lines by accumulator value
std::sort(_sort_buf.begin(), _sort_buf.end(), hough_cmp_gt(accum));
// stage 4. store the first min(total,linesMax) lines to the output buffer
linesMax = std::min(linesMax, (int)_sort_buf.size());
double scale = 1./(numrho+2);
for( i = 0; i < linesMax; i++ )
{
LinePolar line;
int idx = _sort_buf[i];
int n = cvFloor(idx*scale) - 1;
int r = idx - (n+1)*(numrho+2) - 1;
line.rho = (r - (numrho - 1)*0.5f) * rho;
line.angle = static_cast<float>(min_theta) + n * theta;
lines.push_back(Vec2f(line.rho, line.angle));
}
}
// Multi-Scale variant of Classical Hough Transform
struct hough_index
{
hough_index() : value(0), rho(0.f), theta(0.f) {}
hough_index(int _val, float _rho, float _theta)
: value(_val), rho(_rho), theta(_theta) {}
int value;
float rho, theta;
};
static void
HoughLinesSDiv( const Mat& img,
float rho, float theta, int threshold,
int srn, int stn,
std::vector<Vec2f>& lines, int linesMax,
double min_theta, double max_theta )
{
#define _POINT(row, column)\
(image_src[(row)*step+(column)])
int index, i;
int ri, ti, ti1, ti0;
int row, col;
float r, t; /* Current rho and theta */
float rv; /* Some temporary rho value */
int fn = 0;
float xc, yc;
const float d2r = (float)(CV_PI / 180);
int sfn = srn * stn;
int fi;
int count;
int cmax = 0;
std::vector<hough_index> lst;
CV_Assert( img.type() == CV_8UC1 );
CV_Assert( linesMax > 0 );
threshold = MIN( threshold, 255 );
const uchar* image_src = img.ptr();
int step = (int)img.step;
int w = img.cols;
int h = img.rows;
float irho = 1 / rho;
float itheta = 1 / theta;
float srho = rho / srn;
float stheta = theta / stn;
float isrho = 1 / srho;
float istheta = 1 / stheta;
int rn = cvFloor( std::sqrt( (double)w * w + (double)h * h ) * irho );
int tn = cvFloor( 2 * CV_PI * itheta );
lst.push_back(hough_index(threshold, -1.f, 0.f));
// Precalculate sin table
std::vector<float> _sinTable( 5 * tn * stn );
float* sinTable = &_sinTable[0];
for( index = 0; index < 5 * tn * stn; index++ )
sinTable[index] = (float)cos( stheta * index * 0.2f );
std::vector<uchar> _caccum(rn * tn, (uchar)0);
uchar* caccum = &_caccum[0];
// Counting all feature pixels
for( row = 0; row < h; row++ )
for( col = 0; col < w; col++ )
fn += _POINT( row, col ) != 0;
std::vector<int> _x(fn), _y(fn);
int* x = &_x[0], *y = &_y[0];
// Full Hough Transform (it's accumulator update part)
fi = 0;
for( row = 0; row < h; row++ )
{
for( col = 0; col < w; col++ )
{
if( _POINT( row, col ))
{
int halftn;
float r0;
float scale_factor;
int iprev = -1;
float phi, phi1;
float theta_it; // Value of theta for iterating
// Remember the feature point
x[fi] = col;
y[fi] = row;
fi++;
yc = (float) row + 0.5f;
xc = (float) col + 0.5f;
/* Update the accumulator */
t = (float) fabs( cvFastArctan( yc, xc ) * d2r );
r = (float) std::sqrt( (double)xc * xc + (double)yc * yc );
r0 = r * irho;
ti0 = cvFloor( (t + CV_PI*0.5) * itheta );
caccum[ti0]++;
theta_it = rho / r;
theta_it = theta_it < theta ? theta_it : theta;
scale_factor = theta_it * itheta;
halftn = cvFloor( CV_PI / theta_it );
for( ti1 = 1, phi = theta_it - (float)(CV_PI*0.5), phi1 = (theta_it + t) * itheta;
ti1 < halftn; ti1++, phi += theta_it, phi1 += scale_factor )
{
rv = r0 * std::cos( phi );
i = (int)rv * tn;
i += cvFloor( phi1 );
assert( i >= 0 );
assert( i < rn * tn );
caccum[i] = (uchar) (caccum[i] + ((i ^ iprev) != 0));
iprev = i;
if( cmax < caccum[i] )
cmax = caccum[i];
}
}
}
}
// Starting additional analysis
count = 0;
for( ri = 0; ri < rn; ri++ )
{
for( ti = 0; ti < tn; ti++ )
{
if( caccum[ri * tn + ti] > threshold )
count++;
}
}
if( count * 100 > rn * tn )
{
HoughLinesStandard( img, rho, theta, threshold, lines, linesMax, min_theta, max_theta );
return;
}
std::vector<uchar> _buffer(srn * stn + 2);
uchar* buffer = &_buffer[0];
uchar* mcaccum = buffer + 1;
count = 0;
for( ri = 0; ri < rn; ri++ )
{
for( ti = 0; ti < tn; ti++ )
{
if( caccum[ri * tn + ti] > threshold )
{
count++;
memset( mcaccum, 0, sfn * sizeof( uchar ));
for( index = 0; index < fn; index++ )
{
int ti2;
float r0;
yc = (float) y[index] + 0.5f;
xc = (float) x[index] + 0.5f;
// Update the accumulator
t = (float) fabs( cvFastArctan( yc, xc ) * d2r );
r = (float) std::sqrt( (double)xc * xc + (double)yc * yc ) * isrho;
ti0 = cvFloor( (t + CV_PI * 0.5) * istheta );
ti2 = (ti * stn - ti0) * 5;
r0 = (float) ri *srn;
for( ti1 = 0; ti1 < stn; ti1++, ti2 += 5 )
{
rv = r * sinTable[(int) (std::abs( ti2 ))] - r0;
i = cvFloor( rv ) * stn + ti1;
i = CV_IMAX( i, -1 );
i = CV_IMIN( i, sfn );
mcaccum[i]++;
assert( i >= -1 );
assert( i <= sfn );
}
}
// Find peaks in maccum...
