opencv/modules/ocl/src/cl_operations.cpp
2013-12-04 13:00:37 +04:00

550 lines
22 KiB
C++

/*M///////////////////////////////////////////////////////////////////////////////////////
//
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
// By downloading, copying, installing or using the software you agree to this license.
// If you do not agree to this license, do not download, install,
// copy or use the software.
//
//
// License Agreement
// For Open Source Computer Vision Library
//
// Copyright (C) 2010-2012, Institute Of Software Chinese Academy Of Science, all rights reserved.
// Copyright (C) 2010-2012, Advanced Micro Devices, Inc., all rights reserved.
// Copyright (C) 2010-2012, Multicoreware, Inc., all rights reserved.
// Third party copyrights are property of their respective owners.
//
// @Authors
// Guoping Long, longguoping@gmail.com
// Niko Li, newlife20080214@gmail.com
// Yao Wang, bitwangyaoyao@gmail.com
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
// * Redistribution's of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
//
// * Redistribution's in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other materials provided with the distribution.
//
// * The name of the copyright holders may not be used to endorse or promote products
// derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors "as is" and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/
#include "precomp.hpp"
#include <iomanip>
#include <fstream>
#include "cl_programcache.hpp"
//#define PRINT_KERNEL_RUN_TIME
#define RUN_TIMES 100
#ifndef CL_MEM_USE_PERSISTENT_MEM_AMD
#define CL_MEM_USE_PERSISTENT_MEM_AMD 0
#endif
//#define AMD_DOUBLE_DIFFER
namespace cv {
namespace ocl {
DevMemType gDeviceMemType = DEVICE_MEM_DEFAULT;
DevMemRW gDeviceMemRW = DEVICE_MEM_R_W;
int gDevMemTypeValueMap[5] = {0,
CL_MEM_ALLOC_HOST_PTR,
CL_MEM_USE_HOST_PTR,
CL_MEM_COPY_HOST_PTR,
CL_MEM_USE_PERSISTENT_MEM_AMD};
int gDevMemRWValueMap[3] = {CL_MEM_READ_WRITE, CL_MEM_READ_ONLY, CL_MEM_WRITE_ONLY};
void finish()
{
clFinish(getClCommandQueue(Context::getContext()));
}
bool isCpuDevice()
{
const DeviceInfo& info = Context::getContext()->getDeviceInfo();
return (info.deviceType == CVCL_DEVICE_TYPE_CPU);
}
size_t queryWaveFrontSize(cl_kernel kernel)
{
const DeviceInfo& info = Context::getContext()->getDeviceInfo();
if (info.deviceType == CVCL_DEVICE_TYPE_CPU)
return 1;
size_t wavefront = 0;
CV_Assert(kernel != NULL);
openCLSafeCall(clGetKernelWorkGroupInfo(kernel, getClDeviceID(Context::getContext()),
CL_KERNEL_PREFERRED_WORK_GROUP_SIZE_MULTIPLE, sizeof(size_t), &wavefront, NULL));
return wavefront;
}
void openCLReadBuffer(Context *ctx, cl_mem dst_buffer, void *host_buffer, size_t size)
{
cl_int status;
status = clEnqueueReadBuffer(getClCommandQueue(ctx), dst_buffer, CL_TRUE, 0,
size, host_buffer, 0, NULL, NULL);
openCLVerifyCall(status);
}
cl_mem openCLCreateBuffer(Context *ctx, size_t flag , size_t size)
{
cl_int status;
cl_mem buffer = clCreateBuffer(getClContext(ctx), (cl_mem_flags)flag, size, NULL, &status);
