mirror of
https://github.com/opencv/opencv.git
synced 2025-06-12 12:22:51 +08:00

dnn: TIM-VX NPU backend support * Add TimVX NPU backend for DNN module. * use official branch from tim-vx repo; fix detecting viv sdk Co-authored-by: fytao <yuantao.feng@outlook.com>
434 lines
15 KiB
C++
434 lines
15 KiB
C++
/*M///////////////////////////////////////////////////////////////////////////////////////
|
|
//
|
|
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
|
|
//
|
|
// By downloading, copying, installing or using the software you agree to this license.
|
|
// If you do not agree to this license, do not download, install,
|
|
// copy or use the software.
|
|
//
|
|
//
|
|
// License Agreement
|
|
// For Open Source Computer Vision Library
|
|
//
|
|
// Copyright (C) 2013, OpenCV Foundation, all rights reserved.
|
|
// Copyright (C) 2017, Intel Corporation, all rights reserved.
|
|
// Third party copyrights are property of their respective owners.
|
|
//
|
|
// Redistribution and use in source and binary forms, with or without modification,
|
|
// are permitted provided that the following conditions are met:
|
|
//
|
|
// * Redistribution's of source code must retain the above copyright notice,
|
|
// this list of conditions and the following disclaimer.
|
|
//
|
|
// * Redistribution's in binary form must reproduce the above copyright notice,
|
|
// this list of conditions and the following disclaimer in the documentation
|
|
// and/or other materials provided with the distribution.
|
|
//
|
|
// * The name of the copyright holders may not be used to endorse or promote products
|
|
// derived from this software without specific prior written permission.
|
|
//
|
|
// This software is provided by the copyright holders and contributors "as is" and
|
|
// any express or implied warranties, including, but not limited to, the implied
|
|
// warranties of merchantability and fitness for a particular purpose are disclaimed.
|
|
// In no event shall the Intel Corporation or contributors be liable for any direct,
|
|
// indirect, incidental, special, exemplary, or consequential damages
|
|
// (including, but not limited to, procurement of substitute goods or services;
|
|
// loss of use, data, or profits; or business interruption) however caused
|
|
// and on any theory of liability, whether in contract, strict liability,
|
|
// or tort (including negligence or otherwise) arising in any way out of
|
|
// the use of this software, even if advised of the possibility of such damage.
|
|
//
|
|
//M*/
|
|
|
|
#include "../precomp.hpp"
|
|
#include "layers_common.hpp"
|
|
#include "../op_cuda.hpp"
|
|
#include "../op_halide.hpp"
|
|
#include "../op_inf_engine.hpp"
|
|
#include "../ie_ngraph.hpp"
|
|
#include "../op_vkcom.hpp"
|
|
#include "../op_webnn.hpp"
|
|
|
|
#include <algorithm>
|
|
#include <stdlib.h>
|
|
#include <opencv2/core/utils/logger.hpp>
|
|
using std::max;
|
|
|
|
#ifdef HAVE_OPENCL
|
|
#include "opencl_kernels_dnn.hpp"
|
|
using namespace cv::dnn::ocl4dnn;
|
|
#endif
|
|
|
|
#ifdef HAVE_CUDA
|
|
#include "../cuda4dnn/primitives/softmax.hpp"
|
|
using namespace cv::dnn::cuda4dnn;
|
|
#endif
|
|
|
|
namespace cv
|
|
{
|
|
namespace dnn
|
|
{
|
|
|
|
class SoftMaxLayerImpl CV_FINAL : public SoftmaxLayer
|
|
{
|
|
public:
|
|
|
|
SoftMaxLayerImpl(const LayerParams& params)
|
|
{
|
|
axisRaw = params.get<int>("axis", 1);
|
|
logSoftMax = params.get<bool>("log_softmax", false);
|
|
setParamsFrom(params);
|
|
}
|
|
|
|
#ifdef HAVE_OPENCL
|
|
Ptr<OCL4DNNSoftmax<float> > softmaxOp;
|
|
#endif
|
|
|
|
bool getMemoryShapes(const std::vector<MatShape> &inputs,
|
|
const int requiredOutputs,
|
|
std::vector<MatShape> &outputs,
|
|
std::vector<MatShape> &internals) const CV_OVERRIDE
|
|
{
|
|
bool inplace = Layer::getMemoryShapes(inputs, requiredOutputs, outputs, internals);
|
|
MatShape shape = inputs[0];
|
|
int cAxis = normalize_axis(axisRaw, shape.size());
|
|
shape[cAxis] = 1;
|
|
internals.assign(1, shape);
|
|
return inplace;
|
|
}
|
|
|
|
virtual bool supportBackend(int backendId) CV_OVERRIDE
|
|
{
|
|
#ifdef HAVE_INF_ENGINE
|
|
if (backendId == DNN_BACKEND_INFERENCE_ENGINE_NGRAPH)
|
|
return true;
|
|
#endif
|
|
#ifdef HAVE_WEBNN
|
|
if (backendId == DNN_BACKEND_WEBNN) {
|
|
// TODO: support logSoftMax
|
|
if (logSoftMax)
|
|
{
|
|
CV_LOG_WARNING(NULL, "logSoftMax is not supported by WebNN backend.")