for( index = 0; index < sfn; index++ )
{
i = 0;
int pos = (int)(lst.size() - 1);
if( pos < 0 || lst[pos].value < mcaccum[index] )
{
hough_index vi(mcaccum[index],
index / stn * srho + ri * rho,
index % stn * stheta + ti * theta - (float)(CV_PI*0.5));
lst.push_back(vi);
for( ; pos >= 0; pos-- )
{
if( lst[pos].value > vi.value )
break;
lst[pos+1] = lst[pos];
}
lst[pos+1] = vi;
if( (int)lst.size() > linesMax )
lst.pop_back();
}
}
}
}
}
for( size_t idx = 0; idx < lst.size(); idx++ )
{
if( lst[idx].rho < 0 )
continue;
lines.push_back(Vec2f(lst[idx].rho, lst[idx].theta));
}
}
/****************************************************************************************\
* Probabilistic Hough Transform *
\****************************************************************************************/
static void
HoughLinesProbabilistic( Mat& image,
float rho, float theta, int threshold,
int lineLength, int lineGap,
std::vector<Vec4i>& lines, int linesMax )
{
Point pt;
float irho = 1 / rho;
RNG rng((uint64)-1);
CV_Assert( image.type() == CV_8UC1 );
int width = image.cols;
int height = image.rows;
int numangle = cvRound(CV_PI / theta);
int numrho = cvRound(((width + height) * 2 + 1) / rho);
#if defined HAVE_IPP && IPP_VERSION_X100 >= 810 && !IPP_DISABLE_HOUGH
CV_IPP_CHECK()
{
IppiSize srcSize = { width, height };
IppPointPolar delta = { rho, theta };
IppiHoughProbSpec* pSpec;
int bufferSize, specSize;
int ipp_linesMax = std::min(linesMax, numangle*numrho);
int linesCount = 0;
lines.resize(ipp_linesMax);
IppStatus ok = ippiHoughProbLineGetSize_8u_C1R(srcSize, delta, &specSize, &bufferSize);
Ipp8u* buffer = ippsMalloc_8u_L(bufferSize);
pSpec = (IppiHoughProbSpec*) ippsMalloc_8u_L(specSize);
if (ok >= 0) ok = ippiHoughProbLineInit_8u32f_C1R(srcSize, delta, ippAlgHintNone, pSpec);
if (ok >= 0) {ok = CV_INSTRUMENT_FUN_IPP(ippiHoughProbLine_8u32f_C1R, image.data, (int)image.step, srcSize, threshold, lineLength, lineGap, (IppiPoint*) &lines[0], ipp_linesMax, &linesCount, buffer, pSpec);};
ippsFree(pSpec);
ippsFree(buffer);
if (ok >= 0)
{
lines.resize(linesCount);
CV_IMPL_ADD(CV_IMPL_IPP);
return;
}
lines.clear();
setIppErrorStatus();
}
#endif
Mat accum = Mat::zeros( numangle, numrho, CV_32SC1 );
Mat mask( height, width, CV_8UC1 );
std::vector<float> trigtab(numangle*2);
for( int n = 0; n < numangle; n++ )
{
trigtab[n*2] = (float)(cos((double)n*theta) * irho);
trigtab[n*2+1] = (float)(sin((double)n*theta) * irho);
}
const float* ttab = &trigtab[0];
uchar* mdata0 = mask.ptr();
std::vector<Point> nzloc;
// stage 1. collect non-zero image points
for( pt.y = 0; pt.y < height; pt.y++ )
{
const uchar* data = image.ptr(pt.y);
uchar* mdata = mask.ptr(pt.y);
for( pt.x = 0; pt.x < width; pt.x++ )
{
if( data[pt.x] )
{
mdata[pt.x] = (uchar)1;
nzloc.push_back(pt);
}
else
mdata[pt.x] = 0;
}
}
int count = (int)nzloc.size();
// stage 2. process all the points in random order
for( ; count > 0; count-- )
{
// choose random point out of the remaining ones
int idx = rng.uniform(0, count);
int max_val = threshold-1, max_n = 0;
Point point = nzloc[idx];
Point line_end[2];
float a, b;
int* adata = accum.ptr<int>();
int i = point.y, j = point.x, k, x0, y0, dx0, dy0, xflag;
int good_line;
const int shift = 16;
// "remove" it by overriding it with the last element
nzloc[idx] = nzloc[count-1];
// check if it has been excluded already (i.e. belongs to some other line)
if( !mdata0[i*width + j] )
continue;
// update accumulator, find the most probable line
for( int n = 0; n < numangle; n++, adata += numrho )
{
int r = cvRound( j * ttab[n*2] + i * ttab[n*2+1] );
r += (numrho - 1) / 2;
int val = ++adata[r];
if( max_val < val )
{
max_val = val;
max_n = n;
}
}
// if it is too "weak" candidate, continue with another point
if( max_val < threshold )
continue;
// from the current point walk in each direction
// along the found line and extract the line segment
a = -ttab[max_n*2+1];
b = ttab[max_n*2];
x0 = j;
y0 = i;
if( fabs(a) > fabs(b) )
{
xflag = 1;
dx0 = a > 0 ? 1 : -1;
dy0 = cvRound( b*(1 << shift)/fabs(a) );
y0 = (y0 << shift) + (1 << (shift-1));
}
else
{
xflag = 0;
dy0 = b > 0 ? 1 : -1;
dx0 = cvRound( a*(1 << shift)/fabs(b) );
x0 = (x0 << shift) + (1 << (shift-1));
}
for( k = 0; k < 2; k++ )
{
int gap = 0, x = x0, y = y0, dx = dx0, dy = dy0;
if( k > 0 )
dx = -dx, dy = -dy;
// walk along the line using fixed-point arithmetics,
