mirror of
https://github.com/opencv/opencv.git
synced 2025-01-13 00:01:27 +08:00
98c5ce9347
don't use legacy test API
370 lines
13 KiB
C++
370 lines
13 KiB
C++
/*M///////////////////////////////////////////////////////////////////////////////////////
|
|
//
|
|
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
|
|
//
|
|
// By downloading, copying, installing or using the software you agree to this license.
|
|
// If you do not agree to this license, do not download, install,
|
|
// copy or use the software.
|
|
//
|
|
//
|
|
// License Agreement
|
|
// For Open Source Computer Vision Library
|
|
//
|
|
// Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
|
|
// Copyright (C) 2008-2011, Willow Garage Inc., all rights reserved.
|
|
// Third party copyrights are property of their respective owners.
|
|
//
|
|
// @Authors
|
|
// Nghia Ho, nghiaho12@yahoo.com
|
|
//
|
|
// Redistribution and use in source and binary forms, with or without modification,
|
|
// are permitted provided that the following conditions are met:
|
|
//
|
|
// * Redistribution's of source code must retain the above copyright notice,
|
|
// this list of conditions and the following disclaimer.
|
|
//
|
|
// * Redistribution's in binary form must reproduce the above copyright notice,
|
|
// this list of conditions and the following disclaimer in the documentation
|
|
// and/or other materials provided with the distribution.
|
|
//
|
|
// * The name of OpenCV Foundation may not be used to endorse or promote products
|
|
// derived from this software without specific prior written permission.
|
|
//
|
|
// This software is provided by the copyright holders and contributors "as is" and
|
|
// any express or implied warranties, including, but not limited to, the implied
|
|
// warranties of merchantability and fitness for a particular purpose are disclaimed.
|
|
// In no event shall the OpenCV Foundation or contributors be liable for any direct,
|
|
// indirect, incidental, special, exemplary, or consequential damages
|
|
// (including, but not limited to, procurement of substitute goods or services;
|
|
// loss of use, data, or profits; or business interruption) however caused
|
|
// and on any theory of liability, whether in contract, strict liability,
|
|
// or tort (including negligence or otherwise) arising in any way out of
|
|
// the use of this software, even if advised of the possibility of such damage.
|
|
//
|
|
//M*/
|
|
|
|
#include "test_precomp.hpp"
|
|
|
|
namespace opencv_test { namespace {
|
|
|
|
#define ACCURACY 0.00001
|
|
|
|
// See pics/intersection.png for the scenarios we are testing
|
|
|
|
// Test the following scenarios:
|
|
// 1 - no intersection
|
|
// 2 - partial intersection, rectangle translated
|
|
// 3 - partial intersection, rectangle rotated 45 degree on the corner, forms a triangle intersection
|
|
// 4 - full intersection, rectangles of same size directly on top of each other
|
|
// 5 - partial intersection, rectangle on top rotated 45 degrees
|
|
// 6 - partial intersection, rectangle on top of different size
|
|
// 7 - full intersection, rectangle fully enclosed in the other
|
|