|
|
}
|
|
return !logSoftMax;
|
|
}
|
|
#endif
|
|
return backendId == DNN_BACKEND_OPENCV ||
|
|
backendId == DNN_BACKEND_CUDA ||
|
|
(backendId == DNN_BACKEND_HALIDE && haveHalide() && axisRaw == 1) ||
|
|
(backendId == DNN_BACKEND_VKCOM && haveVulkan());
|
|
}
|
|
|
|
#ifdef HAVE_OPENCL
|
|
virtual void finalize(const std::vector<Mat*> &inputs, std::vector<Mat> &outputs) CV_OVERRIDE
|
|
{
|
|
softmaxOp.release();
|
|
}
|
|
|
|
bool forward_ocl(InputArrayOfArrays inputs_, OutputArrayOfArrays outputs_, OutputArrayOfArrays internals_)
|
|
{
|
|
std::vector<UMat> inputs;
|
|
std::vector<UMat> outputs;
|
|
std::vector<UMat> internals;
|
|
|
|
bool use_half = (inputs_.depth() == CV_16S);
|
|
inputs_.getUMatVector(inputs);
|
|
outputs_.getUMatVector(outputs);
|
|
internals_.getUMatVector(internals);
|
|
|
|
UMat& src = inputs[0];
|
|
UMat& dstMat = outputs[0];
|
|
int axis = normalize_axis(axisRaw, src.dims);
|
|
|
|
if (softmaxOp.empty())
|
|
{
|
|
OCL4DNNSoftmaxConfig config;
|
|
config.in_shape = shape(inputs[0]);
|
|
config.axis = axis;
|
|
config.channels = inputs[0].size[axis];
|
|
config.logsoftmax = logSoftMax;
|
|
config.use_half = use_half;
|
|
|
|
softmaxOp = Ptr<OCL4DNNSoftmax<float> >(new OCL4DNNSoftmax<float>(config));
|
|
}
|
|
|
|
if (softmaxOp->Forward(src, dstMat))
|
|
return true;
|
|
|
|
UMat& bufMat = internals[0];
|
|
MatShape s = shape(src);
|
|
size_t outerSize = total(s, 0, axis);
|
|
size_t channels = src.size[axis];
|
|
size_t innerSize = total(s, axis + 1);
|
|
|
|
String buildOpts = format("-DT=%s", use_half ? "half" : "float");
|
|
ocl::Kernel kmax, ksub, ksum, kdiv;
|
|
|
|
if (!kmax.create("kernel_channel_max", ocl::dnn::softmax_oclsrc, buildOpts))
|
|
return false;
|
|
|
|
if (!ksub.create("kernel_channel_subtract", ocl::dnn::softmax_oclsrc, buildOpts))
|
|
return false;
|
|
|
|
if (!ksum.create("kernel_channel_sum", ocl::dnn::softmax_oclsrc, buildOpts))
|
|
return false;
|
|
|
|
if (logSoftMax) buildOpts += " -DLOG_SOFTMAX ";
|
|
if (!kdiv.create("kernel_channel_div", ocl::dnn::softmax_oclsrc, buildOpts))
|
|
return false;
|
|
|
|
size_t bufSize = internals[0].total();
|
|
size_t totalSize = src.total();
|
|
|
|
size_t internal_globalSize[1] = { bufSize };
|
|
size_t total_globalSize[1] = { totalSize };
|
|
|
|
kmax.args((int)outerSize, (int)channels, (int)innerSize,
|
|
ocl::KernelArg::PtrReadOnly(src), ocl::KernelArg::PtrReadWrite(bufMat));
|
|
if (!kmax.run(1, internal_globalSize, NULL, false))
|
|
return false;
|
|
|
|
ksub.args((int)totalSize, (int)outerSize, (int)channels, (int)innerSize,
|
|
ocl::KernelArg::PtrReadOnly(bufMat),
|
|