// stop at the image border or in case of too big gap
for( ;; x += dx, y += dy )
{
uchar* mdata;
int i1, j1;
if( xflag )
{
j1 = x;
i1 = y >> shift;
}
else
{
j1 = x >> shift;
i1 = y;
}
if( j1 < 0 || j1 >= width || i1 < 0 || i1 >= height )
break;
mdata = mdata0 + i1*width + j1;
// for each non-zero point:
// update line end,
// clear the mask element
// reset the gap
if( *mdata )
{
gap = 0;
line_end[k].y = i1;
line_end[k].x = j1;
}
else if( ++gap > lineGap )
break;
}
}
good_line = std::abs(line_end[1].x - line_end[0].x) >= lineLength ||
std::abs(line_end[1].y - line_end[0].y) >= lineLength;
for( k = 0; k < 2; k++ )
{
int x = x0, y = y0, dx = dx0, dy = dy0;
if( k > 0 )
dx = -dx, dy = -dy;
// walk along the line using fixed-point arithmetics,
// stop at the image border or in case of too big gap
for( ;; x += dx, y += dy )
{
uchar* mdata;
int i1, j1;
if( xflag )
{
j1 = x;
i1 = y >> shift;
}
else
{
j1 = x >> shift;
i1 = y;
}
mdata = mdata0 + i1*width + j1;
// for each non-zero point:
// update line end,
// clear the mask element
// reset the gap
if( *mdata )
{
if( good_line )
{
adata = accum.ptr<int>();
for( int n = 0; n < numangle; n++, adata += numrho )
{
int r = cvRound( j1 * ttab[n*2] + i1 * ttab[n*2+1] );
r += (numrho - 1) / 2;
adata[r]--;
}
}
*mdata = 0;
}
if( i1 == line_end[k].y && j1 == line_end[k].x )
break;
}
}
if( good_line )
{
Vec4i lr(line_end[0].x, line_end[0].y, line_end[1].x, line_end[1].y);
lines.push_back(lr);
if( (int)lines.size() >= linesMax )
return;
}
}
}
#ifdef HAVE_OPENCL
#define OCL_MAX_LINES 4096
static bool ocl_makePointsList(InputArray _src, OutputArray _pointsList, InputOutputArray _counters)
{
UMat src = _src.getUMat();
_pointsList.create(1, (int) src.total(), CV_32SC1);
UMat pointsList = _pointsList.getUMat();
UMat counters = _counters.getUMat();
ocl::Device dev = ocl::Device::getDefault();
const int pixPerWI = 16;
int workgroup_size = min((int) dev.maxWorkGroupSize(), (src.cols + pixPerWI - 1)/pixPerWI);
ocl::Kernel pointListKernel("make_point_list", ocl::imgproc::hough_lines_oclsrc,
format("-D MAKE_POINTS_LIST -D GROUP_SIZE=%d -D LOCAL_SIZE=%d", workgroup_size, src.cols));
if (pointListKernel.empty())
return false;
pointListKernel.args(ocl::KernelArg::ReadOnly(src), ocl::KernelArg::WriteOnlyNoSize(pointsList),
ocl::KernelArg::PtrWriteOnly(counters));
size_t localThreads[2] = { (size_t)workgroup_size, 1 };
size_t globalThreads[2] = { (size_t)workgroup_size, (size_t)src.rows };
return pointListKernel.run(2, globalThreads, localThreads, false);
}
static bool ocl_fillAccum(InputArray _pointsList, OutputArray _accum, int total_points, double rho, double theta, int numrho, int numangle)
{
UMat pointsList = _pointsList.getUMat();
_accum.create(numangle + 2, numrho + 2, CV_32SC1);
UMat accum = _accum.getUMat();
ocl::Device dev = ocl::Device::getDefault();
float irho = (float) (1 / rho);
int workgroup_size = min((int) dev.maxWorkGroupSize(), total_points);
ocl::Kernel fillAccumKernel;
size_t localThreads[2];
size_t globalThreads[2];
size_t local_memory_needed = (numrho + 2)*sizeof(int);
if (local_memory_needed > dev.localMemSize())
{
accum.setTo(Scalar::all(0));
fillAccumKernel.create("fill_accum_global", ocl::imgproc::hough_lines_oclsrc,
format("-D FILL_ACCUM_GLOBAL"));
if (fillAccumKernel.empty())
return false;
globalThreads[0] = workgroup_size; globalThreads[1] = numangle;
fillAccumKernel.args(ocl::KernelArg::ReadOnlyNoSize(pointsList), ocl::KernelArg::WriteOnlyNoSize(accum),
total_points, irho, (float) theta, numrho, numangle);
return fillAccumKernel.run(2, globalThreads, NULL, false);
}
else
{
fillAccumKernel.create("fill_accum_local", ocl::imgproc::hough_lines_oclsrc,
format("-D FILL_ACCUM_LOCAL -D LOCAL_SIZE=%d -D BUFFER_SIZE=%d", workgroup_size, numrho + 2));
if (fillAccumKernel.empty())
return false;
localThreads[0] = workgroup_size; localThreads[1] = 1;
globalThreads[0] = workgroup_size; globalThreads[1] = numangle+2;
fillAccumKernel.args(ocl::KernelArg::ReadOnlyNoSize(pointsList), ocl::KernelArg::WriteOnlyNoSize(accum),
total_points, irho, (float) theta, numrho, numangle);
return fillAccumKernel.run(2, globalThreads, localThreads, false);
}
}
static bool ocl_HoughLines(InputArray _src, OutputArray _lines, double rho, double theta, int threshold,
double min_theta, double max_theta)
{
CV_Assert(_src.type() == CV_8UC1);