openCLVerifyCall(status);
return buffer;
}
#define MEMORY_CORRUPTION_GUARD
#ifdef MEMORY_CORRUPTION_GUARD
//#define CHECK_MEMORY_CORRUPTION
#define CHECK_MEMORY_CORRUPTION_PRINT_ERROR
#define CHECK_MEMORY_CORRUPTION_RAISE_ERROR
static const int __memory_corruption_guard_bytes = 64*1024;
#ifdef CHECK_MEMORY_CORRUPTION
static const int __memory_corruption_check_pattern = 0x14326547; // change pattern for sizeof(int)==8
#endif
struct CheckBuffers
{
cl_mem mainBuffer;
size_t size;
size_t widthInBytes, height;
CheckBuffers()
: mainBuffer(NULL), size(0), widthInBytes(0), height(0)
{
// nothing
}
CheckBuffers(cl_mem _mainBuffer, size_t _size, size_t _widthInBytes, size_t _height)
: mainBuffer(_mainBuffer), size(_size), widthInBytes(_widthInBytes), height(_height)
{
// nothing
}
};
static std::map<cl_mem, CheckBuffers> __check_buffers;
#endif
void openCLMallocPitch(Context *ctx, void **dev_ptr, size_t *pitch,
size_t widthInBytes, size_t height)
{
openCLMallocPitchEx(ctx, dev_ptr, pitch, widthInBytes, height, gDeviceMemRW, gDeviceMemType);
}
void openCLMallocPitchEx(Context *ctx, void **dev_ptr, size_t *pitch,
size_t widthInBytes, size_t height, DevMemRW rw_type, DevMemType mem_type)
{
cl_int status;
size_t size = widthInBytes * height;
bool useSubBuffers =
#ifndef MEMORY_CORRUPTION_GUARD
false;
#else
true;
#endif
const DeviceInfo& devInfo = ctx->getDeviceInfo();
if (useSubBuffers && devInfo.isIntelDevice)
{
useSubBuffers = false; // TODO FIXIT We observe memory leaks then we working with sub-buffers
// on the CPU device of Intel OpenCL SDK (Linux). We will investigate this later.
}
if (!useSubBuffers)
{
*dev_ptr = clCreateBuffer(getClContext(ctx), gDevMemRWValueMap[rw_type]|gDevMemTypeValueMap[mem_type],
size, 0, &status);
openCLVerifyCall(status);
}
#ifdef MEMORY_CORRUPTION_GUARD
else
{
size_t allocSize = size + __memory_corruption_guard_bytes * 2;
cl_mem mainBuffer = clCreateBuffer(getClContext(ctx), gDevMemRWValueMap[rw_type]|gDevMemTypeValueMap[mem_type],
allocSize, 0, &status);
openCLVerifyCall(status);
cl_buffer_region r = {__memory_corruption_guard_bytes, size};
*dev_ptr = clCreateSubBuffer(mainBuffer,
gDevMemRWValueMap[rw_type]|gDevMemTypeValueMap[mem_type],
CL_BUFFER_CREATE_TYPE_REGION, &r,
&status);
openCLVerifyCall(status);
#ifdef CHECK_MEMORY_CORRUPTION
std::vector<int> tmp(__memory_corruption_guard_bytes / sizeof(int),
__memory_corruption_check_pattern);
CV_Assert(tmp.size() * sizeof(int) == __memory_corruption_guard_bytes);
openCLVerifyCall(clEnqueueWriteBuffer(getClCommandQueue(ctx),
mainBuffer, CL_FALSE, 0, __memory_corruption_guard_bytes, &tmp[0],
0, NULL, NULL));
openCLVerifyCall(clEnqueueWriteBuffer(getClCommandQueue(ctx),
mainBuffer, CL_FALSE, __memory_corruption_guard_bytes + size, __memory_corruption_guard_bytes, &tmp[0],
0, NULL, NULL));
clFinish(getClCommandQueue(ctx));
#endif
CheckBuffers data(mainBuffer, size, widthInBytes, height);
cv::AutoLock lock(getInitializationMutex());
__check_buffers.insert(std::pair<cl_mem, CheckBuffers>((cl_mem)*dev_ptr, data));
}
#endif
*pitch = widthInBytes;