ocl::KernelArg::PtrReadOnly(src), ocl::KernelArg::PtrWriteOnly(dstMat));
|
|
if (!ksub.run(1, total_globalSize, NULL, false))
|
|
return false;
|
|
|
|
ksum.args((int)outerSize, (int)channels, (int)innerSize,
|
|
ocl::KernelArg::PtrReadOnly(dstMat), ocl::KernelArg::PtrReadWrite(bufMat));
|
|
if (!ksum.run(1, internal_globalSize, NULL, false))
|
|
return false;
|
|
|
|
kdiv.args((int)totalSize, (int)outerSize, (int)channels, (int)innerSize,
|
|
ocl::KernelArg::PtrReadOnly(bufMat), ocl::KernelArg::PtrReadWrite(dstMat));
|
|
if (!kdiv.run(1, total_globalSize, NULL, false))
|
|
return false;
|
|
|
|
return true;
|
|
}
|
|
#endif
|
|
|
|
void forward(InputArrayOfArrays inputs_arr, OutputArrayOfArrays outputs_arr, OutputArrayOfArrays internals_arr) CV_OVERRIDE
|
|
{
|
|
CV_TRACE_FUNCTION();
|
|
CV_TRACE_ARG_VALUE(name, "name", name.c_str());
|
|
|
|
CV_OCL_RUN(IS_DNN_OPENCL_TARGET(preferableTarget),
|
|
forward_ocl(inputs_arr, outputs_arr, internals_arr))
|
|
|
|
if (inputs_arr.depth() == CV_16S)
|
|
{
|
|
forward_fallback(inputs_arr, outputs_arr, internals_arr);
|
|
return;
|
|
}
|
|
|
|
std::vector<Mat> inputs, outputs, internals;
|
|
inputs_arr.getMatVector(inputs);
|
|
outputs_arr.getMatVector(outputs);
|
|
internals_arr.getMatVector(internals);
|
|
|
|
const Mat &src = inputs[0];
|
|
Mat &dst = outputs[0];
|
|
|
|
int axis = normalize_axis(axisRaw, src.dims);
|
|
size_t outerSize = src.total(0, axis), channels = src.size[axis],
|
|
innerSize = src.total(axis + 1);
|
|
|
|
CV_Assert(src.type() == CV_32F);
|
|
CV_Assert(src.isContinuous() && dst.isContinuous());
|
|
|
|
const float *srcPtr = src.ptr<float>();
|
|
float *dstPtr = dst.ptr<float>();
|
|
float *bufPtr = internals[0].ptr<float>();
|
|
|
|
size_t outerStep = src.total(axis);
|
|
size_t cnStep = src.total(axis + 1);
|
|
|
|
//compute max along axis
|
|
for (size_t outerDim = 0; outerDim < outerSize; outerDim++)
|
|
{
|
|
size_t srcOffset = outerDim * outerStep;
|
|
size_t bufOffset = outerDim * cnStep;
|
|
|
|
memcpy(bufPtr + bufOffset, srcPtr + srcOffset, innerSize * sizeof(float));
|
|
|
|
for (size_t cnDim = 1; cnDim < channels; cnDim++)
|
|
{
|
|
for (size_t i = 0; i < innerSize; i++)
|
|
bufPtr[bufOffset + i] = std::max(bufPtr[bufOffset + i], srcPtr[srcOffset + cnDim * cnStep + i]);
|
|
}
|
|
}
|
|
|
|
//subtract max
|
|
for (size_t outerDim = 0; outerDim < outerSize; outerDim++)
|
|
{
|
|
size_t srcOffset = outerDim * outerStep;
|
|
size_t bufOffset = outerDim * cnStep;
|
|
|
|
for (size_t cnDim = 0; cnDim < channels; cnDim++)
|
|
{
|
|
const int offset = srcOffset + cnDim * cnStep;
|
|
for (size_t i = 0; i < innerSize; i++)
|
|
dstPtr[offset + i] = srcPtr[offset + i] - bufPtr[bufOffset + i];