if (max_theta < 0 || max_theta > CV_PI ) {
CV_Error( Error::StsBadArg, "max_theta must fall between 0 and pi" );
}
if (min_theta < 0 || min_theta > max_theta ) {
CV_Error( Error::StsBadArg, "min_theta must fall between 0 and max_theta" );
}
if (!(rho > 0 && theta > 0)) {
CV_Error( Error::StsBadArg, "rho and theta must be greater 0" );
}
UMat src = _src.getUMat();
int numangle = cvRound((max_theta - min_theta) / theta);
int numrho = cvRound(((src.cols + src.rows) * 2 + 1) / rho);
UMat pointsList;
UMat counters(1, 2, CV_32SC1, Scalar::all(0));
if (!ocl_makePointsList(src, pointsList, counters))
return false;
int total_points = counters.getMat(ACCESS_READ).at<int>(0, 0);
if (total_points <= 0)
{
_lines.assign(UMat(0,0,CV_32FC2));
return true;
}
UMat accum;
if (!ocl_fillAccum(pointsList, accum, total_points, rho, theta, numrho, numangle))
return false;
const int pixPerWI = 8;
ocl::Kernel getLinesKernel("get_lines", ocl::imgproc::hough_lines_oclsrc,
format("-D GET_LINES"));
if (getLinesKernel.empty())
return false;
int linesMax = threshold > 0 ? min(total_points*numangle/threshold, OCL_MAX_LINES) : OCL_MAX_LINES;
UMat lines(linesMax, 1, CV_32FC2);
getLinesKernel.args(ocl::KernelArg::ReadOnly(accum), ocl::KernelArg::WriteOnlyNoSize(lines),
ocl::KernelArg::PtrWriteOnly(counters), linesMax, threshold, (float) rho, (float) theta);
size_t globalThreads[2] = { ((size_t)numrho + pixPerWI - 1)/pixPerWI, (size_t)numangle };
if (!getLinesKernel.run(2, globalThreads, NULL, false))
return false;
int total_lines = min(counters.getMat(ACCESS_READ).at<int>(0, 1), linesMax);
if (total_lines > 0)
_lines.assign(lines.rowRange(Range(0, total_lines)));
else
_lines.assign(UMat(0,0,CV_32FC2));
return true;
}
static bool ocl_HoughLinesP(InputArray _src, OutputArray _lines, double rho, double theta, int threshold,
double minLineLength, double maxGap)
{
CV_Assert(_src.type() == CV_8UC1);
if (!(rho > 0 && theta > 0)) {
CV_Error( Error::StsBadArg, "rho and theta must be greater 0" );
}
UMat src = _src.getUMat();
int numangle = cvRound(CV_PI / theta);
int numrho = cvRound(((src.cols + src.rows) * 2 + 1) / rho);
UMat pointsList;
UMat counters(1, 2, CV_32SC1, Scalar::all(0));
if (!ocl_makePointsList(src, pointsList, counters))
return false;
int total_points = counters.getMat(ACCESS_READ).at<int>(0, 0);
if (total_points <= 0)
{
_lines.assign(UMat(0,0,CV_32SC4));
return true;
}
UMat accum;
if (!ocl_fillAccum(pointsList, accum, total_points, rho, theta, numrho, numangle))
return false;
ocl::Kernel getLinesKernel("get_lines", ocl::imgproc::hough_lines_oclsrc,
format("-D GET_LINES_PROBABOLISTIC"));
if (getLinesKernel.empty())
return false;
int linesMax = threshold > 0 ? min(total_points*numangle/threshold, OCL_MAX_LINES) : OCL_MAX_LINES;
UMat lines(linesMax, 1, CV_32SC4);
getLinesKernel.args(ocl::KernelArg::ReadOnly(accum), ocl::KernelArg::ReadOnly(src),
ocl::KernelArg::WriteOnlyNoSize(lines), ocl::KernelArg::PtrWriteOnly(counters),
linesMax, threshold, (int) minLineLength, (int) maxGap, (float) rho, (float) theta);
size_t globalThreads[2] = { (size_t)numrho, (size_t)numangle };
if (!getLinesKernel.run(2, globalThreads, NULL, false))
return false;
int total_lines = min(counters.getMat(ACCESS_READ).at<int>(0, 1), linesMax);
if (total_lines > 0)
_lines.assign(lines.rowRange(Range(0, total_lines)));
else
_lines.assign(UMat(0,0,CV_32SC4));
return true;
}
#endif /* HAVE_OPENCL */
void HoughLines( InputArray _image, OutputArray _lines,
double rho, double theta, int threshold,
double srn, double stn, double min_theta, double max_theta )
{
CV_INSTRUMENT_REGION()
CV_OCL_RUN(srn == 0 && stn == 0 && _image.isUMat() && _lines.isUMat(),
ocl_HoughLines(_image, _lines, rho, theta, threshold, min_theta, max_theta));
Mat image = _image.getMat();
std::vector<Vec2f> lines;
if( srn == 0 && stn == 0 )
HoughLinesStandard(image, (float)rho, (float)theta, threshold, lines, INT_MAX, min_theta, max_theta );
else
HoughLinesSDiv(image, (float)rho, (float)theta, threshold, cvRound(srn), cvRound(stn), lines, INT_MAX, min_theta, max_theta);
Mat(lines).copyTo(_lines);
}
void HoughLinesP(InputArray _image, OutputArray _lines,
double rho, double theta, int threshold,
double minLineLength, double maxGap )
{
CV_INSTRUMENT_REGION()
CV_OCL_RUN(_image.isUMat() && _lines.isUMat(),
ocl_HoughLinesP(_image, _lines, rho, theta, threshold, minLineLength, maxGap));