// 8 - partial intersection, rectangle corner just touching. point contact
|
|
// 9 - partial intersetion. rectangle side by side, line contact
|
|
|
|
static void compare(const std::vector<Point2f>& test, const std::vector<Point2f>& target)
|
|
{
|
|
ASSERT_EQ(test.size(), target.size());
|
|
ASSERT_TRUE(test.size() < 4 || isContourConvex(test));
|
|
ASSERT_TRUE(target.size() < 4 || isContourConvex(target));
|
|
for( size_t i = 0; i < test.size(); i++ )
|
|
{
|
|
double r = sqrt(normL2Sqr<double>(test[i] - target[i]));
|
|
ASSERT_LT(r, ACCURACY);
|
|
}
|
|
}
|
|
|
|
TEST(Imgproc_RotatedRectangleIntersection, accuracy_1)
|
|
{
|
|
// no intersection
|
|
RotatedRect rect1(Point2f(0, 0), Size2f(2, 2), 12.0f);
|
|
RotatedRect rect2(Point2f(10, 10), Size2f(2, 2), 34.0f);
|
|
|
|
vector<Point2f> vertices;
|
|
int ret = rotatedRectangleIntersection(rect1, rect2, vertices);
|
|
|
|
CV_Assert(ret == INTERSECT_NONE);
|
|
CV_Assert(vertices.empty());
|
|
}
|
|
|
|
TEST(Imgproc_RotatedRectangleIntersection, accuracy_2)
|
|
{
|
|
// partial intersection, rectangles translated
|
|
RotatedRect rect1(Point2f(0, 0), Size2f(2, 2), 0.0f);
|
|
RotatedRect rect2(Point2f(1, 1), Size2f(2, 2), 0.0f);
|
|
|
|
vector<Point2f> vertices;
|
|
int ret = rotatedRectangleIntersection(rect1, rect2, vertices);
|
|
|
|
CV_Assert(ret == INTERSECT_PARTIAL);
|
|
|
|
vector<Point2f> targetVertices(4);
|
|
targetVertices[0] = Point2f(1.0f, 0.0f);
|
|
targetVertices[1] = Point2f(1.0f, 1.0f);
|
|
targetVertices[2] = Point2f(0.0f, 1.0f);
|
|
targetVertices[3] = Point2f(0.0f, 0.0f);
|
|
compare(vertices, targetVertices);
|
|
}
|
|
|
|
TEST(Imgproc_RotatedRectangleIntersection, accuracy_3)
|
|
{
|
|
// partial intersection, rectangles rotated 45 degree on the corner, forms a triangle intersection
|
|
RotatedRect rect1(Point2f(0, 0), Size2f(2, 2), 0.0f);
|
|
RotatedRect rect2(Point2f(1, 1), Size2f(sqrt(2.0f), 20), 45.0f);
|
|
|
|
vector<Point2f> vertices;
|
|
int ret = rotatedRectangleIntersection(rect1, rect2, vertices);
|
|
|
|
CV_Assert(ret == INTERSECT_PARTIAL);
|
|
|
|
vector<Point2f> targetVertices(3);
|
|
targetVertices[0] = Point2f(1.0f, 0.0f);
|
|
targetVertices[1] = Point2f(1.0f, 1.0f);
|
|
targetVertices[2] = Point2f(0.0f, 1.0f);
|
|
compare(vertices, targetVertices);
|
|
}
|
|
|
|
TEST(Imgproc_RotatedRectangleIntersection, accuracy_4)
|
|
{
|
|
// full intersection, rectangles of same size directly on top of each other
|
|
RotatedRect rect1(Point2f(0, 0), Size2f(2, 2), 0.0f);
|
|
RotatedRect rect2(Point2f(0, 0), Size2f(2, 2), 0.0f);
|
|
|
|
vector<Point2f> vertices;
|
|
int ret = rotatedRectangleIntersection(rect1, rect2, vertices);
|
|
|
|
CV_Assert(ret == INTERSECT_FULL);
|
|
|
|
vector<Point2f> targetVertices(4);
|
|
targetVertices[0] = Point2f(-1.0f, 1.0f);
|
|
targetVertices[1] = Point2f(-1.0f, -1.0f);
|
|
targetVertices[2] = Point2f(1.0f, -1.0f);
|
|
targetVertices[3] = Point2f(1.0f, 1.0f);
|
|
compare(vertices, targetVertices);
|
|
}
|
|
|
|
TEST(Imgproc_RotatedRectangleIntersection, accuracy_5)
|
|
{
|
|
// partial intersection, rectangle on top rotated 45 degrees
|
|
RotatedRect rect1(Point2f(0, 0), Size2f(2, 2), 0.0f);
|
|