|
|
}
|
|
}
|
|
|
|
cv::exp(dst, dst);
|
|
|
|
for (size_t outerDim = 0; outerDim < outerSize; outerDim++)
|
|
{
|
|
size_t srcOffset = outerDim * outerStep;
|
|
size_t bufOffset = outerDim * cnStep;
|
|
|
|
//sum exp along axis
|
|
for (size_t i = 0; i < innerSize; i++)
|
|
bufPtr[bufOffset + i] = 0.f;
|
|
|
|
for (size_t cnDim = 0; cnDim < channels; cnDim++)
|
|
{
|
|
const int offset = srcOffset + cnDim * cnStep;
|
|
for (size_t i = 0; i < innerSize; i++)
|
|
bufPtr[bufOffset + i] += dstPtr[offset + i];
|
|
}
|
|
|
|
//divide by computed sum
|
|
for (size_t cnDim = 0; cnDim < channels; cnDim++)
|
|
{
|
|
const int offset = srcOffset + cnDim * cnStep;
|
|
for (size_t i = 0; i < innerSize; i++)
|
|
dstPtr[offset + i] /= bufPtr[bufOffset + i];
|
|
}
|
|
if (logSoftMax)
|
|
{
|
|
for (size_t cnDim = 0; cnDim < channels; cnDim++)
|
|
{
|
|
const int offset = srcOffset + cnDim * cnStep;
|
|
for (size_t i = 0; i < innerSize; i++)
|
|
dstPtr[offset + i] = log(dstPtr[offset + i]);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
#ifdef HAVE_CUDA
|
|
Ptr<BackendNode> initCUDA(
|
|
void *context_,
|
|
const std::vector<Ptr<BackendWrapper>>& inputs,
|
|
const std::vector<Ptr<BackendWrapper>>& outputs
|
|
) override
|
|
{
|
|
auto context = reinterpret_cast<csl::CSLContext*>(context_);
|
|
|
|
auto input_wrapper = inputs[0].dynamicCast<CUDABackendWrapper>();
|
|
auto channel_axis = normalize_axis(axisRaw, input_wrapper->getRank());
|
|
return make_cuda_node<cuda4dnn::SoftmaxOp>(preferableTarget, std::move(context->cudnn_handle), channel_axis, logSoftMax);
|
|
}
|
|
#endif
|
|
|
|
virtual Ptr<BackendNode> initVkCom(const std::vector<Ptr<BackendWrapper> > &inputs) CV_OVERRIDE
|
|
{
|
|
#ifdef HAVE_VULKAN
|
|
vkcom::Tensor in = VkComTensor(inputs[0]);
|
|
int cAxis = normalize_axis(axisRaw, in.dimNum());
|
|
std::shared_ptr<vkcom::OpBase> op(new vkcom::OpSoftmax(cAxis, logSoftMax));
|
|
return Ptr<BackendNode>(new VkComBackendNode(inputs, op));
|
|
#endif // HAVE_VULKAN
|
|
return Ptr<BackendNode>();
|
|
}
|
|
|
|
|
|
virtual Ptr<BackendNode> initHalide(const std::vector<Ptr<BackendWrapper> > &inputs) CV_OVERRIDE
|
|
{
|
|
#ifdef HAVE_HALIDE
|
|
Halide::Buffer<float> inputBuffer = halideBuffer(inputs[0]);
|
|
int inW, inH, inC, inN;
|
|
getCanonicalSize(inputBuffer, &inW, &inH, &inC, &inN);
|
|
|
|
if (inW != 1 || inH != 1)
|
|
CV_Error(cv::Error::StsNotImplemented,
|
|
"Halide backend for SoftMax with spatial size "
|
|
"more than 1x1 is not implemented");
|
|
|
|
Halide::Var x("x"), y("y"), c("c"), n("n");
|
|
Halide::Func top = (name.empty() ? Halide::Func() : Halide::Func(name));
|
|
|
|