Mat image = _image.getMat();
std::vector<Vec4i> lines;
HoughLinesProbabilistic(image, (float)rho, (float)theta, threshold, cvRound(minLineLength), cvRound(maxGap), lines, INT_MAX);
Mat(lines).copyTo(_lines);
}
/****************************************************************************************\
* Circle Detection *
\****************************************************************************************/
struct markedCircle
{
markedCircle(Vec3f _c, int _idx, int _idxC) :
c(_c), idx(_idx), idxC(_idxC) {}
Vec3f c;
int idx, idxC;
};
inline bool cmpCircleIndex(const markedCircle &left, const markedCircle &right)
{
return left.idx > right.idx;
}
class HoughCirclesAccumInvoker : public ParallelLoopBody
{
public:
HoughCirclesAccumInvoker(const Mat &_edges, const Mat &_dx, const Mat &_dy, int _minRadius, int _maxRadius, float _idp,
std::vector<Mat>& _accumVec, std::vector<Point>& _nz, Mutex& _mtx) :
edges(_edges), dx(_dx), dy(_dy), minRadius(_minRadius), maxRadius(_maxRadius), idp(_idp),
accumVec(_accumVec), nz(_nz), mutex(_mtx)
{
acols = cvCeil(edges.cols * idp), arows = cvCeil(edges.rows * idp);
astep = acols + 2;
#if CV_SIMD128
haveSIMD = hasSIMD128();
#endif
}
~HoughCirclesAccumInvoker() { }
void operator()(const Range &boundaries) const
{
Mat accumLocal = Mat(arows + 2, acols + 2, CV_32SC1, Scalar::all(0));
int *adataLocal = accumLocal.ptr<int>();
std::vector<Point> nzLocal;
nzLocal.reserve(256);
int startRow = boundaries.start;
int endRow = boundaries.end;
int numCols = edges.cols;
if(edges.isContinuous() && dx.isContinuous() && dy.isContinuous())
{
numCols *= (boundaries.end - boundaries.start);
endRow = boundaries.start + 1;
}
// Accumulate circle evidence for each edge pixel
for(int y = startRow; y < endRow; ++y )
{
const uchar* edgeData = edges.ptr<const uchar>(y);
const short* dxData = dx.ptr<const short>(y);
const short* dyData = dy.ptr<const short>(y);
int x = 0;
for(; x < numCols; ++x )
{
#if CV_SIMD128
if(haveSIMD)
{
v_uint8x16 v_zero = v_setzero_u8();
for(; x <= numCols - 32; x += 32) {
v_uint8x16 v_edge1 = v_load(edgeData + x);
v_uint8x16 v_edge2 = v_load(edgeData + x + 16);
v_uint8x16 v_cmp1 = (v_edge1 == v_zero);
v_uint8x16 v_cmp2 = (v_edge2 == v_zero);
unsigned int mask1 = v_signmask(v_cmp1);
unsigned int mask2 = v_signmask(v_cmp2);
mask1 ^= 0x0000ffff;
mask2 ^= 0x0000ffff;
if(mask1)
{
x += trailingZeros32(mask1);
goto _next_step;
}
if(mask2)
{
x += trailingZeros32(mask2 << 16);
goto _next_step;
}
}
}
#endif
for(; x < numCols && !edgeData[x]; ++x)
;
if(x == numCols)
continue;
#if CV_SIMD128
_next_step:
#endif
float vx, vy;
int sx, sy, x0, y0, x1, y1;
vx = dxData[x];
vy = dyData[x];
if(vx == 0 && vy == 0)
continue;
float mag = std::sqrt(vx*vx+vy*vy);
if(mag < 1.0f)
continue;
Point pt = Point(x % edges.cols, y + x / edges.cols);
nzLocal.push_back(pt);
sx = cvRound((vx * idp) * 1024 / mag);
sy = cvRound((vy * idp) * 1024 / mag);
x0 = cvRound((pt.x * idp) * 1024);
y0 = cvRound((pt.y * idp) * 1024);
// Step from min_radius to max_radius in both directions of the gradient
for(int k1 = 0; k1 < 2; k1++ )
{
x1 = x0 + minRadius * sx;
y1 = y0 + minRadius * sy;
for(int r = minRadius; r <= maxRadius; x1 += sx, y1 += sy, r++ )
{
int x2 = x1 >> 10, y2 = y1 >> 10;
if( (unsigned)x2 >= (unsigned)acols ||
(unsigned)y2 >= (unsigned)arows )
break;
adataLocal[y2*astep + x2]++;
}
sx = -sx; sy = -sy;
}
}
}
AutoLock lock(mutex);
accumVec.push_back(accumLocal);
nz.insert(nz.end(), nzLocal.begin(), nzLocal.end());
}
private:
const Mat &edges, &dx, &dy;
int minRadius, maxRadius;
float idp;
std::vector<Mat>& accumVec;
std::vector<Point>& nz;
int acols, arows, astep;
#if CV_SIMD128
bool haveSIMD;
#endif
Mutex& mutex;
};
class HoughCirclesFindCentersInvoker : public ParallelLoopBody
{
public:
HoughCirclesFindCentersInvoker(const Mat &_accum, std::vector<int> &_centers, int _accThreshold, Mutex& _mutex) :
accum(_accum), centers(_centers), accThreshold(_accThreshold), _lock(_mutex)
{
acols = accum.cols;
arows = accum.rows;
adata = accum.ptr<int>();
}
~HoughCirclesFindCentersInvoker() {}
void operator()(const Range &boundaries) const
{
int startRow = boundaries.start;
int endRow = boundaries.end;
std::vector<int> centersLocal;
bool singleThread = (boundaries == Range(1, accum.rows - 1));
startRow = max(1, startRow);
endRow = min(arows - 1, endRow);
//Find possible circle centers