}
void openCLMemcpy2D(Context *ctx, void *dst, size_t dpitch,
const void *src, size_t spitch,
size_t width, size_t height, openCLMemcpyKind kind, int channels)
{
size_t buffer_origin[3] = {0, 0, 0};
size_t host_origin[3] = {0, 0, 0};
size_t region[3] = {width, height, 1};
if(kind == clMemcpyHostToDevice)
{
if(dpitch == width || channels == 3 || height == 1)
{
openCLSafeCall(clEnqueueWriteBuffer(getClCommandQueue(ctx), (cl_mem)dst, CL_TRUE,
0, width * height, src, 0, NULL, NULL));
}
else
{
openCLSafeCall(clEnqueueWriteBufferRect(getClCommandQueue(ctx), (cl_mem)dst, CL_TRUE,
buffer_origin, host_origin, region, dpitch, 0, spitch, 0, src, 0, 0, 0));
}
}
else if(kind == clMemcpyDeviceToHost)
{
if(spitch == width || channels == 3 || height == 1)
{
openCLSafeCall(clEnqueueReadBuffer(getClCommandQueue(ctx), (cl_mem)src, CL_TRUE,
0, width * height, dst, 0, NULL, NULL));
}
else
{
openCLSafeCall(clEnqueueReadBufferRect(getClCommandQueue(ctx), (cl_mem)src, CL_TRUE,
buffer_origin, host_origin, region, spitch, 0, dpitch, 0, dst, 0, 0, 0));
}
}
}
void openCLCopyBuffer2D(Context *ctx, void *dst, size_t dpitch, int dst_offset,
const void *src, size_t spitch,
size_t width, size_t height, int src_offset)
{
size_t src_origin[3] = {src_offset % spitch, src_offset / spitch, 0};
size_t dst_origin[3] = {dst_offset % dpitch, dst_offset / dpitch, 0};
size_t region[3] = {width, height, 1};
openCLSafeCall(clEnqueueCopyBufferRect(getClCommandQueue(ctx), (cl_mem)src, (cl_mem)dst, src_origin, dst_origin,
region, spitch, 0, dpitch, 0, 0, 0, 0));
}
void openCLFree(void *devPtr)
{
openCLSafeCall(clReleaseMemObject((cl_mem)devPtr));
#ifdef MEMORY_CORRUPTION_GUARD
#ifdef CHECK_MEMORY_CORRUPTION
bool failBefore = false, failAfter = false;
#endif
CheckBuffers data;
{
cv::AutoLock lock(getInitializationMutex());
std::map<cl_mem, CheckBuffers>::iterator i = __check_buffers.find((cl_mem)devPtr);
if (i != __check_buffers.end())
{
data = i->second;
__check_buffers.erase(i);
}
}
if (data.mainBuffer != NULL)
{
#ifdef CHECK_MEMORY_CORRUPTION
Context* ctx = Context::getContext();
std::vector<uchar> checkBefore(__memory_corruption_guard_bytes);
std::vector<uchar> checkAfter(__memory_corruption_guard_bytes);
openCLVerifyCall(clEnqueueReadBuffer(getClCommandQueue(ctx),
data.mainBuffer, CL_FALSE, 0, __memory_corruption_guard_bytes, &checkBefore[0],
0, NULL, NULL));
openCLVerifyCall(clEnqueueReadBuffer(getClCommandQueue(ctx),
data.mainBuffer, CL_FALSE, __memory_corruption_guard_bytes + data.size, __memory_corruption_guard_bytes, &checkAfter[0],
0, NULL, NULL));
clFinish(getClCommandQueue(ctx));
std::vector<int> tmp(__memory_corruption_guard_bytes / sizeof(int),
__memory_corruption_check_pattern);
if (memcmp(&checkBefore[0], &tmp[0], __memory_corruption_guard_bytes) != 0)
{
failBefore = true;
}
if (memcmp(&checkAfter[0], &tmp[0], __memory_corruption_guard_bytes) != 0)
{
failAfter = true;
}
#else
// TODO FIXIT Attach clReleaseMemObject call to event completion callback
// TODO 2013/12/04 Disable workaround
// Context* ctx = Context::getContext();