RotatedRect rect2(Point2f(0, 0), Size2f(2, 2), 45.0f);
|
|
|
|
vector<Point2f> vertices;
|
|
int ret = rotatedRectangleIntersection(rect1, rect2, vertices);
|
|
|
|
CV_Assert(ret == INTERSECT_PARTIAL);
|
|
|
|
vector<Point2f> targetVertices(8);
|
|
targetVertices[0] = Point2f(-1.0f, -0.414214f);
|
|
targetVertices[1] = Point2f(-0.414214f, -1.0f);
|
|
targetVertices[2] = Point2f(0.414214f, -1.0f);
|
|
targetVertices[3] = Point2f(1.0f, -0.414214f);
|
|
targetVertices[4] = Point2f(1.0f, 0.414214f);
|
|
targetVertices[5] = Point2f(0.414214f, 1.0f);
|
|
targetVertices[6] = Point2f(-0.414214f, 1.0f);
|
|
targetVertices[7] = Point2f(-1.0f, 0.414214f);
|
|
compare(vertices, targetVertices);
|
|
}
|
|
|
|
TEST(Imgproc_RotatedRectangleIntersection, accuracy_6)
|
|
{
|
|
// 6 - partial intersection, rectangle on top of different size
|
|
RotatedRect rect1(Point2f(0, 0), Size2f(2, 2), 0.0f);
|
|
RotatedRect rect2(Point2f(0, 0), Size2f(2, 10), 0.0f);
|
|
|
|
vector<Point2f> vertices;
|
|
int ret = rotatedRectangleIntersection(rect1, rect2, vertices);
|
|
|
|
CV_Assert(ret == INTERSECT_PARTIAL);
|
|
|
|
vector<Point2f> targetVertices(4);
|
|
targetVertices[0] = Point2f(-1.0f, -1.0f);
|
|
targetVertices[1] = Point2f(1.0f, -1.0f);
|
|
targetVertices[2] = Point2f(1.0f, 1.0f);
|
|
targetVertices[3] = Point2f(-1.0f, 1.0f);
|
|
compare(vertices, targetVertices);
|
|
}
|
|
|
|
TEST(Imgproc_RotatedRectangleIntersection, accuracy_7)
|
|
{
|
|
// full intersection, rectangle fully enclosed in the other
|
|
RotatedRect rect1(Point2f(0, 0), Size2f(12.34f, 56.78f), 0.0f);
|
|
RotatedRect rect2(Point2f(0, 0), Size2f(2, 2), 0.0f);
|
|
|
|
vector<Point2f> vertices;
|
|
int ret = rotatedRectangleIntersection(rect1, rect2, vertices);
|
|
|
|
CV_Assert(ret == INTERSECT_FULL);
|
|
|
|
vector<Point2f> targetVertices(4);
|
|
targetVertices[0] = Point2f(-1.0f, 1.0f);
|
|
targetVertices[1] = Point2f(-1.0f, -1.0f);
|
|
targetVertices[2] = Point2f(1.0f, -1.0f);
|
|
targetVertices[3] = Point2f(1.0f, 1.0f);
|
|
compare(vertices, targetVertices);
|
|
}
|
|
|
|
TEST(Imgproc_RotatedRectangleIntersection, accuracy_8)
|
|
{
|
|
// intersection by a single vertex
|
|
RotatedRect rect1(Point2f(0, 0), Size2f(2, 2), 0.0f);
|
|
RotatedRect rect2(Point2f(2, 2), Size2f(2, 2), 0.0f);
|
|
|
|
vector<Point2f> vertices;
|
|
int ret = rotatedRectangleIntersection(rect1, rect2, vertices);
|
|
|
|
CV_Assert(ret == INTERSECT_PARTIAL);
|
|
compare(vertices, vector<Point2f>(1, Point2f(1.0f, 1.0f)));
|
|
}
|
|
|
|
TEST(Imgproc_RotatedRectangleIntersection, accuracy_9)
|
|
{
|
|
// full intersection, rectangle fully enclosed in the other
|
|
RotatedRect rect1(Point2f(0, 0), Size2f(2, 2), 0.0f);
|
|
RotatedRect rect2(Point2f(2, 0), Size2f(2, 123.45f), 0.0f);
|
|
|
|
vector<Point2f> vertices;
|
|
int ret = rotatedRectangleIntersection(rect1, rect2, vertices);
|
|
|
|
CV_Assert(ret == INTERSECT_PARTIAL);
|
|
|
|
vector<Point2f> targetVertices(2);
|
|
targetVertices[0] = Point2f(1.0f, -1.0f);
|
|
targetVertices[1] = Point2f(1.0f, 1.0f);
|
|
compare(vertices, targetVertices);
|
|
}
|
|
|
|
TEST(Imgproc_RotatedRectangleIntersection, accuracy_10)
|
|
{
|
|
// three points of rect2 are inside rect1.