for(int y = startRow; y < endRow; ++y )
{
int x = 1;
int base = y * acols + x;
for(; x < acols - 1; ++x, ++base )
{
if( adata[base] > accThreshold &&
adata[base] > adata[base-1] && adata[base] >= adata[base+1] &&
adata[base] > adata[base-acols] && adata[base] >= adata[base+acols] )
centersLocal.push_back(base);
}
}
if(!centersLocal.empty())
{
if(singleThread)
centers = centersLocal;
else
{
AutoLock alock(_lock);
centers.insert(centers.end(), centersLocal.begin(), centersLocal.end());
}
}
}
private:
const Mat &accum;
std::vector<int> &centers;
int accThreshold;
int acols, arows;
const int *adata;
Mutex& _lock;
};
class HoughCircleEstimateRadiusInvoker : public ParallelLoopBody
{
public:
HoughCircleEstimateRadiusInvoker(const std::vector<Point> &_nz, const std::vector<int> &_centers, std::vector<Vec3f> &_circles,
int _acols, int _circlesMax, int _accThreshold, int _minRadius, int _maxRadius,
float _minDist, float _dp, Mutex& _mutex) :
nz(_nz), centers(_centers), circles(_circles), acols(_acols), circlesMax(_circlesMax), accThreshold(_accThreshold),
minRadius(_minRadius), maxRadius(_maxRadius), minDist(_minDist), dr(_dp), _lock(_mutex)
{
minRadius2 = (float)minRadius * minRadius;
maxRadius2 = (float)maxRadius * maxRadius;
minDist = std::max(dr, minDist);
minDist *= minDist;
nzSz = (int)nz.size();
centerSz = (int)centers.size();
iMax = -1;
isMaxCircles = false;
isLastCenter = false;
mc.reserve(64);
loopIdx = std::vector<bool>(centerSz + 1, false);
#if CV_SIMD128
haveSIMD = hasSIMD128();
if(haveSIMD)
{
v_minRadius2 = v_setall_f32(minRadius2);
v_maxRadius2 = v_setall_f32(maxRadius2);
}
#endif
}
~HoughCircleEstimateRadiusInvoker() {_lock.unlock();}
void operator()(const Range &boundaries) const
{
if (isMaxCircles)
return;
const int nBinsPerDr = 10;
int nBins = cvRound((maxRadius - minRadius)/dr*nBinsPerDr);
std::vector<int> bins(nBins, 0);
Mat distBuf(1, nzSz, CV_32FC1), distSqrBuf(1, nzSz, CV_32FC1);
float *ddata = distBuf.ptr<float>();
float *dSqrData = distSqrBuf.ptr<float>();
bool singleThread = (boundaries == Range(0, centerSz));
int i = boundaries.start;
if(boundaries.end == centerSz)
isLastCenter = true;
// For each found possible center
// Estimate radius and check support
for(; i < boundaries.end; ++i)
{
if (isMaxCircles)
return;
int ofs = centers[i];
int y = ofs / acols;
int x = ofs - y * acols;
//Calculate circle's center in pixels
Point2f curCenter = Point2f((x + 0.5f) * dr, (y + 0.5f) * dr);
float rBest = 0;
int j = 0, nzCount = 0, maxCount = 0;
// Check distance with previously detected valid circles
int curCircleSz = (int)circles.size();
bool valid = checkDistance(curCenter, 0, curCircleSz);
if (isMaxCircles)
return;
if(valid)
{
#if CV_SIMD128
if(haveSIMD)
{
v_float32x4 v_curCenterX = v_setall_f32(curCenter.x);
v_float32x4 v_curCenterY = v_setall_f32(curCenter.y);
float CV_DECL_ALIGNED(16) rbuf[4];
int CV_DECL_ALIGNED(16) mbuf[4];
for(; j <= nzSz - 4; j += 4)
{
v_float32x4 v_nzX, v_nzY;
v_load_deinterleave((const float*)&nz[j], v_nzX, v_nzY);
v_float32x4 v_x = v_cvt_f32(v_reinterpret_as_s32(v_nzX));
v_float32x4 v_y = v_cvt_f32(v_reinterpret_as_s32(v_nzY));
v_float32x4 v_dx = v_x - v_curCenterX;
v_float32x4 v_dy = v_y - v_curCenterY;
v_float32x4 v_r2 = (v_dx * v_dx) + (v_dy * v_dy);
v_float32x4 vmask = (v_minRadius2 <= v_r2) & (v_r2 <= v_maxRadius2);
v_store_aligned(rbuf, v_r2);
v_store_aligned(mbuf, v_reinterpret_as_s32(vmask));
for(int p = 0; p < 4; p++)
{
if(mbuf[p] < 0)
{
ddata[nzCount] = rbuf[p]; nzCount++;
}
}
}
}
#endif
// Estimate best radius
for(; j < nzSz; ++j)
{
Point pt = nz[j];
float _dx = curCenter.x - pt.x, _dy = curCenter.y - pt.y;
float _r2 = _dx * _dx + _dy * _dy;
if(minRadius2 <= _r2 && _r2 <= maxRadius2)
{
ddata[nzCount] = _r2;
++nzCount;
}
}
if (isMaxCircles)
return;
if(nzCount)
{
Mat bufRange = distSqrBuf.colRange(Range(0, nzCount));
sqrt(distBuf.colRange(Range(0, nzCount)), bufRange);
std::fill(bins.begin(), bins.end(), 0);
for(int k = 0; k < nzCount; k++)
{
int bin = std::max(0, std::min(nBins-1, cvRound((dSqrData[k] - minRadius)/dr*nBinsPerDr)));
bins[bin]++;
}
if (isMaxCircles)
return;
for(j = nBins - 1; j > 0; j--)
{
if(bins[j])
{
int upbin = j;
int curCount = 0;
for(; j > upbin - nBinsPerDr && j >= 0; j--)
{
curCount += bins[j];
}
float rCur = (upbin + j)/2.f /nBinsPerDr * dr + minRadius;
if((curCount * rBest >= maxCount * rCur) ||