// clFinish(getClCommandQueue(ctx));
#endif
openCLSafeCall(clReleaseMemObject(data.mainBuffer));
}
#if defined(CHECK_MEMORY_CORRUPTION)
if (failBefore)
{
#ifdef CHECK_MEMORY_CORRUPTION_PRINT_ERROR
std::cerr << "ERROR: Memory corruption detected: before buffer: " << cv::format("widthInBytes=%d height=%d", (int)data.widthInBytes, (int)data.height) << std::endl;
#endif
#ifdef CHECK_MEMORY_CORRUPTION_RAISE_ERROR
CV_Error(CV_StsInternal, "Memory corruption detected: before buffer");
#endif
}
if (failAfter)
{
#ifdef CHECK_MEMORY_CORRUPTION_PRINT_ERROR
std::cerr << "ERROR: Memory corruption detected: after buffer: " << cv::format("widthInBytes=%d height=%d", (int)data.widthInBytes, (int)data.height) << std::endl;
#endif
#ifdef CHECK_MEMORY_CORRUPTION_RAISE_ERROR
CV_Error(CV_StsInternal, "Memory corruption detected: after buffer");
#endif
}
#endif // CHECK_MEMORY_CORRUPTION
#endif // MEMORY_CORRUPTION_GUARD
}
cl_kernel openCLGetKernelFromSource(const Context *ctx, const cv::ocl::ProgramEntry* source, string kernelName)
{
return openCLGetKernelFromSource(ctx, source, kernelName, NULL);
}
cl_kernel openCLGetKernelFromSource(const Context *ctx, const cv::ocl::ProgramEntry* source, string kernelName,
const char *build_options)
{
cl_kernel kernel;
cl_int status = 0;
CV_Assert(ProgramCache::getProgramCache() != NULL);
cl_program program = ProgramCache::getProgramCache()->getProgram(ctx, source, build_options);
CV_Assert(program != NULL);
kernel = clCreateKernel(program, kernelName.c_str(), &status);
openCLVerifyCall(status);
openCLVerifyCall(clReleaseProgram(program));
return kernel;
}
void openCLVerifyKernel(const Context *ctx, cl_kernel kernel, size_t *localThreads)
{
size_t kernelWorkGroupSize;
openCLSafeCall(clGetKernelWorkGroupInfo(kernel, getClDeviceID(ctx),
CL_KERNEL_WORK_GROUP_SIZE, sizeof(size_t), &kernelWorkGroupSize, 0));
CV_Assert( localThreads[0] <= ctx->getDeviceInfo().maxWorkItemSizes[0] );
CV_Assert( localThreads[1] <= ctx->getDeviceInfo().maxWorkItemSizes[1] );
CV_Assert( localThreads[2] <= ctx->getDeviceInfo().maxWorkItemSizes[2] );
CV_Assert( localThreads[0] * localThreads[1] * localThreads[2] <= kernelWorkGroupSize );
CV_Assert( localThreads[0] * localThreads[1] * localThreads[2] <= ctx->getDeviceInfo().maxWorkGroupSize );
}
#ifdef PRINT_KERNEL_RUN_TIME
static double total_execute_time = 0;
static double total_kernel_time = 0;
#endif
static std::string removeDuplicatedWhiteSpaces(const char * buildOptions)
{
if (buildOptions == NULL)
return "";
size_t length = strlen(buildOptions), didx = 0, sidx = 0;
while (sidx < length && buildOptions[sidx] == 0)
++sidx;
std::string opt;
opt.resize(length);
for ( ; sidx < length; ++sidx)
if (buildOptions[sidx] != ' ')
opt[didx++] = buildOptions[sidx];
else if ( !(didx > 0 && opt[didx - 1] == ' ') )
opt[didx++] = buildOptions[sidx];
return opt;
}
cl_kernel openCLGetKernelFromSource(Context *ctx, const cv::ocl::ProgramEntry* source, string kernelName, int channels,
int depth, const char *build_options)
{
//construct kernel name