|
|
RotatedRect rect1(Point2f(0, 0), Size2f(2, 2), 0.0f);
|
|
RotatedRect rect2(Point2f(0, 0.5), Size2f(1, 1), 45.0f);
|
|
|
|
vector<Point2f> vertices;
|
|
int ret = rotatedRectangleIntersection(rect1, rect2, vertices);
|
|
|
|
CV_Assert(ret == INTERSECT_PARTIAL);
|
|
|
|
vector<Point2f> targetVertices(5);
|
|
targetVertices[0] = Point2f(0.207107f, 1.0f);
|
|
targetVertices[1] = Point2f(-0.207107f, 1.0f);
|
|
targetVertices[2] = Point2f(-0.707107f, 0.5f);
|
|
targetVertices[3] = Point2f(0.0f, -0.207107f);
|
|
targetVertices[4] = Point2f(0.707107f, 0.5f);
|
|
compare(vertices, targetVertices);
|
|
}
|
|
|
|
TEST(Imgproc_RotatedRectangleIntersection, accuracy_11)
|
|
{
|
|
RotatedRect rect1(Point2f(0, 0), Size2f(4, 2), 0.0f);
|
|
RotatedRect rect2(Point2f(0, 0), Size2f(2, 2), -45.0f);
|
|
|
|
vector<Point2f> vertices;
|
|
int ret = rotatedRectangleIntersection(rect1, rect2, vertices);
|
|
|
|
CV_Assert(ret == INTERSECT_PARTIAL);
|
|
|
|
vector<Point2f> targetVertices(6);
|
|
targetVertices[0] = Point2f(-0.414214f, -1.0f);
|
|
targetVertices[1] = Point2f(0.414213f, -1.0f);
|
|
targetVertices[2] = Point2f(1.41421f, 0.0f);
|
|
targetVertices[3] = Point2f(0.414214f, 1.0f);
|
|
targetVertices[4] = Point2f(-0.414213f, 1.0f);
|
|
targetVertices[5] = Point2f(-1.41421f, 0.0f);
|
|
compare(vertices, targetVertices);
|
|
}
|
|
|
|
TEST(Imgproc_RotatedRectangleIntersection, accuracy_12)
|
|
{
|
|
RotatedRect rect1(Point2f(0, 0), Size2f(2, 2), 0.0f);
|
|
RotatedRect rect2(Point2f(0, 1), Size2f(1, 1), 0.0f);
|
|
|
|
vector<Point2f> vertices;
|
|
int ret = rotatedRectangleIntersection(rect1, rect2, vertices);
|
|
|
|
CV_Assert(ret == INTERSECT_PARTIAL);
|
|
|
|
vector<Point2f> targetVertices(4);
|
|
targetVertices[0] = Point2f(-0.5f, 1.0f);
|
|
targetVertices[1] = Point2f(-0.5f, 0.5f);
|
|
targetVertices[2] = Point2f(0.5f, 0.5f);
|
|
targetVertices[3] = Point2f(0.5f, 1.0f);
|
|
compare(vertices, targetVertices);
|
|
}
|
|
|
|
TEST(Imgproc_RotatedRectangleIntersection, accuracy_13)
|
|
{
|
|
RotatedRect rect1(Point2f(0, 0), Size2f(1, 3), 0.0f);
|
|
RotatedRect rect2(Point2f(0, 1), Size2f(3, 1), 0.0f);
|
|
|
|
vector<Point2f> vertices;
|
|
int ret = rotatedRectangleIntersection(rect1, rect2, vertices);
|
|
|
|
CV_Assert(ret == INTERSECT_PARTIAL);
|
|