(rBest < FLT_EPSILON && curCount >= maxCount))
{
rBest = rCur;
maxCount = curCount;
}
}
}
}
}
if(singleThread)
{
// Check if the circle has enough support
if(maxCount > accThreshold)
{
circles.push_back(Vec3f(curCenter.x, curCenter.y, rBest));
if( circles.size() >= (unsigned int)circlesMax )
return;
}
}
else
{
_lock.lock();
if(isMaxCircles)
{
_lock.unlock();
return;
}
loopIdx[i] = true;
if( maxCount > accThreshold )
{
while(loopIdx[iMax + 1])
++iMax;
// Temporary store circle, index and already checked index for block wise testing
mc.push_back(markedCircle(Vec3f(curCenter.x, curCenter.y, rBest),
i, curCircleSz));
if(i <= iMax)
{
std::sort(mc.begin(), mc.end(), cmpCircleIndex);
for(int k = (int)mc.size() - 1; k >= 0; --k)
{
if(mc[k].idx <= iMax)
{
if(checkDistance(Point2f(mc[k].c[0], mc[k].c[1]),
mc[k].idxC, (int)circles.size()))
{
circles.push_back(mc[k].c);
if(circles.size() >= (unsigned int)circlesMax)
{
isMaxCircles = true;
_lock.unlock();
return;
}
}
mc.pop_back();
}
else
break;
}
}
}
if(isLastCenter && !mc.empty())
{
while(loopIdx[iMax + 1])
++iMax;
if(iMax == centerSz - 1)
{
std::sort(mc.begin(), mc.end(), cmpCircleIndex);
for(int k = (int)mc.size() - 1; k >= 0; --k)
{
if(checkDistance(Point2f(mc[k].c[0], mc[k].c[1]), mc[k].idxC, (int)circles.size()))
{
circles.push_back(mc[k].c);
if(circles.size() >= (unsigned int)circlesMax)
{
isMaxCircles = true;
_lock.unlock();
return;
}
}
}
}
}
_lock.unlock();
}
}
}
private:
bool checkDistance(Point2f curCenter, int startIdx, int endIdx) const
{
// Check distance with previously detected circles
for(int j = startIdx; j < endIdx; ++j )
{
float dx = circles[j][0] - curCenter.x;
float dy = circles[j][1] - curCenter.y;
if( dx * dx + dy * dy < minDist )
return false;
}
return true;
}
const std::vector<Point> &nz;
const std::vector<int> &centers;
std::vector<Vec3f> &circles;
int acols, circlesMax, accThreshold, minRadius, maxRadius;
float minDist, dr;
#if CV_SIMD128
bool haveSIMD;
v_float32x4 v_minRadius2, v_maxRadius2;
#endif
int nzSz, centerSz;
float minRadius2, maxRadius2;
mutable std::vector<bool> loopIdx;
mutable std::vector<markedCircle> mc;
mutable volatile int iMax;
mutable volatile bool isMaxCircles, isLastCenter;
Mutex& _lock;
};
static void HoughCirclesGradient(InputArray _image, OutputArray _circles, float dp, float minDist,
int minRadius, int maxRadius, int cannyThreshold,
int accThreshold, int maxCircles, int kernelSize )
{
CV_Assert(kernelSize == -1 || kernelSize == 3 || kernelSize == 5 || kernelSize == 7);
dp = max(dp, 1.f);
float idp = 1.f/dp;
Mat edges, dx, dy;
Sobel(_image, dx, CV_16S, 1, 0, kernelSize, 1, 0, BORDER_REPLICATE);
Sobel(_image, dy, CV_16S, 0, 1, kernelSize, 1, 0, BORDER_REPLICATE);
Canny(dx, dy, edges, std::max(1, cannyThreshold / 2), cannyThreshold, false);
Mutex mtx;
int numThreads = std::max(1, getNumThreads());
std::vector<Mat> accumVec;
std::vector<Point> nz;
parallel_for_(Range(0, edges.rows),
HoughCirclesAccumInvoker(edges, dx, dy, minRadius, maxRadius, idp, accumVec, nz, mtx),
numThreads);
if(nz.empty())
return;
Mat accum = accumVec[0].clone();
for(size_t i = 1; i < accumVec.size(); i++)
{
accum += accumVec[i];
}
std::vector<int> centers;
// 4 rows when multithreaded because there is a bit overhead
// and on the other side there are some row ranges where centers are concentrated
parallel_for_(Range(1, accum.rows - 1),
HoughCirclesFindCentersInvoker(accum, centers, accThreshold, mtx),
(numThreads > 1) ? ((accum.rows - 2) / 4) : 1);
int centerCnt = (int)centers.size();
if(centerCnt == 0)
return;
std::sort(centers.begin(), centers.end(), hough_cmp_gt(accum.ptr<int>()));
std::vector<Vec3f> circles;
circles.reserve(256);
if(maxCircles == 0)
{
minDist *= minDist;
for(int i = 0; i < centerCnt; ++i)
{
int _centers = centers[i];
int y = _centers / accum.cols;
int x = _centers - y * accum.cols;
bool goodPoint = true;
for(uint j = 0; j < circles.size(); ++j)
{
Vec3f pt = circles[j];
float distX = x - pt[0], distY = y - pt[1];
if (distX * distX + distY * distY < minDist)
{
goodPoint = false; break;
}
}
if(goodPoint)
circles.push_back(Vec3f((x + 0.5f) * dp, (y + 0.5f) * dp, 0));
}
if(circles.size() > 0)
{
_circles.create(1, (int)circles.size(), CV_32FC3);
Mat(1, (int)circles.size(), CV_32FC3, &circles[0]).copyTo(_circles.getMat());
return;
}
}
// One loop iteration per thread if multithreaded.