//The rule is functionName_Cn_Dn, C represent Channels, D Represent DataType Depth, n represent an integer number
//for example split_C2_D3, represent the split kernel with channels = 2 and dataType Depth = 3(Data type is short)
stringstream idxStr;
if(channels != -1)
idxStr << "_C" << channels;
if(depth != -1)
idxStr << "_D" << depth;
kernelName += idxStr.str();
std::string fixedOptions = removeDuplicatedWhiteSpaces(build_options);
cl_kernel kernel = openCLGetKernelFromSource(ctx, source, kernelName, fixedOptions.c_str());
return kernel;
}
void openCLExecuteKernel(Context *ctx, cl_kernel kernel, size_t globalThreads[3],
size_t localThreads[3], vector< pair<size_t, const void *> > &args)
{
if ( localThreads != NULL)
{
globalThreads[0] = roundUp(globalThreads[0], localThreads[0]);
globalThreads[1] = roundUp(globalThreads[1], localThreads[1]);
globalThreads[2] = roundUp(globalThreads[2], localThreads[2]);
cv::ocl::openCLVerifyKernel(ctx, kernel, localThreads);
}
for(size_t i = 0; i < args.size(); i ++)
openCLSafeCall(clSetKernelArg(kernel, i, args[i].first, args[i].second));
#ifndef PRINT_KERNEL_RUN_TIME
openCLSafeCall(clEnqueueNDRangeKernel(getClCommandQueue(ctx), kernel, 3, NULL, globalThreads,
localThreads, 0, NULL, NULL));
#else
cl_event event = NULL;
openCLSafeCall(clEnqueueNDRangeKernel(getClCommandQueue(ctx), kernel, 3, NULL, globalThreads,
localThreads, 0, NULL, &event));
cl_ulong start_time, end_time, queue_time;
double execute_time = 0;
double total_time = 0;
openCLSafeCall(clWaitForEvents(1, &event));
openCLSafeCall(clGetEventProfilingInfo(event, CL_PROFILING_COMMAND_START,
sizeof(cl_ulong), &start_time, 0));
openCLSafeCall(clGetEventProfilingInfo(event, CL_PROFILING_COMMAND_END,
sizeof(cl_ulong), &end_time, 0));
openCLSafeCall(clGetEventProfilingInfo(event, CL_PROFILING_COMMAND_QUEUED,
sizeof(cl_ulong), &queue_time, 0));
execute_time = (double)(end_time - start_time) / (1000 * 1000);
total_time = (double)(end_time - queue_time) / (1000 * 1000);
total_execute_time += execute_time;
total_kernel_time += total_time;
clReleaseEvent(event);
#endif
clFlush(getClCommandQueue(ctx));
openCLSafeCall(clReleaseKernel(kernel));
}
void openCLExecuteKernel_(Context *ctx, const cv::ocl::ProgramEntry* source, string kernelName, size_t globalThreads[3],
size_t localThreads[3], vector< pair<size_t, const void *> > &args, int channels,
int depth, const char *build_options)
{
cl_kernel kernel = openCLGetKernelFromSource(ctx, source, kernelName, channels, depth, build_options);
openCLExecuteKernel(ctx, kernel, globalThreads, localThreads, args);
}
void openCLExecuteKernel(Context *ctx, const cv::ocl::ProgramEntry* source, string kernelName,
size_t globalThreads[3], size_t localThreads[3],
vector< pair<size_t, const void *> > &args, int channels, int depth)
{
openCLExecuteKernel(ctx, source, kernelName, globalThreads, localThreads, args,
channels, depth, NULL);
}
void openCLExecuteKernel(Context *ctx, const cv::ocl::ProgramEntry* source, string kernelName,
size_t globalThreads[3], size_t localThreads[3],