|
|
vector<Point2f> targetVertices(4);
|
|
targetVertices[0] = Point2f(-0.5f, 0.5f);
|
|
targetVertices[1] = Point2f(0.5f, 0.5f);
|
|
targetVertices[2] = Point2f(0.5f, 1.5f);
|
|
targetVertices[3] = Point2f(-0.5f, 1.5f);
|
|
compare(vertices, targetVertices);
|
|
}
|
|
|
|
TEST(Imgproc_RotatedRectangleIntersection, accuracy_14)
|
|
{
|
|
const int kNumTests = 100;
|
|
const float kWidth = 5;
|
|
const float kHeight = 5;
|
|
RotatedRect rects[2];
|
|
std::vector<Point2f> inter;
|
|
cv::RNG& rng = cv::theRNG();
|
|
for (int i = 0; i < kNumTests; ++i)
|
|
{
|
|
for (int j = 0; j < 2; ++j)
|
|
{
|
|
rects[j].center = Point2f(rng.uniform(0.0f, kWidth), rng.uniform(0.0f, kHeight));
|
|
rects[j].size = Size2f(rng.uniform(1.0f, kWidth), rng.uniform(1.0f, kHeight));
|
|
rects[j].angle = rng.uniform(0.0f, 360.0f);
|
|
}
|
|
int res = rotatedRectangleIntersection(rects[0], rects[1], inter);
|
|
EXPECT_TRUE(res == INTERSECT_NONE || res == INTERSECT_PARTIAL || res == INTERSECT_FULL) << res;
|
|
ASSERT_TRUE(inter.size() < 4 || isContourConvex(inter)) << inter;
|
|
}
|
|
}
|
|
|
|
TEST(Imgproc_RotatedRectangleIntersection, regression_12221_1)
|
|
{
|
|
RotatedRect r1(
|
|
Point2f(259.65081787109375, 51.58895492553711),
|
|
Size2f(5487.8779296875, 233.8921661376953),
|
|
-29.488616943359375);
|
|
RotatedRect r2(
|
|
Point2f(293.70465087890625, 112.10154724121094),
|
|
Size2f(5487.8896484375, 234.87368774414062),
|
|
-31.27001953125);
|
|
|
|
std::vector<Point2f> intersections;
|
|
int interType = cv::rotatedRectangleIntersection(r1, r2, intersections);
|
|
EXPECT_EQ(INTERSECT_PARTIAL, interType);
|
|
EXPECT_LE(intersections.size(), (size_t)8);
|
|
}
|
|
|
|
TEST(Imgproc_RotatedRectangleIntersection, regression_12221_2)
|
|
{
|
|
RotatedRect r1(
|
|
Point2f(239.78500366210938, 515.72021484375),
|
|
Size2f(70.23420715332031, 39.74684524536133),
|
|
-42.86162567138672);
|
|
RotatedRect r2(
|
|
Point2f(242.4205322265625, 510.1195373535156),
|
|
Size2f(66.85948944091797, 61.46455383300781),
|
|
-9.840961456298828);
|
|
|
|
std::vector<Point2f> intersections;
|
|
int interType = cv::rotatedRectangleIntersection(r1, r2, intersections);
|
|
EXPECT_EQ(INTERSECT_PARTIAL, interType);
|
|
EXPECT_LE(intersections.size(), (size_t)8);
|
|
}
|
|
|
|
}} // namespace
|