parallel_for_(Range(0, centerCnt),
HoughCircleEstimateRadiusInvoker(nz, centers, circles, accum.cols, maxCircles,
accThreshold, minRadius, maxRadius, minDist, dp, mtx),
(numThreads > 1) ? centerCnt : 1);
if(circles.size() > 0)
{
_circles.create(1, (int)circles.size(), CV_32FC3);
Mat(1, (int)circles.size(), CV_32FC3, &circles[0]).copyTo(_circles.getMat());
}
}
static void HoughCircles( InputArray _image, OutputArray _circles,
int method, double dp, double minDist,
double param1, double param2,
int minRadius, int maxRadius,
int maxCircles, double param3 )
{
CV_INSTRUMENT_REGION()
CV_Assert(!_image.empty() && _image.type() == CV_8UC1 && (_image.isMat() || _image.isUMat()));
CV_Assert(_circles.isMat() || _circles.isVector());
if( dp <= 0 || minDist <= 0 || param1 <= 0 || param2 <= 0)
CV_Error( Error::StsOutOfRange, "dp, min_dist, canny_threshold and acc_threshold must be all positive numbers" );
int cannyThresh = cvRound(param1), accThresh = cvRound(param2), kernelSize = cvRound(param3);
minRadius = std::max(0, minRadius);
if(maxCircles < 0)
maxCircles = INT_MAX;
if( maxRadius <= 0 )
maxRadius = std::max( _image.rows(), _image.cols() );
else if( maxRadius <= minRadius )
maxRadius = minRadius + 2;
switch( method )
{
case CV_HOUGH_GRADIENT:
HoughCirclesGradient(_image, _circles, (float)dp, (float)minDist,
minRadius, maxRadius, cannyThresh,
accThresh, maxCircles, kernelSize);
break;
default:
CV_Error( Error::StsBadArg, "Unrecognized method id. Actually only CV_HOUGH_GRADIENT is supported." );
}
}
void HoughCircles( InputArray _image, OutputArray _circles,
int method, double dp, double minDist,
double param1, double param2,
int minRadius, int maxRadius )
{
HoughCircles(_image, _circles, method, dp, minDist, param1, param2, minRadius, maxRadius, -1, 3);
}
} // \namespace cv
/* Wrapper function for standard hough transform */
CV_IMPL CvSeq*
cvHoughLines2( CvArr* src_image, void* lineStorage, int method,
double rho, double theta, int threshold,
double param1, double param2,
double min_theta, double max_theta )
{
cv::Mat image = cv::cvarrToMat(src_image);
std::vector<cv::Vec2f> l2;
std::vector<cv::Vec4i> l4;
CvMat* mat = 0;
CvSeq* lines = 0;
CvSeq lines_header;
CvSeqBlock lines_block;
int lineType, elemSize;
int linesMax = INT_MAX;
int iparam1, iparam2;
if( !lineStorage )
CV_Error(cv::Error::StsNullPtr, "NULL destination" );
if( rho <= 0 || theta <= 0 || threshold <= 0 )
CV_Error( cv::Error::StsOutOfRange, "rho, theta and threshold must be positive" );
if( method != CV_HOUGH_PROBABILISTIC )
{
lineType = CV_32FC2;
elemSize = sizeof(float)*2;
}
else
{
lineType = CV_32SC4;
elemSize = sizeof(int)*4;
}
bool isStorage = isStorageOrMat(lineStorage);
if( isStorage )
{
lines = cvCreateSeq( lineType, sizeof(CvSeq), elemSize, (CvMemStorage*)lineStorage );
}
else
{
mat = (CvMat*)lineStorage;
if( !CV_IS_MAT_CONT( mat->type ) || (mat->rows != 1 && mat->cols != 1) )
CV_Error( CV_StsBadArg,
"The destination matrix should be continuous and have a single row or a single column" );
if( CV_MAT_TYPE( mat->type ) != lineType )
CV_Error( CV_StsBadArg,
"The destination matrix data type is inappropriate, see the manual" );
lines = cvMakeSeqHeaderForArray( lineType, sizeof(CvSeq), elemSize, mat->data.ptr,
mat->rows + mat->cols - 1, &lines_header, &lines_block );
linesMax = lines->total;
cvClearSeq( lines );
}
iparam1 = cvRound(param1);
iparam2 = cvRound(param2);
switch( method )
{
case CV_HOUGH_STANDARD:
HoughLinesStandard( image, (float)rho,
(float)theta, threshold, l2, linesMax, min_theta, max_theta );
break;
case CV_HOUGH_MULTI_SCALE:
HoughLinesSDiv( image, (float)rho, (float)theta,
threshold, iparam1, iparam2, l2, linesMax, min_theta, max_theta );
break;
case CV_HOUGH_PROBABILISTIC:
HoughLinesProbabilistic( image, (float)rho, (float)theta,
threshold, iparam1, iparam2, l4, linesMax );
break;
default:
CV_Error( CV_StsBadArg, "Unrecognized method id" );
}
int nlines = (int)(l2.size() + l4.size());
if( !isStorage )
{
if( mat->cols > mat->rows )
mat->cols = nlines;
else
mat->rows = nlines;
}
if( nlines )
{
cv::Mat lx = method == CV_HOUGH_STANDARD || method == CV_HOUGH_MULTI_SCALE ?
cv::Mat(nlines, 1, CV_32FC2, &l2[0]) : cv::Mat(nlines, 1, CV_32SC4, &l4[0]);
if (isStorage)
{
cvSeqPushMulti(lines, lx.ptr(), nlines);
}
else
{
cv::Mat dst(nlines, 1, lx.type(), mat->data.ptr);
lx.copyTo(dst);
}
}
if( isStorage )
return lines;
return 0;
}
CV_IMPL CvSeq*
cvHoughCircles( CvArr* src_image, void* circle_storage,
int method, double dp, double min_dist,
double param1, double param2,
int min_radius, int max_radius )
{
CvSeq* circles = NULL;
int circles_max = INT_MAX;
cv::Mat src = cv::cvarrToMat(src_image), circles_mat;
if( !circle_storage )
CV_Error( CV_StsNullPtr, "NULL destination" );
bool isStorage = isStorageOrMat(circle_storage);
if(isStorage)
{
circles = cvCreateSeq( CV_32FC3, sizeof(CvSeq),
sizeof(float)*3, (CvMemStorage*)circle_storage );
}
else
{
CvSeq circles_header;
CvSeqBlock circles_block;
CvMat *mat = (CvMat*)circle_storage;
if( !CV_IS_MAT_CONT( mat->type ) || (mat->rows != 1 && mat->cols != 1) ||
CV_MAT_TYPE(mat->type) != CV_32FC3 )
CV_Error( CV_StsBadArg,
"The destination matrix should be continuous and have a single row or a single column" );
circles = cvMakeSeqHeaderForArray( CV_32FC3, sizeof(CvSeq), sizeof(float)*3,
mat->data.ptr, mat->rows + mat->cols - 1, &circles_header, &circles_block );
circles_max = circles->total;
cvClearSeq( circles );
}
cv::HoughCircles(src, circles_mat, method, dp, min_dist, param1, param2, min_radius, max_radius, circles_max, 3);
cvSeqPushMulti(circles, circles_mat.data, (int)circles_mat.total());
return circles;
}
/* End of file. */