vector< pair<size_t, const void *> > &args, int channels, int depth, const char *build_options)
{
#ifndef PRINT_KERNEL_RUN_TIME
openCLExecuteKernel_(ctx, source, kernelName, globalThreads, localThreads, args, channels, depth,
build_options);
#else
string data_type[] = { "uchar", "char", "ushort", "short", "int", "float", "double"};
cout << endl;
cout << "Function Name: " << kernelName;
if(depth >= 0)
cout << " |data type: " << data_type[depth];
cout << " |channels: " << channels;
cout << " |Time Unit: " << "ms" << endl;
total_execute_time = 0;
total_kernel_time = 0;
cout << "-------------------------------------" << endl;
cout << setiosflags(ios::left) << setw(15) << "execute time";
cout << setiosflags(ios::left) << setw(15) << "launch time";
cout << setiosflags(ios::left) << setw(15) << "kernel time" << endl;
int i = 0;
for(i = 0; i < RUN_TIMES; i++)
openCLExecuteKernel_(ctx, source, kernelName, globalThreads, localThreads, args, channels, depth,
build_options);
cout << "average kernel execute time: " << total_execute_time / RUN_TIMES << endl; // "ms" << endl;
cout << "average kernel total time: " << total_kernel_time / RUN_TIMES << endl; // "ms" << endl;
#endif
}
void openCLExecuteKernelInterop(Context *ctx, const cv::ocl::ProgramSource& source, string kernelName,
size_t globalThreads[3], size_t localThreads[3],
vector< pair<size_t, const void *> > &args, int channels, int depth, const char *build_options)
{
//construct kernel name
//The rule is functionName_Cn_Dn, C represent Channels, D Represent DataType Depth, n represent an integer number
//for example split_C2_D2, represent the split kernel with channels = 2 and dataType Depth = 2 (Data type is char)
stringstream idxStr;
if(channels != -1)
idxStr << "_C" << channels;
if(depth != -1)
idxStr << "_D" << depth;
kernelName += idxStr.str();
std::string name = std::string("custom_") + source.name;
ProgramEntry program = { name.c_str(), source.programStr, source.programHash };
cl_kernel kernel = openCLGetKernelFromSource(ctx, &program, kernelName, build_options);
CV_Assert(globalThreads != NULL);
if ( localThreads != NULL)
{
globalThreads[0] = roundUp(globalThreads[0], localThreads[0]);
globalThreads[1] = roundUp(globalThreads[1], localThreads[1]);
globalThreads[2] = roundUp(globalThreads[2], localThreads[2]);
cv::ocl::openCLVerifyKernel(ctx, kernel, localThreads);
}
for(size_t i = 0; i < args.size(); i ++)
openCLSafeCall(clSetKernelArg(kernel, i, args[i].first, args[i].second));
openCLSafeCall(clEnqueueNDRangeKernel(getClCommandQueue(ctx), kernel, 3, NULL, globalThreads,
localThreads, 0, NULL, NULL));
clFinish(getClCommandQueue(ctx));
openCLSafeCall(clReleaseKernel(kernel));
}
cl_mem load_constant(cl_context context, cl_command_queue command_queue, const void *value,
const size_t size)
{
int status;
cl_mem con_struct;
con_struct = clCreateBuffer(context, CL_MEM_READ_ONLY, size, NULL, &status);
openCLSafeCall(status);
openCLSafeCall(clEnqueueWriteBuffer(command_queue, con_struct, 1, 0, size,
value, 0, 0, 0));
return con_struct;
}
}//namespace ocl
}//namespace cv