Halide::Func expInput("expInput");
|
|
Halide::RDom r(0, inW, 0, inH, 0, inC);
|
|
expInput(x, y, c, n) = exp(inputBuffer(x, y, c, n));
|
|
Halide::Expr globalSum = sum(expInput(r.x, r.y, r.z, n));
|
|
top(x, y, c, n) = expInput(x, y, c, n) / globalSum;
|
|
return Ptr<BackendNode>(new HalideBackendNode(top));
|
|
#endif // HAVE_HALIDE
|
|
return Ptr<BackendNode>();
|
|
}
|
|
|
|
|
|
#ifdef HAVE_DNN_NGRAPH
|
|
virtual Ptr<BackendNode> initNgraph(const std::vector<Ptr<BackendWrapper> >& inputs,
|
|
const std::vector<Ptr<BackendNode> >& nodes) CV_OVERRIDE
|
|
{
|
|
auto& ieInpNode = nodes[0].dynamicCast<InfEngineNgraphNode>()->node;
|
|
int axis = normalize_axis(axisRaw, ieInpNode->get_shape().size());
|
|
auto softmax = std::make_shared<ngraph::op::v1::Softmax>(ieInpNode, axis);
|
|
if (logSoftMax)
|
|
return Ptr<BackendNode>(new InfEngineNgraphNode(std::make_shared<ngraph::op::v0::Log>(softmax)));
|
|
|
|
return Ptr<BackendNode>(new InfEngineNgraphNode(softmax));
|
|
}
|
|
#endif // HAVE_DNN_NGRAPH
|
|
|
|
virtual bool tryQuantize(const std::vector<std::vector<float> > &scales,
|
|
const std::vector<std::vector<int> > &zeropoints, LayerParams& params) CV_OVERRIDE
|
|
{
|
|
float inpScale = scales[0][0];
|
|
Mat lookUpTable(1, 256, CV_32F);
|
|
float* table = lookUpTable.ptr<float>();
|
|
for (int i = -128; i < 128; i++)
|
|
{
|
|
float x = inpScale*(i - 127); // ensures exp(x) is always between (0, 1)
|
|
table[i+128] = std::exp(x);
|
|
}
|
|
params.blobs.clear();
|
|
params.blobs.push_back(lookUpTable);
|
|
params.set("input_scale", inpScale);
|
|
params.set("input_zeropoint", zeropoints[0][0]);
|
|
return true;
|
|
}
|
|
|
|
#ifdef HAVE_WEBNN
|
|
virtual Ptr<BackendNode> initWebnn(const std::vector<Ptr<BackendWrapper> >& inputs, const std::vector<Ptr<BackendNode> >& nodes) CV_OVERRIDE
|
|
{
|
|
Ptr<WebnnBackendNode> node = nodes[0].dynamicCast<WebnnBackendNode>();
|
|
auto& webnnInpOperand = node->operand;
|
|
auto& webnnGraphBuilder = node->net->builder;
|
|
auto operand = webnnGraphBuilder.Softmax(webnnInpOperand);
|
|
return Ptr<BackendNode>(new WebnnBackendNode(operand));
|
|
}
|
|
|
|
#endif
|
|
|
|
int64 getFLOPS(const std::vector<MatShape> &inputs,
|
|
const std::vector<MatShape> &outputs) const CV_OVERRIDE
|
|
{
|
|
CV_UNUSED(outputs); // suppress unused variable warning
|
|
int64 flops = 0;
|
|
|
|
for (int i = 0; i < inputs.size(); i++)
|
|
{
|
|
flops += 4*total(inputs[i]);
|
|
}
|
|
|
|
return flops;
|
|
}
|
|
|
|
int axisRaw;
|
|
};
|
|
|
|
Ptr<SoftmaxLayer> SoftmaxLayer::create(const LayerParams& params)
|
|
{
|
|
return Ptr<SoftmaxLayer>(new SoftMaxLayerImpl(params));
|
|
}
|
|
|
|
}
|
|
}
|